Simalltalk

R E P O R T

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
Frangois Bancithon, 0, Technologies
Grady Booch, Rational
George Boswarth, Digitalk
Jesse Michael Chonoles, ACC of Martin Marietta
Stuart Frost, SELECT Software Tools
Adele Goldbery, ParcPlace Systems
R.Jordan Kriendler, /BM (onsuiting Group
Tom Love, Consuftant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, I8M
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Techrology International

The Smalitalk Report
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems

Reed Phillips

Mike Taylor, Digitalk

Dave Thomas, Object Technology International

Columnists
Jay Almarode
Kent Beck, First Class Software
Juanita Ewing, Digitalk
Greg Hendley, Xnowledge Systems Corp.
Tim Howard, FH Pratocol, Inc.
Alan Knight, The Object People
William Kohl, RothWel! International
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brodk, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEQ
Hal Avery, Group Publisher

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Elizabeth A. Upp, Associate Managing Editor
Margaret Conti, Advertising Production Coordinatar

Circulation
Bruce Shriver, Jr., Greulation Director
John R-Wengler, Girculation Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Jeff Smith, Advertising Manager, Central U.S.
Michael W. Peck, Advertising Representative
Kristine Viksnins, Exhibit Sales Representative
212.242.7447 (v), 212.242.7574{f)
Diane Fuller & Associates, Sales Representative, West Coast
408.255.2991 (v), 408.255.2992 ()
Sarah Hamilton, Director of Promotions and Research
Wendy Dinbokowitz, Promotions Manager for Magazines
Caren Polner, Senior Promotions Graphic Designer

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
James Amenuvor, Business Manager
Michele Watkins, Assistant to the President

WSIGS

PUBLICATIONS

Publishers of JouRNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, THE X JOURNAL, REPORT ON
OgJECT ANALYSIS & DESIGN, and OBJEKT SPEKTRUM
(GERMANY)

July-August 1995

Table of Contents

July-August 1995 Vol 4 No 9
Features

Remembrance of things past:

Layered architectures for Smalltalk applications 4

Kyle Brown
Using a layered architecture and building from the “inside out” promotes good design,
reduces application complexity, and encourages reuse.

Segregating application and domain 8

Tim Howard
The author introduces the domain adaptor architecture, a specialization of the application
model architecture that is designed to work specifically with domain objects.

Columns

Deep in the Heart of Smalltalk 13

ParameterizedCompiler: Making code reusable
Bob Hinkle and Ralph E. Johnson

Motivated by a desire to implement a new breakpoint
mechanism, the authors revise Smalltalk's compiling
subsystem to improve its flexibility.

Smalltalk Idioms 19

A modest meta proