Cover illustration by Sandra Dionisi/SIS

Smalltalk....

PROVIDING SOLUTIONS TO THE SMALLTALK COMMUNITY

Editors
John Pugh and Paul White
Carfeton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
Frangois Bancilhon, 0, Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
lesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R.Jordan Kriendler, /BM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, /SE
Meilir Page-Jones, Wayland Systems
(liff Reeves, 1M
Bjame Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology Intemational

The Smalitalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk

Adele Goldberg, ParcPlace-Digitalk

Reed Phillips

Mike Taylor, ParcPlace-Digitalk

Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Kent Bed, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Constftant
Tim Howard, FH Protocol, Inc
Ralph E. Johnson, University of llinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc,
Jan Steinman, Sytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P.Friedman, Founder, President, and CEQ
Hal Avery, Group Publisher

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Elizabeth A Upp, Associate Managing Editor
Margaret Conti, Advertising Production Coordinator
Shannon Smith, Editorial Production Assistant

Circulation
Bruce Shriver, Jr, Giraulation Manager
Lawrence E. Hoffer, Marketing Manager

Advertising/Marketing
(Gary Portie, Advertising Manager, East Coast/Canada/Europe
Michael W, Peck, Advertising Representative
Kristine Viksnins, West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales
212.242.7447 (v),212.242.7574 {f)
Diane Fuller & Associates, Sales Representative, West Coast
408.255.2991 (v), 408.255.2992 (f)
Wendy Dinbokowitz, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

WSIGS

PUBLICATIONS

Publishers of JouRNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, THE X JOURNAL, REPORT ON
OsJECT ANALYSIS & DESIGN, OBIEcT Expert (UK),
and OBJEKT SPEKTRUM (GERMANY)

November-December 1995

Table of Contents

November-December 1995

Feature

Understanding inter-layer communication
with the SASE pattern

Kyle Brown

Smalltalk applications are best written in layers to encourage reuse and ease of
maintenance, but this architecture raises some questions regarding communication
between layers.The SASE pattern provides a solution.

Columns

Project Practicalities

A methodology mix

by Mark Lorenz

Combining a number of methodologies and utilizing the best elements
of each is often the best approach to object-oriented projects.

Smalltalk Idioms

Variables of the world

Kent Beck

Instance variables are harder to pin down than tempory variables,
but some clarification of the three styles—private, public, and
acquaintance—and their use is offered.

Getting Real

Object security

Jay Almarode

As a client implementation technology, single-user Smalltalk provides
enough security for most applications. For server implementation, you
will need to provide much more security.

Departments
Editors’ Corner

Book Review

SMALLTALK WITH STYLE
reviewed by Jan Steinman and Barbara Yates

Product Review GF/ST—A Smalltalk framework for graphical objects

Recruitment

reviewed by Jim Haungs

Vol 5 No3

12

15

21

28

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar-Apr, July-Aug, and Nov-Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. ® Copyright 1995 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be repraduced with express permission from the publisher.Second Class Postage
Pending at NY, NY and additional Mailing offices. Canada Post International Publications Mail Praduct Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239.To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509, Ottawa, Ontario K2C 3N2, Canada, or via Internet to streport@abjectpeople.on.ca. Preferred formats for figures
are Mac or DQOS EPS, TIF, or GIF formats. Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser

output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwoad, TN 37024~
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscriptlon orders and inquiries phone +44{0)1858.435302. PRINTED IN THE UNITED STATES.

1

Editors’ Corner

systems? This is a question we get asked often,

and indeed are still trying to formulate an answer
to it after all our years of building systems using
Smalltalk. Of course, there won't be any one answer,
since the potential schemes are as diverse as the types
of systems being developed. And, for the most part,
the issues aren’t that different for Smalltalk systems
than any other type of systems. But nonetheless, test-
ing Smalltalk applications should not be as “hit or
miss” as it has proven to be. And even those of you
whose organizations have succeeded at fully testing
Smalltalk applications in a systematic way are often
using home-grown, customized systems that cannot
be adapted to test other similar systems. This is not to
say an excellent job of testing isn't being done, it’s just
that as an industry, software engineering needs to find
more reusable solutions to proper testing. If tools
such as browsers and window constructors can be
created to work across multiple applications, then
why can't testing tools be created as well?

At OOPSLA this year, we had the opportunity to
query a number of “experts” on their strategies for
testing. There are some obvious things one can do. For
example, it seems clear that we need to develop a test
suite that will exercise each individual method
defined for a class. This is really the old style unit test,
only with Smalltalk the methods being tested tend to
be much finer grained than traditional systems, since
methods are generally simpler than traditional style
functions. And there have been some notable new
tools brought to the market recently that address this
type of testing (as well as other types).

Beyond individual methods, how does one define
test suites? The first thought is to next test the behavior
of a class. But how realistic is this type of test? This is
certainly feasible if the class performs some well-
defined function, and is well decoupled from other
classes. But typically a given class relies heavily on at
least a small subset of related classes, and therefore
must be tested with those other classes as a single unit.
This can often prove difficult because of the different
behaviors that might be exhibited by the instances of a
given class. Moreover, when we start introducing
inheritance into the picture, this approach of testing a
class becomes even more difficult.

In fact, a more significant test is probably not of the
class per se, but rather of objects. If the goal is to build
well-defined components, then it should be possible
to define test suites for objects independent of the

So, JUST WHAT is the proper way to test Smalltalk

Paul White

John Pugh

class to which they belong. This might help us avoid
some of the issues introduced by inheritance, although
not entirely.

The other style often employed when developing
test suites is to generate all our test cases as code. While
on the surface this seems reasonable, and is certainly
the fastest method to test, it does seem to have some
serious shortcomings. In an object-oriented world, it
seems obvious that we should be developing “testing
objects” rather than representing our tests through
code. What responsibilities/behavior does a testing
object have? It should probably, as a minimum, keep
track of the tests it is to perform, the objects on which it
is performing these tests, and the expected results.
There are a number of different ways to implement
such a test object, but it should be possible to build a
standard protocol for all tester objects. Once this is
done, and a widely accepted protocol gets adopted in
the industry, we will be able to begin simply testing our
code without having to build all the infrastructure for it,
as is the case for most of us. Also, it would be nice if a
series of “testing patterns” could be generated by those
who have the experience to make life simpler for the
rest of us who are struggling with this problem.

Like many of the outstanding issues in software
development, there is a great deal of effort being
expended on trying to address this issue. At OOPSLA,
there was a full-day workshop dealing with this very
topic. We will try to have someone who attended the
workshop write an article to bring us all up to speed
on the current state of the technology.

Meanwhile, we wish to draw your attention to the
review by Jan Steinman and Barbara Yates in this
month’s issue. They review the new book SMALLTALK
wrTH STYLE (Skublics, Klimas, and Thomas), and we
concur with them that titles such as this are long over-
due. As pointed out in the review, this book should not
be used as “the Bible” for style in development, but
should certainly be used as a foundation for develop-
ing your own style guidelines. The importance of a
consistent style across a project is often overlooked by
development groups. It is no different than architects
using a standard notation with their diagrams or
accountants using standard accounting principles.
Properly utilized, a standard style will help streamline
the software development process within your teams,
and to this end we highly recommend that you for-
malize your own style guidelines (along with guide-
lines for design principles, testing principles, etc.).

Enjoy the issue.

The Smalltalk Report

Let Visual TriO handle GUIL, OOUI and database access details
So you can focus on application design and delivery

T e Bakigin < Suiary Reviow > | Design] ~
Form _EGN_Selecled Joob Mode
Rich GUI Palette =
& R —
N laizg
Al [=
Auto-Gen Form Layout T TE ey foive
from data definition ane I o e
NS =
Jub D
Ble ot Smaitak Ces: Msthod Lelp [
Yorm gl Cormibtonu
Widget Tree P — =
Come || Query1_open
spinFactor = selt objectBindT e #SpinFactor.
perca) = geif cbjectBindTo: FPercentiBution.
g spinFactor contante: 1 2343, =
Links Smalltalk code self doduery.
to Events

Works like Visual Basic with the Object Power of Smalltalk

Makes Smalltalk Easier

Visual TriO is a comprehensive tool suite add-
on to Visual Smalltalk. Its streamlined work-
bench, automated database access and GUI
support helps veterans deliver applications
faster and novices get started quicker.

¢ Powerful Form Designer visually creates
advanced GUI

Class Explorer visually links Smalltalk code
with GUI events

¢ Visual subclassing

+ Controls Library facilitates reuse of custom
controls

¢ Utility to manage global name space

¢ Incremental loading of classes into the
Smalltalk image

¢ Incremental save of design work outside of
the Smalltalk image

® Packaging utility aids application deployment

» Tutoring tool takes you step by step from
simple GUI to advanced database and OOUI
applications

+ Team Support: Visual check-in / check-out
via interfaces to Intersolv’s PVCS

TechBridge F.J

Automates Database Access

Visual TriO’s data-smart and SQL-smart
Form Designer help you create the visual
parts of your application in the context of
the data you work on:

¢ Links GUI controls to database fields via
point and click

¢ Visual TriO generates SQL, manages the
unit-of-work, concurrent access, commits
and rollbacks across multiple tables

¢ Auto-generates GUI layouts from database

Built-in ODBC or native data wrappers for
popular databases:

Access, FoxPro, dBase, Paradox,
SQL Server, Sybase, Oracle, DB2/2,
DB2 family via DDCS/2

* Embedded Btrieve SQL engine facilitates
rapid prototyping (except Windows NT)

* Extendible to more complex data structures
via master/detail, visual joining of tables,
user defined data attributes and DDE

% Technal 73532.456@compuserve.com
= i M m ‘mem

TechBridge Technology Corp.
5001 Yonge Street, Suite 1301, North York, Ontario, Canada M2N 6P6
Phone: (416) 222-8998 Fax: (416) 222-0168

© 1985 TechBridge Technoiogy Corp. All rights reserved. TechBrldge, Visual TriO and lcanic F ing are regi:
and lha Corp. logo are of i Tachmlcmy'gdnrp. Micrasoft, Windows and the Windows logo are regislered

C: Al other

of and product namas men|
their respective owners.

and Lhe Visual TriO logo
are used for idenlification purposes only, and may be Irademarks af

To order call 1-800-463-8998

GUI Styling
| think that the exciting
L & thing about Viswal TriO is
§ that you can lower the enfry
9 barrier to Smalltalk” 3
3 - Bruce Gilham, -
i President, Dataforce - ?
e et
Links to
database
Creates Advanced GUI

Visual TriO gives you all the basic controls
plus many more:

Custom Subpane, Status Bar, Table,
Toolbar with Tip, Notebook, Business
Graph, Timer, Hot Point, Gauge, Dial,
Hierarchical List, Spin Button, Context
Menu, Picture (ICO, BMP, GIF, TIFF,
PCX, WMF, JPEG, EPS, IMG, WPG,
DIB and Targa)

Creates Enticing OOUI

With Visual TriO, it’s easy to visually
program OOUI effects like: drag-and-drop,
context menus, and conditional icons.

Give your end-users the same expressive
flexibility and freedom-of-action as the
Windows 95 or OS/2 Warp OOUI desktops!

« 30 Days Money Back Guarantee
» Royalty Free Runtime
System Requirements - Visual Smalltalk v3.0.1 from

ParcPlace-Digitalk / Windows 3.1, 3.11, NT; 08/2 2.1, Warp v3/
486 33 MHz or higher with 12M RAM and [2M disk space.

Understanding inter-layer
communication with
the SASE pattern

tions are best built in layers, with each layer having a
well-defined interface and well-defined communica-
tion paths to the layer beneath it. A layered architecture
promotes
* looser coupling between objects
» better factoring of responsibility
both of which encourage reuse and ease maintenance.
However, once you have chosen a layered architecture
how do you set up the communication paths between the
layers? Specifically, how do you decouple a view from any
specific model? To discover how this communication
occurs in modern Smalltalk systems, let’s take a look back
at the old days of Smalltalk and the MVC model.
In the good old days of “classic” MVC, models, views,
and controllers came in a triad- When you developed a
view, it was generally hardwired to work with a specific

lN A PREVIOUS ARTICLE,' I described how Smalltalk applica-

Kyle Brown

class of model. Later, the notion of “pluggability” mitigat-
ed this hardwiring by allowing the creator of a view to
specify the selectors of the messages that would be sent
by the view to the model. However, this still had the draw-
back of restricting that all messages from a view must be
sent directly to the instance of a model that the view held
in its “model” instance variable.

In part, this was due to the assumptions implicit in
the Observer? pattern that was used (in the form of
change/update) in most Smalltalk implementations.
Observer assumes that it is okay for an observer (a view)
to know a little bit about the subject (a model), but that
the reverse is not true. To gain real flexibility, however,
even this assumption had to be relaxed.

Each of the major Smalltalk vendors have addressed
these particular problems in their recent releases.
VisualWorks 2.0, Visual Smalltalk 3.0 (VST 3.0), and IBM
Smalltalk 2.0 share the same general solution to

a CalendarPane

1: button1Down:

|

2: trigferEvent:

3: setSelection:

an ApplicationCoordinator

this problem. This common solution can be
described by a new design pattern I call Self-
Addressed Stamped Envelope (SASE).

Problem: How do you define a context-free way
to notify an object of the occurrence of an
event? In particular, how does a view notify an
object somewhere in the application layer that
an event (e.g., a button press or a selection
change) has occurred without specifically
needing to have knowledge of what object to
notify, and what message to send?

Solution: Define a mapping in advance from an
event to a set of receivers and messages to be
sent to these receivers. Use Smalltalk’s #perform:
facility to send that message when the event
occurs at the “sender.”

The pattern is called SASE because of the analogy
to sending a self-addressed, stamped envelope to
a recipient with the understanding that the recip-
ient will send back the envelope whenever an

Figure 1.#setSelection: message flow.

event occurs. For example, you may want to send

4

The Smalitalk Report

Now it’s Easy to Build Interactive Diagrams

Quickly create advanced interfaces that convey
information better than lists... with DDF

DDF™ is an easy-to-use tool that
dramatically reduces the time
needed to build interfaces:

* makes building diagrams simple

* provides a new VisualWorks widget
* pre-configured for immediate use

» written completely in Smalltalk

* refineable and extendable

* includes ARS'’s Parcels & Structured
Graphics for building "dynamic” nodes

Example interface built with the Dynamic Diagram Framework

DDF - Dynamic Diagram Framework

With DDF™ you can quickly and easily ...

* create customized node icons with shapes *» select and move nodes

* add and remove nodes from a diagram format diagrams and hide nodes
= connect and disconnect nodes within a diagram » print and store diagrams

= customize lines and line decorations * dynamically update diagrams

P&SG - Parcels & Structured Graphics
Parcels & Structured Graphics (P&SG™) .]
* high precision 2-d object-oriented graphics for VisualWorks ®
* structured graphic shape objects
* drag-and-drop with parcels
» shapes recognize “hot-spots”

M ¢ provides 2 new VisualWorks widgets Shapes can be rotated, translated, scaled
N and combined to form new shapes.

Call (800) 260-2772 today to order or e-mail info@arscorp.com
for more information. Ask for a free copy of the white-paper
“Building Diagram-Based Applications with DDF*

Also Avalilable: MI - Multiple Inheritance

Applied Reasoning Systems Corporation (ARS) is an innovalive developer of high]]
quality Smalltalk development tools, application frameworks, intelligent software App||ed Reasoni ng Sy stems
systems, and related services that provide advanced solutions to complex problems.

2840 Plaza Place = Suite Raleigh NC = 27612

Smalltalk Products = Consulting * Education * Mentoring
Phone: (919) 781-7997 « E-mail: info @ arscorp.com

Make Documentation Automatic

Reduce Development Time

collection of individual methods.

Solve Your Documentation Problems

Make Quality Assurance Easier Too

Products

- Synopsis for IBM Smalltalk $295 Team $395
- Synopsis for Visual Smalltalk $295
- Synopsis for ENVY/Developer for Smalltalk/V $395

Synopsis Software

To increase productivity, Smalltalk developers must take advantage of
existing class libraries. That’s where Synopsis for Smalltalk helps.

Synopsis is an automatic documentation tool that produces summaries
for all classes of interest to you. Synopsis accelerates understanding of
classes because you see each class in its entirety, rather than as a

Everyone on your team benefits from documentation. Don’t make
documentation a chore --- make it automatic with Synopsis!

For distribution of documentation, Synopsis supports the following:
word processor files, Windows and OS/2 Help files, and HTML files.

Quality Assurance groups work with class summaries - not code!

8912 Oxbridge Court, Suite 300
Raleigh NC 27613

919-847-2221 Fax: 919-676-7501
73553.1073@ compuserve.com

SynClassDocumentor

A SynClassDocumenlor object is used to generate
documentation for a class and all of its methods. All text that
goes into a class summary is derived from informalion on the
class already available in the Smalltalk environment. This
includes information on superclasses, subclasses, and mosl
important of all, the d strings for method

The structure of the class summary is determined by a class
documentation template, which holds a collection of objects
representing Lhe different sections of the class summary. Each
scparnlec documentation section object is responsible for
writing its porion of the class summary. (Refer to
SynClassDocTemplate and SynDocumentationSection for
more information).

A SynClassDocumentor writes its outpul onto a new kind of
stream, a word processor stream (see SynWpStream). This
stream supports formatting the text into paragraphs, hold and
ftalic tent, elc.

Superclasses:
SynDocProducer SynObject Object

Suhclasses:
SynClassDocumentorSyn SynClassDocumentorV
SynCodeDx SynS yD

Instance Methods:

addDocumentationFor: aCluss

Add text for a summary of aClass to the outputSiream of
the receiver. The structure of the class summary is
delermined by the documentation template(s) of the
receiver. The template is determined by sending the
#emplateForClass: message 10 the receiver.

Sample Output from Synopsis

an SASE to contest promoters with the understanding
they will return it (with a list of the winners) when the
contest is over.

As an example, let’s look at the Event interface from
Visual Smalltalk 3.0. In VST 3.0, each class can define a set
of “events” that it can trigger. While all objects have this
capability, it is used most often in the SubPane hierarchy,
whose subclasses define events like:

» #clicked

» #needsContents

* #textChanged
When a particular object is interested in receiving notifi-
cations about an event from a SubPane (something an
ApplicationCoordinator might do) it registers itself with that
SubPane using the #when:send:to:with: method.

MyAppCoordinator (class) >> buildView: forModel:

aPane when: #clicked send: #setSelection:
to: aModel with: aPane.

Now, at some point in the future, the SubPane will (in
response to a mouse action) send itself the #triggerEvent:
message, with #clicked as the argument. This will result in
the message #setSelection: being sent to the Application-

Coordinator, with the SubPane being the argument. This
message flow is shown in Figure 1.

As you can see from the previous example, this imple-
mentation gives us several properties we were looking for:

» Because the “to” argument can be any arbitrary object
(and not just the View’s model) we can send a message
to any object in the ApplicationModel layer.

» Because the “send” argument can be any message, we
are not forced to make the receiver of the message
conform to any particular protocol. We can instead
use whatever message is appropriate.

» This method more loosely couples the view and the
application layer objects, since the view does not
hard-code any methods that it sends to these objects.

The same pattern is used in IBM Smalltalk and
VisualAge in a slightly different implementation, but for
the same purpose. In IBM Smalltalk, a CwWidget (the
closest equivalent to a VST 3.0 SubPane) implements two
messages

» #addCallback:receiver:selector:clientData:

» #callCallbacks:callData:

The first method is equivalent to the #when:send:to:with;
method in VST 3.0, in that it specifies an event (a Callback
Constant), the receiver of a message, the message, and the
arguments to the message to be sent when the event

The Smalltalk Report

Smalltalk and Lotus Notes™ Integration

Obijects for Notes

Smalltalk Objects to access Lotus Notes
available for
IBM® and Visual Smalltalk™
OS/2® and Windows™

AicroDoc Computersysieme GmbH, Sternstrafie 21, D-80538 Miinchen, Germany
. Tel: +49-89-2908 5171, Fax: +49-89-222867, CI5S100015,3007

d LofusNol‘as are f@éisfered trademarks of Lotus Development Carperation, IBM and O8/2 are registered rademarks of Internofional
s'Machine Corporalion, Windows is @ rademairk of Microsolt Corporation, Visual Smallialk is a trademark of ParcPlace Digitalk Inc.

If you're not objective
about mefrics analysis,
then your system may not

Are you managing your project teams effectively?
ObjectMetrics™ simplifies the process of gathering and
analyzing metrics so that you can ensure maximum
productivity from your development efforts.

To order call 1.800.0BJECT.1 or for more information
visit hitp:/ /www.objecispace.com. Also avallable from
The Smailitalk Store fel: 415.854.5535

@bicectSpace

PRODUCTS = TRAINING « CONSULTING = MENTORING = FRAMEWORKS

14881 Quorum Drive, Suite 400, Dallas TX 75240, emai: info @ objartspace.com kuc 214.663.9099, 1al; 214.934.2496
© Copyrighl ObjeciSpace, Inc. 1995. All names and trademarks are the properly of thelr respective pwners.

occurs. A CwWidget “triggers events” by sending itself the
#callCallbacks:callData: message.

In addition, IBM Smalltalk utilizes an almost identical
set of methods for communication between objects with-
in the view layer. CwWidgets respond to the method
#addEventHandler:receiver:selector:clientData:, which adds
an “event handler” to a CwWidget that is called when an
event (a mouse movement, expose, or keyboard event)
comes in from the underlying window system.
Commonly, one of the last things that happens in an Event
Handler is to send a callback to notify an application layer
object that, say, a mouse click has been interpreted as a
list selection.

Coming back full circle to VisualWorks, which
descended from the original Smalltalk-80 that gave us
change/update, we see that SASE is used here too, but in
a slightly different way. In VisualWorks, instances of
ValueHolder understand the message #onChangeSend:to:.
For example, in an ApplicationModel you might see,

MyApplicationModel>>postBuildWith: aBuilder

listSelectionHolder onChangeSend: #changedSelection
to: self

Whenever a ValueHolder receives a #changed: message, it
will (actually, a DependencyTransformer will) send the mes-
sage selector specified in the #onChangeSend:to: message to

the object specified in the message. This implementation
differs slightly from that of VisualSmalltalk and IBM
Smalltalk in that it does not also specify an “event” or “call-
back” symbol that specifies under what specific circum-
stances the message is to be sent. Instead, in VisualWorks
several ValueHolders are used, one for each particular cir-
cumstance. For instance, if a VisualWorks ApplicationModel
wanted to lmow when the contents of a ListView changed,
and when the user changed the selection, the Application-
Model would have to register with two different
ValueHolders—one representing the state of the selection,
and another representing the state of the list itself.

Now, one benefit that this pattern gives you is the abil-
ity to decouple objects in different layers that need notifi-
cations of changes, but that may have varying protocols.
For instance, let’s consider the common case in which a
change to one object will affect many objects in a differ-
ent layer. As an example, consider a class LoginMonitor
whose responsibility it is to know if a user is logged in to
the system. Let’s say a requirement exists that if a user
does not use the system for a fixed period of time (say, 10
minutes) then the LoginMonitor would have to notify each
of the open windows in the system to log themselves out,
and would have to log out of any open databases or main-
frame connections.

Using the SASE pattern, each interested object (be it an
application layer object or an infrastructure object) could
register itself on the LoginMonitor (which would probably
be a singleton).? Whenever the LoginMonitor “went off” it
would then automatically notify each registered object in
the specific way that each requested at registration time.
The LoginMonitor is unaware of either the existence of its
registrants or their protocol, keeping the system very
loosely coupled. The registrants only need to know:

» that the LoginMonitor exists
» that it complies with the standard SASE protocol for
registration
» the name of the event/callback or message that
returns the proper ValueHolder
So, you can see that SASE can permit a system to be even
more loosely coupled than the Observer pattern, and that
implementations of this pattern are extremely similar in
each of the major dialects. Seeing the commonalities
allows you to think in more abstract terms than the spe-
cific implementation, and also allows you to think about
cross-dialect portability from design time.

References

1. Brown, K. Remembrance of things past: Layered Architectures
for Smalltalk applications, THE SMALLTALK REPORT 4(9):4-7, 1995.

2. Gamma, E. et.al. DESIGN PATTERNS: ELEMENTS OF REUSABLE
OBJECT-ORIENTED SOFTWARE, Addison-Wesley, Reading, MA, 1995.

Kyle Brown is a Senior Member of Technical Staff at Knowledge
Systems Corp.and a frequent contributor to THE SMALLTALK REPORT.
He has over six years’ experience working with Smalltalk. He can
be reached at kbrown@ksccary.com.

The Smalltalk Report

A methodology mix

oriented projects, it has been obvious for some time

that the best methodology is a mixture of methodolo-
gies. Virtually all the commercial O-O projects I have been
involved with over the last few years have used multiple
methodologies to develop their O-O systems. In fact,
IBM has standardized on a methodology called Visual
Modeling Technique (VMT), that combines the best of
Responsibility Driven Design (RDD), the Object Modeling
Technique (OMT), and Object Oriented Software Engi-
neering (OOSE). This is essentially the same methodology
we use at Hatteras and the methodology we will focus on
in this article.

Fou ANY OF YOU THAT HAVE WORKED on many object-

A METHODOLOGY OVERVIEW

The basic steps to the methodology are shown in Figure 1
and briefly discussed in the following sections. Of course,
this is not a monolithic waterfall approach, but rather a
systematic process that results in requirement traceabili-
ty using techniques that are natural and easy to learn.

Write use cases from requirements

There should be a use case written for each public service
required of the system. The use cases focus on what is to
be provided (see Fig 2). This is the first step in the devel-
opment threads that trace back to the system require-
ments, as shown in Figure 3. These use cases have the
added benefit of being good inputs for test cases.

Write scenario scripts from use cases

Each use case will typically need multiple scenario scripts
to support it. Scripts focus on how the object model under
development will support the use case. They are composed
of time-ordered sequences of public message sends, docu-
mented in steps detailing the initiator, action, and partici-
pant. An example partial script is shown in Figure 4.

Fill in the object model from scenario steps
The scripts focus on the basic concepts in the business

Mark Lorenz is Founder and President of Hatteras Software Inc,
which offers education, modeling, mentoring, and products to
help other companies successfully use object technology, as evi-
denced by commercial products such as IBM's StorePlace and
Hatteras’ OOMetric. He welcomes questions and comments via
email at mark@hatteras.com or phonemail at 919.319.3816.

Project Practicalities

Mark Lorenz

Use cases
Jacobson
. Wirfs-Brock
gcqnlario :
cripls
Gibson | T —p
: Rumbaugh
00A ooD

Figure 1. Methadology mix overview.

domain, resulting in classes and their relationships. As
these efforts are taking place, class clustering into subsys-
tems occurs based on coupling due to high-level services
provided. This results in details required to satisfy the use
cases being added to the object model under construc-
tion, as shown in Figure 5.

Selling products

The salesperson answers the phone and asks the customer
for her phone number. The customer’s information appears
on the screen and the salesperson verifies the name and
address.

The salesperson asks the customer for an item number. The
salesperson sees the item information and verifies the type
of product being requested. The salespersaon asks for a
quality and enters it. The salesperson asks for more item
numbers until the customer is done ordering.

The salesperson verifies the last credit card used or gets
new credit card information. The salesperson tells the cus-
tomer the total amount and when to expect the shipment.

The inventory is updated once the order is committed by
the customer. The invoice and picking slip are printed in the
warehouse. The picker collects the items and puts them ina
box for the shipment. He includes the picking slip in the box
and puts the invoice on the outside as a shipping label.
Once the shipment is completely satisfied, the order is
archived, until then, the order is outstanding. The picker
takes the shipment to the shipping dock for pickup.

Figure 2. Example use case.

November-December 1995

Help Designer

for VisualWorks™

Help Designer is not just a programmer's tool - now any team
member can create high quality on-line help. This powerful
development lool is rich in features, provides flexible set of tools,
and facilitates the reuse of components within your applications.
Here is what you get:

® Help Editor ® Context-sensitive help
& Help Viewer @ |nline and outline help
% Image Edilor & Tag Help

& Word Processor ® Hypertext links and

Help Manager references

Control Panel Popup definitions

& Help Custom Controls
#® Rich Text Format support

Keyword search

History and hierarchy views

Macro definitions

Access to font, paragraph,

and color attributes

Embedded objects

RAun-time editing mode

® Platform independent help
files

e Full source code

GreenPoint, Inc.

77 Wast 55 Streel, Suite 11G
New York, NY 10019
EMail:75070.3353 @ compuserve.com

VisualWarks™ is a trademark of ParcPlace Sysiems

FREE DEMO AVAILABLE |

TO ORDER CALL 212-765-6982

FAXREQUEST 212-765-6920

S

[Managing inventory ‘

Figure 3. Requirement traceability.

Develop collaborations from scenario steps

Similarly, the scripts focus on the public behaviors exhib-
ited by the identified classes to service the requirements.
Groups of related public services called contracts are cre-
ated, both for the classes and subsystems. Figure 6 shows
an example diagram, with an indication of the amount of
detail needed to capture the key relationships and behav-
iors in the business model under development.

TOOLS TO SUPPORT A METHODOLOGY MIX
Using a mixture of methodologies may require the use of
multiple CASE tools, but there are also tools that handle
the mixture. Paradigm Plus supports a number of meth-
odologies, but it doesn’t make mixing techniques across
methodologies easy. It also doesn't support RDD as well as
I'd like to see. HOMSuite supports a mixture like we've
been discussing and has been used on successful com-
mercial product development, such as IBM’s StorePlace.
As methodologies evolve and people move around the
industry, we will hopefully see some convergence toward
an effective mix. For

Basic sale

script: New Customer
script: Customer information updates
branch: Bad credit record

seript: Product not found
script: Product search

OrderWindow asks total from OrderTransaction
-End of line item sale.
OrderWindow asks creditCard from Person

script: New credit card

script: Out-of-stock lineitems

script: Order cancelled

-We're now in the Warehouse

OrderWindow requests submit to OrderTransaction
OrderTransaction requests printFor: self to Invoice

-This script details our phone order-taking procedures from customers
OrderWindow requests customerFor: a PhoneNumber from Company
Company asks hasPhoneNumber:aPhoneNumber from Person

OrderWindow sends for: aPerson to OrderTransaction

-Iterate across the following steps for each product the customer orders.

OrderWindow requests productNumbered: aNumber from inventory
Inventory asks isProductNumber: aNumber for each Product

OrderWindow asks name, description, and price from Product
OrderWindow sends sellQuantity: aNumber of: aProduct to OrderTransaction
OrderTransaction sends sellQuantity: aNumber of: aProduct to Lineltem
Lineltem sends deplete: aNumber to Product

OrderWindow asks number, expirationDate from CreditCard

example, Booch'’s changes
in techniques in the last
year has moved him clos-
er to the mix I propose in
this article.

A PROJECT
ARCHITECTURE

I have previously written
about the essential com-
ponents of an architecture
for your O-O systems and
how to grow your teams
around this architecture.
This architecture revolves
around the grouping of
classes into subsystems
and identifying and con-
trolling public interface
contracts between those
subsystems. This method-
ology leads directly to the
development of this archi-
tecture, which is essential

Figure 4. Example partial scenario script

for your project’s success.

10

The Smalitalk Report

Seling products

Figure 5.Filling in model details from scripts.

SUMMARY

We have examined the steps used in a methodology that
is composed of important elements of multiple other
methodologies. This mix optimizes the development of
an object model and architecture. It has been effective in
numerous 0-O commercial projects and is the method-
ology most commonly found on the O-O projects I've
been involved with over the last few years. The tech-
niques are relatively easy to learn and provide good
requirements traceability.

Terminology

architecture The subsystems and their contractual
interfaces for an O-O system.

collaboration A graphical view of an O-O system

diagram design that shows subsystem group-
ings, classes, and contractual usages.

contract A logical grouping of related public
responsibilities.

objectdiagram A static model of an O-O system
design that shows classes, methods,
state data, and relationships between
classes.

script A time-ordered sequence of messages

between public interfaces of key
continued on page 20

Interface

Sall products

Figure 6. Object model and collaboration diagram example.

November-December 1995

Get CORBA 2.0
Inter(])\[;erabﬂjty

ow
with HP DST

Need to create 3-tier, enterprise-
wide applications and integrate
other languages with your
Smalltalk application?

With HP distributed Smalltalk 5.0, you
can move beyond simple client/server to
true distributed, enterprise-wide applica-
tions. That’s because you get tools for dis-
tributed development and debugging, a
CORBA 2.0 object request broker, and
related object services that make it easy to
create business objects and distribute
them wherever you like on your network.
Control your business objects with the
Transaction CORBAservice in HP DST.
Integrate them with other C++ objects
when you use HP DST and another
CORBA 2.0 object request broker.

HP Distributed Smalltalk is an extension
of the ParcPlace VisualWorks environ-
ment. Put together, your programming
team gets a faster, easier way to develop
and deploy distributed applications on any
combination of supported UNIX and PC
platforms.

Send us your name, address, and phone #
and we’ll send you free white papers titled
“Manager’s Guide to Distributed Objects”
and “HP DST Technical Information.”

Phone: (408) 447-4722

FAX: (970) 229-2180
Attention: HP DST White Papers

e-mail: dst@sde.hp.com

ﬂ’ HEWLETT®

PACKARD

© 1995 Hewlett-Packard Company

1

Variables of the world

variables are commonly used. This time, I'll talk about

how instance variables are used. The results for
instance variables are nowhere near as tidy as those for
temps. I'll speculate as to why after I've presented the
information.

l N THE LAST ISSUE, I PRESENTED the four ways temporary

SOAPBOX
But first, I'd like to whine and complain a little. Here's the
essence of my beef—it's getting harder, not easier, to write
Smalltalk applications. This is not what I expected.
Smalltalk had already raised the level of programming so
much from what I was used to that I figured the trend
would continue. Today’s clichés would become tomor-
row's abstractions and the day after that we would forget
we ever had to program that stuff. Onward and upward.
Instead, I see my clients programming the same stuff
time after time. Here are some examples:

e Unit values—If I want an object representing five
days, I shouldn't have to create “January 5, 1900” or
fall back on plain old “5.” Five days ought to be five
days. Decent unit values would catch lots of nasty
semantic errors and eliminate code that is currently
scattered through lots of domain models.

» Time and date intervals—“Every Thursday this
month,” “1 AM every night,” “every month this year.”
Each of these expressions, used in almost all
calculations, should be represented by an object.

» Multi-curtency calculations—There is no reason
Smalltalk applications should have to flinch at dealing
with multiple currencies. Application developers
should use a Money object to represent monetary
values. Once the application knows it is dealing with
money, supporting multiple currencies is a snap.

* Drawing editors—Interfaces where the connections
between things are as important as the things
themselves aren't effectively represented as lists, text,
tables, or notebooks. A good framework for direct
manipulation interfaces would go a long way toward
distinguishing Smalltalk applications.

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, PO.Box 226, Boulder Creek, CA 95006-0226,408.338.4649
(voice),408.338.3666 (fax), or by email at 70761,1216 (Compuserve).

Smalltalk Idioms

Kent Beck

» Active objects—Time marches on, but not if you look
at most of the Smalltalk library. I can't count how
many times I've written an object that keeps hold of a
Process and answers messages like “start” and “stop.”.
Doing a completely preemptive thread safe library is a
lot of work. That's overkill for most applications. A
little help writing and debugging active objects would
go a long way.

One interesting question is why such obvious objects
aren't part of the shared language of Smalltalkers. The
boring answer is that buyers don't have these objects on
their check lists, so the vendors don't produce them.

The more interesting answer is that the Smalltalk cul-
ture has shifted from producers of abstractions to con-
sumers of abstractions. We have in our hands the best
tool I've ever seen for creating reusable stuff, but we're all
so busy writing apps that as a community we don't step
back and make things that everyone can use.

Of course there is an economic rejoinder to this—it
isn't possible to make money making reusable software.
So what! Good abstractions are the product of experience
and inspiration, not economics.

We need to change our culture. Application developers
need to demand higher and higher levels of abstraction
from their vendors. Framework developers need to create
and publish abstractions, even if they don't make any
money at first. Vendors need to aggressively search for,
incorporate, and educate about the best new abstrac-
tions. In short, we have to start acting like a community;,
putting aside some short-term gain for the greater good.

I'm putting my time where my mouth is by putting my
unit testing framework in the public domain. I'm also
preparing my multi-currency framework for public con-
sumption (it'll be a few months, but I'll get there).

INSTANCE VARIABLES
The temporary variables boiled down to a simple set of
patterns. You can use a temp to:

e cache a value for performance

* hold a value of a side-effecting expression

¢ explain a complex expression

¢ collect results from a complex enumeration
I discovered these uses by looking at every method in the
system that uses temporary variables and classifying
them. Pretty soon the first three classifications became
clear. After a while I had to add a fourth.

12

The Smalitalk Report

When I tried to do the same thing for instance variables
all I got was a muddle. I came up with nine uses. Where
temps were clear, however, these nine uses are not. You
can classify one variable as two or three at once. I also
invented three (mostly orthogonal) styles of usage of
instance variables.

Ward Cunningham and 1 tried to figure out why
instance variables are so much harder to pin down than
temps. I wasn't satisfied with our answer, but here it is:
Temporary variables are tactical. They are created to
resolve a set of constraints that only exist within the scope
of a single method. Instance variables are often created to
solve much bigger problems, problems that may span
many objects.

In the process of writing a handbook for software engi-
neering, we've been much more successful at canonizing
coding practice than design or analysis practice. The deci-
sion to create an instance variable goes back to design or
even analysis. It shouldn’t be surprising that the result
isn't crystal clear.

Styles
Having successfully lowered your expectations, here are
the three styles I've found so far:

1. Private

2. Public

3. Acquaintance

Private. These are instance variables that are a simple
part of an object. They are used almost exclusively by the
object itself within its own methods. A good example is
the Visual Smalltalk version of OrderedCollection. It has
variables startPosition, stopPosition, and contents. No
object outside of the OrderedCollection has any need for the
values of these variables.

Public. These are instance variables that are more com-
plex parts of an object. They are often made available to
the outside world for further processing. Frequently, they
hold objects that are complex in their own right. However,
if the referring object didn't exist, the object referred to by
the variable wouldn't need to exist. Panes in Visual
Smalltalk have an instance variable “pen” which holds a
Pen. If you want to draw on a Pane, you need its pen. You
can often improve your design by shifting responsibility
into an object and making some of its public instance
variables private.

Acquaintance. These are variables that are there for con-
venience, but don't imply the sort of ownership of a pri-
vate or public instance variable. Stream’s instance variable
“collection” is an acquaintance. If you have an Array you
need to stream over, you could send it along with every
message to the Stream (nextPut:on:, nextFrom:). The proto-
col would be much uglier and there would be a greater
chance of errors if you used different collections at differ-
ent times. Thus, Streams get acquainted with one and only
one collection.

November-December 1995

Hefi-’s__:Your Chance

' Gonsulting
Firm Can Really Do.

Obi-ectlntellfg"me'“
Helping Clients Bulid
Enterprise Applications

e ParcPlace
VisualWorks™

e [BM VisualAge™

Consulting &
Development Services

¢ Hourly Smalitalk
Contracting

¢ On-Site Smalitalk
Development &
Project Management

¢ 00DBMS Development:
Gemstone™, Versant™ &
ObjeciStore™

e On-Site Mentoring &
Training

e Object Modellng,
Analysis & Design

Call 800.789.6595 or

e-mali: info@objectint.com

Objectintelligence

900 Ridgefleld Drive, Suite 240
= Haleigh, NC 27609
Vales 919.878.6690 Fax 919.678.6695

Iy

13

—Crafted Smalltalk-

presents
Smalltalk Professional Debug Package
for Visualworks™
—The debug features you have been waiting for—

Breakpoints *Watchpoints*
(No change to the source code or log file!)

-Debugger temporary breakpoints
-Debugger skip-to-caret into and out of blocks
-Synchronized browser and debugger code views
-Inspector copy, paste, and compare objects

— and more —
For OWST 4.1, VW 1.0, VW 2.0 and VW 2.5

Single user price: $89.00 + S&H

To order call: 401.846.6573
Visa, Mastercard or check accepted

For more information write or email:

Crafted Smalltalk
19 Tilley Ave.
Newport, RI 02840

Internet: traymond @pcix.com
Compuserve: 71520,3707

Uses

Here are the nine uses I've found so far:
1. Parent

Child

Name

Properties

Map

Current state/strategy

Pluggable selector/block

Cache

Flag

CeEeNIO R WD

Parent. Sometimes an owned object needs to acquaint
itself with its owner. The owner provides context for
calculations. VisualWorks' VisualPart has an instance
variable “container” that points to the containing
VisualComponent. You can improve your designs by
passing more context into the owned object and elimi-
nating parent variables. This allows one object to be
“owned” by several others.

Child. In tree structures, interior nodes need a variable to
held a collection of children. VisualWorks’ CompositePart
has a variable “components” that contains an Ordered-
Collection of VisualComponents.

Name. If everyone who refers to an object must use the
same key to identify it, the object needs a variable (prob-

ably public) to hold the key. You wouldn't want two clients
to access the same Account with different numbers.
Sometimes you can improve a design by replacing name
variables with a Map (see below) in the owning object.

Properties. Every instance of a class has the same vari-
ables. What happens when every instance needs differ-
ent variables? Visual Smalltalk Panes, for example, have a
host of optional values that can be (but don’t need to be)
set. Such an object needs a variable to hold a Dictionary
mapping names to values. Unlike a Map (see below), a
Property Dictionary’s values are heterogeneous. You can
often improve a design by figuring out what the invari-
ant state is, or finding distinct clusters of properties that
can form their own objects (the pattern Whole Value
addresses this issue).

Map. Objects hold all the state associated with them. That
is, if the system has a number connected with a particular
object, that object generally has an instance variable to
hold the number. However, when an object is added to
the system and it needs to associate new information with
an existing object, adding a variable to the existing object
would cluiter it up. For example, Visual Smalltalk’s
ObjectFiler and VisualWorks’ BOSS associate file offsets with
objects. It wouldn't make sense to add a “fileOffset”
instance variable to Object. Instead, each ObjectFiler keeps
an IdentityDictionary mapping objects to file offsets.
Unlike Properties, Maps have homogenous values. Some-
times you can improve designs by moving state out of an
object and into a Map, or vice versa.

Current state/strategy. When you use the State Object or
Strategy Object pattern, you need a place to put the cur-
rent state or strategy. VisualWorks’ UlBuilder has an
instance variable “policy” that holds an object that will
create user interface widgets.

Flag When you have simple variable behavior where an
object can be in one of two states, the object needs a
variable to hold a Boolean to signify the state.
VisualWorks' ParagraphEditor has a flag called
“textHasChanged.” It is true if the text has been edited. If
you have lots of flags, or if a flag shows up in lots of meth-
ods, you can improve your designs by introducing a State
Object or Strategy (see above).

Pluggable selector/block. Every instance of a class has
the same behavior but different state. Sometimes you
need a little variable in behavior, but not enough to war-
rant creating a whole new class. Objects with slightly
variable behavior need an instance variable to hold
either a Symbol to be performed or a Block to be evaluat-
ed. Visual Smalltalk’s ListPane has an optional
printSelector that is performed on the objects in the list to
get the strings to display.

continued on page 20

14

The Smalitalk Report

Getting Real |

Object security

objects is available to read and write. You can think of

the image as your private universe of objects, and as
long as you can get a reference to an object, you can send
it any message, even one revealing internal state or caus-
ing unintended side-effects. As a client implementation
technology, single-user Smalltalk provides enough secu-
rity for most applications, since any object that is mani-
fested in the client is inherently not secure in the first
place. As a tool for server implementation, however,
multi-user Smalltalk must provide much more security. A
server Smalltalk must handle requests from many users
running a variety of applications that require different
accessibility of objects. This column describes different
kinds of object security and examples of how to utilize
these security mechanisms.

There are many different ways to achieve object secu-
rity. The first defense is to prevent unauthorized users
from entering the system in the first place. This is usually
achieved by requiring users to log in to the server supply-
ing a user name and password. The popular press is full of
horror stories about hackers and password-guessing pro-
grams, but this mechanism is fairly effective in preventing
casual intrusion into a system. To prevent intrusion by
hardcore thieves, other barriers must be erected.

In GemStone Smalltalk, a user is represented by an
instance of class UserProfile. Among other things, a
UserProfile contains the user’s unique username, pass-
word (encrypted, of course), privileges (that specify
which system operations the user is allowed to exe-
cute), default segment (to be discussed later), and
groups (a set of symbols indicating to which named
groups the user belongs). The set of all UserProfiles is
maintained in a global set called “AllUsers”. One way for
an administrator to add a new user to the system is to
execute the following:

AllUsers addNewUserWithid: #Userl
password: 'pass5698word'

l N SINGLE-USER SMALLTALK SYSTEMS, the entire image of

Using Smalltalk since 1986, Jay Almarode has built CASE tools,
interfaces to relational databases, multi-user classes, and query
subsystems. He is currently a Senior Software Engineer at
GemStone Systems Inc.,and can be reached at almarode@slc.com.

Jay Almarode

This operation can only be invoked by an existing user
who has the explicit privilege to add new users (more on
privileged operations later). In a vanilla GemStone sys-
tem, there are three pre-existing users: SystemUser,
DataCurator, and GcUser. SystemUser is omnipotent and
can touch any object without restriction; this user
account should only be used for system upgrades.
DataCurator is the account used for general system
administration functions, such as adding new users or
performing a full backup of object memory. The GcUser
account is used to control a background process that
garbage collects objects during a recent series of trans-
actions. Once a user has logged into GemStone, the user
can access his/her UserProfile object by sending the mes-
sage “System myUserProfile”. This can be useful as a pro-
grammatic way to determine who is the current user.
The class UserProfile defines a number of useful meth-
ods including ones to change the user password, add or
remove a group name from the set of groups, and list the
user’s privileges.

Although a user can log into the system, it is still nec-
essary to be able to restrict users from reading or writing
particular objects. In GemStone, every object is assigned
an instance of class Segment. A segment is an object used
to specify authorizations for objects assigned to that seg-
ment. The only users who may read or write a particular
object are those who are granted authorization to do so
by the segment to which the object belongs. A segment
has nothing to do with the physical layout or location of
an object; it provides a way to group similar objects for
security purposes.

A segment provides the means to exercise authoriza-
tion control over all objects that reference that segment.
A segment has an owner; typically the user who created
the segment. The segment’s owner can change the
authorizations that the segment grants. There are three
levels of authorization: #read, #write, and #mnone. As you
might expect, #read authorization means that the objects
that reference that segment may only be read, #write
authorization means that the objects may be read or
written, and #none means that the objects cannot be
read or written.

A segment can grant authorizations to three designa-
tions of users: the owner of the segment, named groups of

November-December 1995

15

Database Solution)
for Smalltalk

ODBTalk A class library for ODBC

Database Access

« ODBC 2.x support for 50+databases

» Visual development components for database access

= Native ODBC data type support

= Online documentation, source included, no runtime fees

= programming examples and sample application

= 0O to RDBMS mapping framework, based on types &
brokers, ideal for complex client-server applications

= compatible with OTI’s ENVY/Developer, Object Share’s
WindowBuilderPro

» SLL and Team/V packaging support

Versions Available for Windows, Windows-NT
0S/2, and for IBM, Digitalk, and ParcPlace

New for ParcPlace VisualWorks
Tel: 416-787-5290
E Consulting Services
Tonds for the Senalltalh denpon
Internet:73055,123
@compuserve.com

Fax: 416-797-9214
Check out LPC’s Internet World Wide Web home page:

CompuServe: 73055,123
Lhtlp ://www . rwi.com/smalltalk/products/vendors/Ipc/lpchome. html

users, and all users (commonly called the world). Thus, a
segment could be created that grants read and write
authorization to the owner, read authorization to a group
named #riends, read and write authorization to a group
named #rustedFriends, and no authorization to the rest of
the world. The following code illustrates how to create a
segment with these characteristics:

| newSegment |

"create the segment"

newSegment := Segment newInRepository: SystemRepository.
"by default, the owner of the new segment is the user
who created it"

newSegment ownerAuthorization: #write.
newSegment group: #friends authorization: #read.
newSegment group: #trustedFriends authorization: #write.

newSegment worldAuthorization: #none.

"put the segment in a global variable for later use"
UserGlobals at: #trustedFriendsSegment put: newSegment.

In this example, the group names must exist in the global
set of named groups called AllGroups. AllGroups is a set of
symbols that resides in a segment owned by DataCurator;

thus, only DataCurator and SystemUser may add or remove
named groups.

To assign the segment of an object, simply send the
message “assignToSegment: aSegment” to the object. For
this operation to succeed, the user must have write
authorization for the object’s current segment and the
new segment. This operation only affects the receiver of
the message, not any nested subobjects. To change the
segment of the receiver and any logical subobjects, send
the message “changeToSegment: aSegment.” Any new
classes you implement should follow this same conven-
tion and reimplement “changeToSegment:” if necessary. In
general, you should use “changeToSegment:” to assign a
new segment for an object.

When you create new objects, the system automatical-
ly assigns them to the system’s current default segment.
When you initially log in, this is the same as the default
segment maintained in your UserProfile. You can change
the system’s current segment by executing “System
currentSegment: aSegment.” Any new objects that you cre-
ate will be placed in the new segment. If given the privi-
lege to do so by your system administrator, you can
change your default segment by executing “System
myUserProfile defaultSegment: aSegment.” This does not
take effect until you commit your transaction, log out,
and log back in again.

Segments are a flexible way to prevent unauthorized
users from accessing specific objects. Support for autho-
rization enforcement must be implemented in the
Smalltalk virtual machine for two reasons: It must be
implemented at the lowest level of basic object access to
prevent users from circumventing the authorization
checking, and it must be implemented as efficiently as
possible for performance reasons. After all, authorization
checking will occur the first time each object is accessed
in a transaction.

In some cases, a developer wants to prevent certain
objects from being accessed; in other cases, a developer

Table 1. Method access accorded by privileges in GemStone.

Type of Privilege Privileged Methods

SystemControl System | shutDown, stopOtherSessians, suspendLagins,
resumeLogins

SessionAccess System | currentSessions, currentSessionNames,
stopQtherSessions, descriptionOfSession:

UserPassword UserProfile | oldPassword:newPassword:

DefaultSegment UserProfile | defaultSegment:

OtherPassword UserProfile | passwaord:

SegmentCreation Segment | newInRepository:

SegmentProtection | Segment | group-authorization:, ownerAuthorization:,
worldAuthorization:

Statistics “methods to gather system-wide statistics”

FileControl “methods to backup object memory, replicate object
memory, create additional file extents, etc.”

GarbageCollection “methods to initiate and control garbage collection”

16

The Smalltalk Report

wants to prevent certain behavior from being executed by
specific users. This is easily implemented, either program-
matically or by using segments. To implement this capabil-
ity programmatically, you can explicitly check for a specific
user or group of users in the method you wish to restrict.
For example, the following method only allows members of
the group #trustedFriends to execute the given method:

method: Person
driveMyCar

"determine if the current user belongs to the group of
trusted friends"
(System myUserProfile groups includesValue:
#trustedFriends)

ifFalse: [self errorNotAllowedToDriveMyCar].

"perform the act of driving the receiver's car"

This technique has the advantage of being visibly explicit
in the source code, and you can compose a specific error
message when the error condition occurs.

The other technique is to use segments to restrict
behavior execution. Since a CompiledMethod must be read
before its bytecodes can be executed, placing the
CompiledMethod in a restrictive segment can prevent
unauthorized users from executing the behavior. The fol-
lowing code shows how to do this.

(Person compiledMethodAt: #driveMyCar)
changeToSegment: trustedFriendsSegment

This technique has the advantage of better performance
and cannot be circumvented by interrupting program
execution and executing internal code by hand.

Previously I mentioned that each UserProfile main-
tains the privileges for the user. The privileges for a user
determine whether the user is allowed to execute cer-
tain system functions typically performed by the system
administrator. Privileges are more powerful than seg-
ment authorization because a user with the appropriate
privilege can always change the segment authorization
scheme by sending a privileged message. Table 1 lists
the types of privileges in GemStone and some of the
specific methods that can be invoked when the privi-
lege is granted.

To achieve object security in production systems, the
system must support authorization control at the lowest
levels. Segments with underlying virtual machine support
provide one flexible way to exercise control over access to
objects. In a client/server environment, this is one com-
ponent in overall system security. In addition to exercis-
ing authorization control (enforcing a policy of user
access), a server also must reliably identify principals
attempting to use a system resource. This is called
authentication. A server Smalltalk can support authenti-
cation by utilizing existing schemes, such as kerberos.
Together, authentication and authorization are necessary
components to building truly secure systems.

VisualKit

Professional Interface Development for VisualWorks™

VisualKil™ 1s a set exlensions 1o the VisualWorks
enviromment that will allow developers to build polished
GUIs without additional tools to learn. VisualKit’s
additional (eatures include:
o Drag and drop e Accelerator Bultons,
framework for list Check Boxes, Radio
boxes, containers, Buttons and Labels

templates and folders e Complete and simple
¢ Microsoft MDI intertace for drag and

framework operating on drop

all platforms o Spin Boxes
o Accelerator Key e Progress Bars

framework on e Visual Combo Boxes

properties sheets o Complete VisnalWorks
o File navigation and integration and more...

dialogs o

-« P bjectsoft
47 West Division #136

Chicago, IL 60610
Email: objsoft@webcom.com.

Complete information including color screen captures is
available on our Web site at:

CALL FOR AUTHORS

SIGS Books is seeking authors for its new
book series, THE SIGS REFERENCE
LIBRARY. Titles in the series include THE
DIRECTORY OF OBJECT TECHNOLOGY and
THE DICTIONARY OF OBJECT
TECHNOLOGY.

To discuss or submit a
proposal on writing white papers,
handbooks, etc., please contact:

Don Firesmith, Editor-in-Chief
4001 Weston Parkway
Cary, NC 27513
919-481-4000 (v)
919-677-0063 (f)
dfiresmith@ksccary.com

SIGS REFERENCE LIBRARY

November-December 1995

17

SMALLTALK WITH STYLE

reviewed by Jan Steinman & Barbara Yates

SMALITALK WITH STYLE

Skublics, S., E.J. Klimas, and D.A. Thomas
Prentice Hall Inc., Englewood Cliffs, NJ
ISBN 0-13-165549-3

ments) we mentioned the importance of having a style

guide within your organization, but we weren't able to
suggest any that you could walk into a bookstore and take
home. Until now, we have pointed our clients to a 1986
OOPSLA poster paper by Roxie Rochat and an internal
Allen-Bradley Smalltalk style guide by Ed Klimas as start-
ing points. This book fills the gap, and is long overdue. It
belongs with every Smalltalk project team.

SMALLTALK WITH STYLE is not an “intro to Smalltalk” book.
The authors provide references to several other texts for
the novice to read to become acquainted with Smalltalk
dialects, but this book is mostly dialect-independent,
which deserves special applause.

lN OUR JUNE 1995 COLUMN (Managing project docu-

HOW TO USE THE BOOK

The 126 guidelines are grouped into five chapters by
topic: naming (guidelines 1-34), comments (guidelines
35-48), formatting (guidelines 49-69), reuse (guidelines
70-90), and tips (guidelines 91-126). A glossary includes
basic terms, and the Preface includes some good stuff that
should not be skipped.

This book should be read cover to cover the first time,
rather than used strictly as a reference book with random
access to guidelines via the index, because the prose lead-
ing up to the numbered guidelines is essential to grasping
the authors’ full meaning for the guideline. The examples
following most guidelines are required reading too!
Finally, there are boxed notes or “tips” sprinkled through-
out the chapters that contain very helpful information.

A recent thread in comp.lang.smalltalk about
Smalltalk code formatting shows how religious an issue
such a topic is; the same is true about a lot of the guide-
lines in this book. You'll find experienced Smalltalkers
have strong opinions both favoring and opposing some
of these guidelines. This book’s value is not in dictating a
standard to be followed, but in collecting in one place
the combined wisdom of many Smalltalk programmers

who have been writing and reading Smalltalk code for
over a decade.

Some guidelines may appear deceptively obvious. You
may ask yourself “who would think of doing such a
thing?” when reading some of the bad examples. Even
simple guidelines that experienced Smalltalkers take for
granted may be novel ideas to brand-new Smalltalkers,
and our experience in helping organizations adopt
Smalltalk shows that not a single guideline in this book is
too obvious.

Some of the guidelines will be misapplied by novices
without careful attention to their accompanying exam-
ples. One such case is the recornmendation to use paren-
theses to improve readability. Some novices will use this
as an excuse to avoid learning the simple Smalltalk prece-
dence rules, but the examples clearly show use and abuse
of parentheses. Don't expect this to be a Smalltalk pro-
gramming instructional manual—it isn't intended to be.

DIPLOMACY VS. DOGMATISM

The writers are not overly dogmatic, recognizing that cer-
tain issues are largely a matter of individual taste. For
example, on p. 41 they state “There is no absolute way to
indent and align Smalltalk code. It is more important to
be consistent within your code and, when changing
someone else’s cade, to be consistent with their code.”

One unfortunate effect of this diplomacy is that in
places the book appears to bend over backwards to avoid
stating a preference—there are eight code fragments to
illustrate the alignment of brackets for Guideline 61,
which then states “Choose one way to align brackets in
blocks and use it consistently.” This statement of a guide-
line backed up by alternate ways to apply it illustrates one
of the points made in the introduction: “This book should
be used as the first draft for your own guide to good
Smalltalk style...The best guidelines are those that people
want to follow because they appreciate the benefit. Blind
enforcement of a matter that is of personal taste is not in
the interest of the project as a whole.”

Although the book is dialect-independent for the most
part, we did notice guidelines that are unnecessary in
many Smalltalk development environments. For exam-
ple, a line length limit for source code is suggested, but is

18

The Smalltalk Report

a nuisance in the majority of Smalltalk environments that
have resizeable, auto-wrapping code windows. Rather
than attempting complete dialect neutrality, it would
have been nice if the authors had pointed out the dialect
implications of such guidelines.

This suggests the need for additional style rules in
your organization that are dialect and toolset depen-
dent, for example, specific naming conventions for
ENVY applications and version names. Keep in mind (as
the authors point out), that this book is a starting place
for your organization, not a coding style bible to be
adopted as is.

For us, the most enjoyable section of the book is
chapter 5: “Tips, Tricks, and Traps.” Unlike the guidelines
in the preceding sections, which are open to argument
and sometimes controversial, these guidelines are most-
ly universally accepted and of particular importance to
beginning Smalltalkers. Some are meant to help you
avoid “classic Smalltalk bugs” such as modifying a col-
lection while iterating over it, or forgetting to send
#yourself after a succession of cascaded #add: messages
to a new collection.

Regrettably, some guidelines in this section cover
important topics such as testing in a superficial way.
Perhaps it is more important that something be said on
these topics, albeit very little, with further guidelines in
these areas left up to the readers to develop. Once again,
this book is a template for you to complete, not an all-
inclusive tome.

IMPROVEMENTS

Although we unreservedly recommend this book, we have
some wishes for a second edition. It could benefit from
the eye of a professional book designer—the layout is a bit
unapproachable and difficult to scan, with numerous
widows and orphans and a fussy indentation scheme.
(Contrast this to an absolutely gorgeous book that is sim-
ilar in concept: 201 PRINCIPLES OF SOFTWARE DEVELOPMENT,
AM. Davis, McGraw-Hill, 1995, which should be on
everyone’s shelf.)

There were also a very few outright inaccuracies, such
as the glossary definition of a class instance variable.
(Class instance variables are not shared by instances of
the class.)

Also strangely lacking (given two of the authors are at
OTI, makers of ENVY) are guidelines regarding the tem-
poral aspects of development, which is in many ways
unique to Smalltalk. Certainly more could be said on this
topic than “Guideline 120: Avoid modifying the existing
behavior of base system classes,” without turning into an
ENVY ad!

Many of the guidelines lack context and background.
This is probably necessary to keep it from ballooning into
a general-purpose Smalltalk how-to book, but the lack of
“why” behind some guidelines may cause unnecessary
resistance to following them.

It should be taken as a tribute to this book that our crit-
icism can be largely boiled down to “more, please!”

EXCERPTS

To give you an idea of what the book is like, here are some
of our favorite guidelines, and some that we found most
controversial.

» Guideline 26: Do not use the same temporary
variable name within a scope for more than one
purpose. This is one of those “motherhood” guidelines
that should be obvious, but we see it violated every
day, particularly by new converts to Smalltalk from C
or FORTRAN.

* Guideline 40: Maintain the method comments with
as much care as the source code and keep them
synchronized. Amen! This is the “constant accuracy”
principle of documentation we describe in our June
1995 column.

» Guideline 104: Test classes as they are developed and
Guideline 105: Test components as they are
integrated. Testing is one of the great lies like “The
check is in the mail,” and “It's done (except for
testing).” Expect testing to take on renewed
importance as many large, first-generation Smalltalk
projects enter their second generation.

More controversial is the example under guideline 59
shown as a “bad choice” because “although the Blue
Book...uses this style, most programmers [keep the left
bracket on the line with whileTrue:]”:

[number <= 100] whileTrue:
["more code here
and here"].

This is an example of the hidden dialect bias we would have
preferred was explicit. The built-in VisualWorks formatter
makes your code look similar to this “bad” example, and
“most programmers” with a VisualWorks, Objectworks, or
Smalltalk-80 background are likely to code in the “bad”
style—it should not be discouraged in such shops.

We also find many of the bracketing and indenting
styles would be alien (or go missing) to someone whose
only Smalltalk exposure was a Smalltalk-80-family image.
For example, an important missing Smalltalk-80 guideline
is to not line up columns of text with tabs, since the use of
different fonts will obliterate the horizontal spacing.

* Guideline 64: Separate cascaded long key word
messages with a blank line or further indent
subsequent keywords after the first if the message has
multiple keywords. Example [complies with guideline]:

anOrderedCollection
replaceFrom: 2
to: 3
with: #(abcdefg)
startingAt: 3;

replaceFrom: 7

to: 8

with: #(abcdefq)
startingAt: 5.

Vertical white space is usually a precious resource, and we

November-December 1995

19

| BOOK REVIEW

prefer guidelines that conserve it over guidelines that
tend to make you scroll. This example also shows the
“narrow, non-wrapping window” dialect bias, and a
Smalltalk-80 programmer would probably keep each
message on the same line, with no extra whitespace.

Guideline 119 regarding lazy ini-
tialization does not address its real
value: providing state sequence
independence. Better would have
been a brief discussion of base and
derived state and a guideline to
“eagerly” initialize base state, while
“lazily” initializing derived state,
but this once again treads the fine
line between a style guide and a
design guide.

CONCLUSION

Before looking at the book, we asked ourselves some

questions that we've heard from novices. Happily, this

book answered all that strictly concerned style, but

missed some that sit on the line between style and design:

* Should I always write instance methods and create a

single instance of a class, rather than treat the class as
a global and write only class methods?

* What kind of behavior normally belongs on the
class side?

* How do I decide which type of collection to use in
my application—anArray, anOrderedCollection,
something else?

Admittedly these are not really
style questions, but this book does

We look forward to reading cross the line from style to pro-
the “revised and enlarged”
edition that will surely
come in the future.

gramming and process guidelines
at various times,

We don't envy the authors the
task of choosing what to put in and
what to leave out. All in all they did
an admirable job, and it is with plea-
sure that we look forward to reading
the “revised and enlarged” edition that will surely come
in the future.

At least one copy of this book belongs with every
Smalltalk project teamn!

Jan Steinman and Barbara Yates took a month off from their
“Managing Objects” column to write this review. They are
cofounders of Bytesmiths, a consulting company that has been
helping companies adopt Smalltalk since 1987. Between them,
they have over 20 years’ Smalltalk experience. They can be reached
at Barbara.Bytesmiths@acm.org or Jan.Bytesmiths@acm.org.

PROJECT PRACTICALITIES

continued from page 11

objects that describe how the model
will service the requiremnents specified
in a use case.

subsystem A group of relatively tightly coupled
classes that provide some end user
functionality, as documented in its
contracts.

use case An English language description of

what the system is required to do upon
receipt of one type of user request.

Suggested reading

1. Business Object Modeling course materials, Hatteras Software,
1995.

2. Gibson, E. Objects: Born and bred, Byt MagazINE, October,
245-54, 1990.

3. Jacobson, L. et al. OBJECT-ORIENTED SOFTWARE ENGINEERING: A
Uske Case DRIVEN APPROACH, Addison-Wesley, Reading, MA,
1992.

4. Lorenz, M. Architecting large projects, THE SMALLTALK REPORT,
4(5):28-29, 1995.

5. Lorenz, M. OBJECT-ORIENTED SOFTWARE DEVELOPMENT: A
PracricaL GuiDg, Prentice Hall, Englewood Cliffs, NJ, 1993.

6. Lorenz, M. RAPID SOFTWARE DEVELOPMENT WITH SMALLTALK, SIGS
Books, New Yorlk, 1995.

7. Rumbaugh, J. et al. OBJECT-ORIENTED MODELING AND DESIGN,
Prentice Hall, Englewood Cliffs, NJ, 1991.

8. Wirfs-Brock, R., B. Wilkerson, and L. Wiener. DESIGNING OBJECT-
ORIENTED SOFTWARE, Prentice Hall, Englewood Cliffs, NJ, 1990.

SMALLTALK IDIOMS
continued from page 14

Cache. Sometimes an object returns the same answer
over and over in response to a message. If computing the
answer is expensive, you can improve the performance of
the system by adding an instance variable to the object to
hold the value of the expression. You will have to make
sure the value is recomputed if the value of the expression
ever changes, and you should only add a cache if a per-
formance profile of the object running under realistic
conditions shows that the expression is expensive. The
variable “name” in Visual Smalltalk’s Behavior (Visual-
Works' ClassDescription) is an example. The message
“name” could be implemented as:

Behavior>>name
~Smalltalk keyAtValue: self

But because it happens so often, the value of the expres-
sion is cached in an instance variable.

CONCLUSION

That's it so far. Looking back at the list, it’s obvious that
there's still a lot of ground to cover. For example, some-
times variables have their values set when the instance
is created and never change. If you've got a favorite trick
with instance variables that isn’t covered above, drop
me a line.

20

The Smalltalk Report

GF/ST—A Smalltalk framework

for graphical objects

Jim Haungs

petes with products like Visual Basic and Delphi, it's

nice to see an important product that couldn't possi-
bly be implemented in anything but Smalltalk. GF/ST from
Polymorphic Software is such a product. It is designed to
solve one of the hardest programming problems: designing
and implementing intuitive graphical user interfaces
(GUIs) with graphics technology. Menus, toolbars, and
common controls notwithstanding, what to do with the
client area of your application window is often frustrated
by the complexity of the OS platform’s graphics primitives.
GF/ST is an excellent graphics toolkit that demonstrates
the extreme power of Smalltalk in the right hands.

AS SMALLTALK BECOMES MORE MAINSTREAM and com-

INTENDED AUDIENCE

This product is intended for Smalltalk programmers
who wish to add real graphics to their applications. Real
graphics go beyond menus and listboxes. Real graphics
represent application objects as manipulable graphical
objects that support drag-and-drop, and are perceived
by the end user as visually representative of the applica-
tion domain.

BACKGROUND
Manipulating graphics is hard work. Normally, drawing in
a coordinate space just leaves a trail of dots. Creating
meaningful figures and animating them is a nontrivial
task. It is rendered (pun intended) even harder by the
wildly differing graphics systems available in modern
operating systems. Coordinate systems differ. Graphics
primitives are neither standard nor universal. Scrolling
and printing are nightmares to implement correctly. Even
though all the major operating systems provide general-
ized driver-based printing, not one of the major Smalltalk
platforms implement any kind of native printing support.
Not all platforms use the same coordinate system. For
example, Windows considers the origin (0,0) to be the
top left corner of the display, while OS/2 considers (0,0)
to be at the lower left. In Windows, X increases to the
right, andY increases down, while in 0S/2, Xincreases to
the right, and Y increases up. Digitalk exposes these plat-
form differences, implementing generic methods such
as rightAndDown:, which are implemented differently on

the two platforms. ParcPlace and IBM, on the other
hand, completely hide the platform’s graphical system
by imposing a single, uniform layer of abstraction: SPIM
for ParcPlace, and Motif for VisualAge. With so many
divergent approaches, source code compatibility across
platforms is nearly impossible.

GF/ST addresses the coordinate problem by imposing
a lightweight coordinate system over the existing
Smalltalk implementation. You are free to use or ignore
this system depending on whether portability or platform
compliance is more important to you. But much more
importantly, GF/ST assists portability by eliminating
most of the difficult drawing code, moving it instead into
the framework itself.

PRODUCT DESCRIPTION
GF/ST is a framework. It supplies mechanisms for crea-
ting drawing spaces for graphical objects. The drawing
spaces properly support scrolling and printing; multi-
page printing of large drawings is also supported. GF/ST
is intended to make graphical representations of domain
objects as easy as using a ListBox or a TextPane.

The Graphical Object (GO) is the basic behavioral unit
in GF/ST. GOs are displayed in a drawing space, which

Yisual Inspector

—
s
File Smalita

F1E B SR S PR e PR P
Figure 1.The Visual Inspector depicting a cell GO.

November-December 1995

| PRODUCT REVIEW

presents an abstract interface to the pro-
grammer. This interface disguises most of the
underlying platform's graphics primitives,
and standardizes the coordinate system
across platforms and across Smalltalk prod-
ucts. Through the creation of GOs, you only
need to code specialized renderings of your
objects; you don't need to manage their dis-
play in the drawing, nor their interaction with
the platform graphics primitives.

GF/ST supplies many ready-made GO
classes: text, lines, ellipses, rectangles, paths,
splines, and bezier curves. Lines and polylines

its built-in support for undoing graphical
manipulation operations. GF/ST imple-
ments a completely generic Memento
framework! for remembering previous
object states without breaking encapsula-
tion. It also supplies a BoundedStack class that
facilitates creation of a limited-size Undo
stack; new elements are pushed on the stack
until the bound is exceeded, then the oldest
ones are discarded as new ones are added.
GF/ST also makes use of the platform’s
object finalization mechanism for properly
releasing bitrnaps and other resources when

can have arrowheads on either or both ends,
and paths can be drawn as orthogonal (right-
angles only) or straight lines. Group and composite GOs
keep track of several objects at once. A group is treated as a
single object, while a composite allows separate manipula-
tion of the subobjects and of the composite as a whole.
Host widget GOs allow the creation, display, and manipula-
tion of host widgets; use of these constrains the portability
of your application, but are invaluable when the widgets
are necessary and portability is not a consideration.

A GO can keep track of a single metaobject, which is
usually the domain object represented by the GO.
Because it is simple to detect and traverse the selected
object(s) in a drawing, the metaobject makes it simple to
access the corresponding domain object(s).

Because GF/ST is a direct manipulation framework, a
large number of classes are supplied to enable direct
interaction with graphical objects. The most important
notion is the “handle.” The GFHandle class abstracts the
general behavior of object handles. Subclasses provide
more specialized behavior, such as selecting objects,
moving them, changing their size and colors, and con-
necting objects to each other.

One of the nicest things about the GF/ST framework is

= A Brallle D|splay
‘ Brallle

now i i

S o n s C O me

i
-

c o unt r

PE anasa gy
Figure 3. Output from the Braille Editor.

Figure 2. A BrailleCellGO object.

a GO becomes garbage. On some platforms
(Digitalk), the finalization mechanism must
be explicitly loaded into the image. Polymorphic strongly
recommends the use of finalization, and I agree with them.
After creating the sample application for this article, I ran
out of bitmap handles, and I could no longer save the
image without causing a walkback. After recreating the
image using finalization, I had no further trouble.

GF/ST makes extensive use of the dynamic messaging
capabilities of Smalltalk. For example, a GFLocator object is
a ldnd of Message that, when evaluated, yields a point. The
GFGraphicObject class implements a default method called
“locator” which returns a locator on the center of the object:
[GFLocator on: self at- #center]. When the locator is evaluat-
ed, it sends the #center message to the receiver, and returns
the point at the center of the object. Locators are used to
find centers or edges of objects, establish connecting lines
between objects, and evaluate constraints when objects are
moved or interact with one another. Constraints are blocks
of code that establish limits on or between objects. For
example, a Position constraint keeps an object from moving
outside an established boundary. Connection constraints
keep objects and their connecting lines connected and in
synch when connected objects are moved.

The drawing framework manages the interaction with
the user through a set of input “tools” that translate input
gestures into object manipulations. For example, selecting
objects in a drawing is done with a GFSelectionTool. Tools are
sent messages in response to input events, and respond by
translating and forwarding messages to the selected
objects. Drag/drop is handled simply and elegantly, and
the creation and drawing of shapes and the moving and
interconnecting of objects could not be simpler. User inter-
actions can also be disabled for output-only applications.

An important aspect of the drawing interface is the
internal representation of the objects in the drawing.
Determining which of hundreds or thousands of objects
in a drawing is under the cursor requires an efficient
storage and display list traversal mechanism; a linear
search is not sufficient. GF/ST maintains a quad-tree
representation? of the display list coordinates; searching
for an object under the cursor is basically a binary
search in progressively smaller quadrants of the display,
giving an O(log n) search time, which scales up nicely
even to thousands of objects. An additional efficiency

22

The Smalitalk Report

consideration is the use of double-buffering to repaint a
damaged window and eliminate flash and flicker when
moving objects around. Objects know their Z-order, and
can even be moved behind other objects without flicker.
GF/ST supplies the source code for all these traditional-
Iy difficult but necessary display mechanisms, and
makes them transparently available to your application.

SAMPLE APPLICATION

While visiting friends in Oregon, an interesting application
emerged from discussions with my friends’ 12-year old
son, Nicholas. He had a small metal Braille slate he used to
write letters to a blind friend. It has three rows of blank
Braille cells and a metal stylus. You put a piece of paper over
the cells, and poke the stylus into the paper over the cells to
make indentations. Although this is incredibly tedious, (for
any serious writing, you'd use a Braille typewriter) it suf-
ficed for quick notes. What made it more difficult was work-
ing right to left, and having to look up each letter.

We imagined a little application that would display a
complete Braille sentence in a window. We figured that
drawing cells was easy, a little like dominoes, and if GF/ST
lived up to its promise, displaying the cells should be sim-
ple. As it turned out, this was exactly the case. We defined
a BrailleCellGO class with an instance variable “char,” and a
class variable “Alphabet,” which contained a dictionary
whaose keys were letters of the alphabet and whose values
were bit patterns representing the letters.

A cell consists of the letter, an enclosing rectangle, and
six circles representing the cell pattern. A group GO is used
to keep the subobjects together, simplifying tracking the
composite object’s bounding box. As each object is added
to the group, the new boundaries are automatically updat-
ed. In real Braille, of course, the letter itself is superfluous,
but it facilitates learning as you read the screen, and it looks
nice. The following code creates a group GO with a bound-
ing rectangle, six circles, and the text of the character:

cell
| rectGO h v textGO gos |
h:=18.
v:=26.

textGO ;= GFTextGO text: char.
textGO translateBy: (h // 2) @ (0 - h).

rectGO := GFRectangleGO rectangle: (0@0 extent: h@v).
rectGO

fillColor: Color white;

color: Color black.

gos := OrderedCollection new: 8.
gos

add: textGO;

addAll: self cellPattern;

add: rectGO.

~ GFGroupGO graphicObjects: gos.

ARBOR INTELLIGENT SYSTEMS, INC

VisualWorks makes you productive.

Arbor Help System + Arbor Utilities « Arbor Inspector
make you even more productive!

At Arbor, we've been building Smalltalk applications for over five years.
During that time we've leamed quite a bit about what developers need to be productive.
Now we've taken some of that knowledge and packaged it for your team.

Arbor Utilities—OQver 50 enhancements and additions to the VisualWorks ervironment.

Arbor Inspector—An enhanced version of the standard Vist:alWerks inspector that eliminates the
need :0 open multiple wirdows while inspect'ag—no more clutter,no more fuss.

Arbor Help System 3.0—The best jus: got better. . . For over two years AHS has been the easiest,
maost powerful way to add end-user help to your application: Context sensitive, widget based help
that doesn't need a developer to author « A powerful, nyperlinked on-line documentation browser

« Support for multiple larguages and easy integratior. into object databases. . .it’s all still there,

With version 3.0, we've added numerous features and enhancements to make AHS more helpful’
and easier to use for developers, authors and end-users alike. Also available for Argos.

Find out why so many companies are turning fo Arbor for help
(all today, be more productive tomorrow. Site licensing is available.

(313) 996-4238 - fax (313)996-4241 - info@aisys.com

The six circles are drawn from the mask in the alphabet
dictionary. The mask contains 6 booleans: true for black
and false for white. The circles in the cell are numbered in
columns top to bottom, from 1 at the top left to 6 at the
bottom right. The cellPattern method loops through each
circle, determines its required fill color and position with-
in the rectangle, and creates an Ellipse GO of the appro-
priate shape, color, size and position. Note that the size
and position are relative to the GO, and that the size and
position constants are somewhat arbitrary. GF/ST pro-
vides a number of useful units of measurement: twips,
inches, millimeters, and pixels; the default value is pixels.
These numbers gave a nice display on both VGA and
SVGA displays.

cellPattern
| patterns circleGO mask fill circle position |

circles := #((0 0) (0 8)
(0 16) (8 0)
(8 8) (8 16)
).

patterns := OrderedCollection new.
mask := self alphabet at: char.

November-December 1995

23

| PRODUCT REVIEW

1 to: circles size do: [:each |
(mask at: each)
ifTrue: [fill := Color black]
ifFalse: [fill := Color white].

circleGO := GFEllipseGO new
width: 0
color; Color black
fillColor: fill.

position := circles at: each.
circleGO
setEllipse: (0@0 extent: 5@5);
translateBy: (2 + position first) @
(3 + position last).

patterns add: circleGO.
1-

“patterns

The only other interesting method we had to invent was
the layout algorithm for the cells. When the window is
resized, we wanted the cells to word-wrap in the usual fash-
ion. Fortunately, the drawing interface knows the size of its
visible area, so this simple loop worked right the first time.

addText: message
"Add a sentence to the display."

| word stream cursor cellExtent cellGO left right |
cellExtent := self cellExtent.

cursor := interface visibleRectangle origin.

left := cursor x.

right := interface visibleRectangle extent x.

stream := ReadStream on: message.
[stream atEnd] whileFalse: [
word := stream nextWord.

"Will this word fit on the same line?"
(word size * cellExtent x + cursor x > right)
ifTrue: [cursor := left @
(cursor y + cellExtent y)].

word do: [:char |
cellGO := GFBrailleCellGO for:
(String with: char).
cellGO
disableInteraction;
origin: cursor.

interface addGO: cellGO.
cursor := cursor right: cellExtent x.

1.

cursor := cursor right: cellExtent x.

}-

EXTENSIBILITY

Adding a new kind of GO to the system was simple and
natural. Once added, it participated fully in the overall
framework, and behaved as expected. I imagine that more
complex additions would take correspondingly longer,
but there doesn't seem to be anything closed-ended about
the system, as long as you stay within the confines of its
design. Multimedia applications or 3-D rendering are
probably beyond the scope of the product. Simple anima-
tions are possible, however, given that double-buffering is
already done for you; the source code for several demon-
strations of this technique are supplied with the toolkit.

ADDITIONAL TOOLS
Shipping with the system are some excellent free tools,
built entirely from the GF/ST framework itself.

The Visual Inspector is similar to Kent Beck’s Object
Explorer. It displays graphical views of objects. Each
object has instance slots, and when a slot is selected the
object it points to is displayed with a line connecting back
to the parent object. This tool is excellent for visualizing
complex object structures, and for teaching the basics of
object relationships.

The Drawing Tool is both a simple object painting
too], and a testbed for experimenting with your own
Graphic Objects. It lets you add GOs to the interface,
manipulate them, and exercise their handles and con-
nection mechanisms. It also demonstrates the use of the
Tool and Palette classes for creating drawing environ-
ments. Unfortunately, you can't save or restore drawings
in the tool, so its use is limited to testing and demonstra-
tions of the framework, but it probably wouldn't be diffi-
cult to store the GOs in a file if you really needed to save
and restore your drawings.

The 3D Figure Tool demonstrates manipulation of 3-D
objects. You can add a cube, pyramid, or tensegrity (sort of
a Buckeyball thing) to the drawing area. By manipulating
one set of handles, you can control their X, Y, and Z dimen-
sions, and by manipulating the center handle, you can con-
trol the pitch and yaw of the objects, causing them to spin
around in interesting ways. This tool aptly demonstrates
the value of the double-buffering technique, as the move-

3D Figure

Figure 4.The 3-D figure demo.

24

The Smalltalk Report

SMALLTALK

SOLUTIONS

“Finally, a Smalltalk-only
conference... Good variety, good
speakers. It was refreshing to
attend sessions that were not
vendor sales pitches.”

JuLL SeiNoLA, SvsTEMS ANALYST, CaRGILL, INC,
(SMALLTALR SOLUTIONS 9§ ATTENDEE)

Seld ont In "85. Register early for "96!

March 4-7
1996

NY Marriott Marquis, New York, NY
Where all the talk is

Smalitalk

Are You Well Versed in Smalltalk?

Smalltalk Solutions *96, the largest vendor-
independent Smalltalk conference and exhibition,
provides the comprehensive training needed to
keep up with this expanding language. Learn
how Smalltalk is being put to more uses, in
more companies, in more industries, than any
other object-oriented programming language
in use today.

Harness the full potential of the Smalltalk
programming language at this annual gathering
of Smalltalk professionals. Over 1,000 Smalltalk
professionals attended last year’s premiere in
New York. This year’s technical program has
been expanded and enhanced, with over 30
in-depth classes, panel discussions, hands-on
workshops and case studies, taught by Smalltalk’s
leaders and innovators. Classes focused in 5
educational tracks, allowing you to easily
customize your schedule to your specific

areas of interest.

A full array of activities includes keynote pre-
senters Adele Goldberg and Glenn Reid; an
exhibition hall featuring products and services
for Smalltalk in all its dialects; and more. Don’t
miss this chance to demo the latest products
and see Smalltalk in action!

SPONSORED BY: PRESENTED BY:

Simalltalk.. [ISIGS

What You'll Learn at
Smalitaik Solutions '96

*Tips and Techniques for Optimizing
Smalltalk Applications

*Technigues for Designing Cross-
Smalltalk Class Libraries

*Embedded Systems in Smalltalk

*Crossing the Chasm: From Objects
to Relational Databases

*Visual Programming Lessons

*Visual Modeling Technigues

sGuide to VisualWorks

*Modeling Under Pressure: Finding &
Exploiting Potent Abstractions...Fast

sHow to Develop Frameworks

*Patterns for Reuse

*Distributed Smalitalk

sInterfacing Smalltalk to Legacy Systems

*Applications of Meta-Leve!
Programming in Smailtalk

*Testing in Smalltalk
sErrors Patterns Testings

«IP Morgan
*Software 2000
=Bank of Montreal
*Bank of Nava Scotia
*Ghubb

*Prudential

=USF&G

*Update on the ANSI Smalltaik
Standards Initiative

*Managing Evolutionary Delivery

*Panel Discussion: Creating a
Corporate Object Center

+*Smalltalk on the Web

*Advice on Succeeding with Objects

*Smalltali Metrics

|
Plsass send -Y:.S'; inlormalion en
Smalltalk Solutions '96

) Aiending (] Exhiiting
O Recelving 2 Fres Exbibils Pass

Name

Title

Address

City/State

Zip/Posa] Code

Country

Phone

Fax

Fax: 212252.7578, Phens: 212242.T515
Mall: Smalliaik Sefaliens, 71 W. 23rd L, 3rd Fir.,
Y, NY 10818, e-mall: conforsncasOsigs.cam,
WWW: hilp//ewe sigicon

ADSR

| PRODUCT REVIEW

ment of the objects is smooth and completely without
flicker, even on a relatively slow computer.

SUPPORTED PLATFORMS

GF/ST is currently shipping on Visual Smalltalk for Win32;
support for the Visual Smalltalk OS/2 product is planned.
The product is in Beta for VisualWorks and VisualAge;
given that these products each use a common graphics
model across their respective platforms, the release for
these products should support all supported platforms.
GF/ST also integrates nicely with other products. In partic-
ular, you can build your application interface with
WindowBuilder, Parts, VisualAge, or VisualWorks widgets,
then simply connect a drawing interface to a graphics pane
and you're on your way.

SUMMARY

The GF/ST framework is a robust implementation and fac-
toring of common graphical display techniques. It sup-
plies excellent support for simple 2-D drawings and object
manipulation. It is not a CAD framework, nor does it give
much support for 3-D graphics or multimedia. However, it
goes a long way toward simplifying the representation of
dynamic systems as manipulable graphical objects.

The pervasive use of events in GF/ST makes finding
bugs and figuring out the flow of control a whole new chal-
lenge; tools, locators, and graphical objects send events all
over the place, and magic happens. The usual technique of
looking for senders does not work, because the events use
stored selectors. Perhaps a dynamic graphical browser of
the event model would make a nice addition to the tool set.

Supplying the source code to the systemn makes it easy to
extend the framework, and it makes excellent code available
for the graphics newcomer to study. In particular, it's nice to
be able to read and understand the difficult and platform-
dependent process of double-buffering the display.

CONCLUSIONS

If you do any kind of graphics in Smalltalk, you need this
toolkit. It's priced reasonably, and if you've ever used
Tensegrity, you know Polymorphic's reputation for high-
quality products. Even if it doesn't do everything you
need, it is easily extensible, and even Smalltalk old-timers
could learn a thing or two from the techniques it uses.

Product information

GF/ST is available from Polymorphic Software,

1091 Industrial Rd., Ste. 220, San Carlos, CA 94070;

v: 415.592.6301; f: 415.592.6302; 75010.301 7@compuserve.com.

References

1. Gamma, E. et al. DESIGN PATTERNS, Addison-Wesley, Reading,
MA, 1995, p 283.

2. Knuth, D. THE ART OF COMPUTER PROGRAMMING, VOL. 3—SORTING
AND SEARCHING, Addison-Wesley, Reading, MA, 1975, p. 555.

Jim Haungs is the founder of TeamTools Inc. He specializes in
Smalltalk consulting, training, project management, and software
development. He has a BSCS from RIT, and an MSE degree from
Wang Institute. Jim lives in Boston, and can be reached at
jhaungs@teamtools.com.

SIGS Publications, Inc., 7T West 23rd Street, 3rd Floor,
New York, NY 10010; 212.242.7447; Fax: 212.242,7574

ARTICLE SUBMISSION

To submit articles for publication, please contact:

John Pugh & Paul White, Editors,

885 Meadowlands Dr.#509, Ottawa, Ontario, K2C 3N2 Canada;
email: streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS

To submit product reviews or product announcements,
please contact the Editors at the address above.

CUSTOMER SERVICE

For customer service in the US, please contact PO Box
5050, Brentwood, TN 37024-5050; 800.361.1279; Fax:
615.370.4845; in the UK, please contact Subscriptions
Department, Tower Publishing Services, Tower House,
Sovereign Park, Market Harborough, Leicestershire, LE16
9EF, UK; +44.(0)1858.435302; Fax: +44.(0)1858.434958

S1GS BOOKS

For information on any SIGS book, contact: Don Jackson,
Director of Books, SIGS Books, Inc., 71 West 23rd Street,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574;
email: donald_jackson@sigs.com

SIGS CONFERENCES

For information on all SIGS Conferences, please contact:
SIGS Conferences,71 West 23rd Street, 3rd Floor, New
York, NY 10010; 212.242.7515; Fax: 212.242.7578; email:
info@sigs.com

BACK ISSUES

To order back issues, please contact: Back Issue Order
Department, SIGS Publications, 71 West 23rd Street, 3rd
Floor, New York, NY 10010; 212.242.7447; Fax:
212.242.7574

REPRINTS

For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road,
Box 5363, Lancaster, PA 17601; 717.560.2001; Fax:
717.560.2063

ADVERTISING

For advertising information, please contact: Advertising
Department, SIGS Publications, 212.242.7447; Fax:
212.242.7574

S1GS HOME PAGE

To access the SIGS Home Page on the
World Wide Web: http://www.sigs.com.

26

The Smalltalk Report

&.
o\sﬁf&% See VisualWorks
Come Alive with this Complete

New Guid, The Smalltalk Devebper's
v Guide to VisualWorks

The Smalltalk Developer's
Guide to VisualWorks

BY TIM HOWARD
Foreword by Adele Goldberg

THE SMALLTALK DEVELOPER’S GUIDE TO VISUALWORKS provides
an in-depth analysis of the popular application development tool
produced by ParcPlace Systems. Designed to enhance develop-
ment acumen, this book serves as a guide to using VisualWorks to
its full potential.

Divided into two logical parts, the reader first receives the basic Complete and easy to read, you can use this book as:
principles of VisualWorks and then is provided with concrete e astudy guide

examples of VisualWorks in action. In this way, you are sure to e g2 series of tutorials

gain a better understanding of the unique characteristics of this e 3 reference for items and concepts

powerful development tool as well as a complete understanding ¢ 3 valuable source of VisualWorks code

of its strengths and weaknesses. By reading this book, you’ll be

able to build better applications and enhance the tools them- Eminently useful, this book is unique because:
selves. ¢ Each topic is reinforced with a concrete example.
The concepts are clearly illustrated and the reader
can actually see their applicaton.

A special browser is provided containing all the
examples referenced, alleviating the need to enter

code.
If you are a professional software developer already programming Rigorous definitions of terms are provided to

in VisualWorks or an advanced Smalltalk programmer, this book mitigate confusion.

will prove an invaluable guide to enhancing your skills, cutting Applications built prior to VisualWorks are covered
development time, and saving money. to build an understanding of where some of the
constructs in VisualWorks originated.

Detailed descriptions of how to add new

And as an added bonus, source code and numerous examples of
the outlined concepts are provided on the included diskette.
You’ll be able to test the concepts immediately and put theory
into practice as you read.

Not recommended for beginning programmers. PART OF THE

Available at selected bookstores. ADVANCES IN

o ; components to the palette are illustrated,
Distributed by Prentice Hall. . .
WheR By STEnELe S8 DBJECT allowing the reader to extend the functionality
SIGS ISBN: 1-884842-11-9

PH ISBN: 0-13-442526-X TECHNOLOGY of VisualWorks. Three new components are
Diskette included "BERIES provided as examples.

SIGS BOOKS ORDER FORM
O YES! please send me copy(ies) of THE SMALLTALK Name
DEVELOPER’S GUIDE TO VISUALWORKS at the low price .
of $39 (diskette included) Title
ISBN: 1-884842-11-9. Approx. 630 pages.
Moncey Back Guaransee: If [am not completely savisfizd, I may return the baok(s) Company
within 14 days and receive a complete refund, promptly and without question.
Address
Method of Payment
0 Check Enclosed (payable to SIGS Books) City
O Charge My: 0 Amex O MasterCard Q Visa

Phone /Fax
Card # Exp SEND TO:
Signature SIGS Books, PO. Box 99425

Shipping & Handling: For US orders, please add S5 for shipping 8 handling, co"Ingswood' NJ 08108-9970
Canada & Mexico add $10, outside N. America add $15. NY State rcsidents add Fax To: 609-488-6183

applicable salcs tax. Please allow 4-6 weeks for delivery. Phone: 609-488-9602

SMALLTALK POSITIONS

ParcPlace-Digitalk is seeking experienced Smalltalk
instructors and consultants for our world-class
Professional Services team. At ParcPlace-Digitalk you
will work with one of the world’s leading development
teams, use state-of-the-art products and assist companies
on the forefront of adopting object technology in client-
server applications.

Requirements for Senior Consultants: solid experience
with Smalltalk (3-5 years) and/or PARTS Workbench
experience. OOA/D experience and GUI design skills.
Mainframe database experience is a big plus.
Requirements for instructors: previous training experi-
ence in a related field (2-4 years), understanding of OO
concepts and Smalltalk.

Positions are available in various sites throughout the
U.S. Compensation includes competitive salary, bonuses,
equity participation, 401(k) and medical and dental cov-
erage. All positions require travel. ParcPlace-Digitalk is
an equal opportunity employer.

Please forward your resume to:

Director of Enterprise Services
ParcPlace-Digitalk, 7585 S.W. Mohawk Drive
Tualatin, OR 97062 fax: (503) 691-2742
internet: holly@digitalk.com

Smalitalk and C+ + Experts
> 30 IMMEDIATE OPPORTUNITIES

Chiel Architecls e Instruclors « Menlors

ObjectSpace, a leader in the Object-Orlented arena,
has enjoyed 300% growlh in the last year, and as a result,
has IMMEDIATE opportunities for extraordinarily talented
people dedicated lo the creation and deployment of ad-
vanced lechnologies. Our areas of interes! include: CORBA,
OODBMS, Conslraint-based Programming, RAule-based
Programming, Prololype-based Languages (Classless), as
well as Agent Technology, Design Palterns, Biological
Systems, Cognilive Science, OOA/OOD and Sell.

Our requirements for EXPERTS commilted lo excellence
include 4+ years of experience with C++, Smalllalk,
Distributed Smalltalk, VisualWorks or VisualAge. In addition,
candidates should also possess expertise in Objecl-
Orienled Software Development Methodologies.

We offer compelitive compensalion, performance-based
bonuses and a complete benefits package. For immediate
consideration, forward your resume lo:

Fax (214) 663-9099

ObjectSpace, Inc., 14881 Quorum Dr., Suite 400, Attn:
ST1195, Dallas, TX 75240; jobs@objectspace.com; or call
(800) OBJECT1. ECE. hitp://www.objectspace.com/

bjectSpace”

The Pathway To Progress

Meeting the multifaceted information management needs of the ever-evolv-
ing healthcare industry requires software solutions that are as advanced as
they are flexible: the kind of solutions that HBO & Company (HBOC) has
been develaping for over 20 years. A member of the NASDAQ 100, we have
been ranked by Kiplingers Financial Magazine as one of the top 15 compa-
nies poised for continued success in the year 2000 and beyond.

INFORMATION TECHNOLOGY PROFESSIONALS

Atlania, GA » Amhersl, MA » Minneapolls, MN
Eugene, OR « Sall Lake City, UT « Orlando, FL ¢ Charloite, NC

We have challenging opportunities for innovative software professionals
to analyze, design, develop and implement our highly progressive
health care information systems. Requires experiance in one of
the following:

C/C++ * Smalltalk = Visual Baslc
SQL Windows * Sybase * Informix Mumps

Your expertise will be rewarded with excellent benefits, a competitive salary
and the opportunity to advance your career in an environment where pro-
mation from within is the standard. For consideration, forward your
resume, indicating location preference, to: Corporate Recruiting,
SEH/STA095, HBO & Company, 301 Perimeter Canler North, Atlanta, GA
30346. FAX: (404) 392-3050. E-Mail (sharon.hay@hboc.com). No phone
calls, please. EOE MVF/D/V.

A HBO&Company

Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS

This is your opportunity to join

the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.

/. S (CHECK OUT OUR
HOTRWEIL™ WEB PAGE!)
X http://www.rwi.com/

BOX 270566 Houston TX 77277
(713) 660-8080;Fax (713) 661-1156
(800) 256-9712; landrew@rwi.com
malltalk RothWell Smalltalk RothWell

RothWell Smalltalk RothWell Smalltalk RothWell
Aejews [PAYIOY NielewS [PAAYIOY Yle)ews

7]

28

The Smalitalk Report

	By ArticleTitle
	A methodology mix
	GF/ST - A Smalltalk framework for graphical objects
	Object security
	Smalltalk with Style
	Understanding inter-layer communication with the SASE pattern
	Variables of the world

	By Author Name
	Almarode, Jay
	Beck, Kent
	Brown, Kyle
	Haungs, Jim
	Lorenz, Mark
	Steinman, Jan
	Yates, Barbara

	By Topic
	Book Review
	Getting Real
	Product Review
	Project Practicalities
	Smalltalk Idioms

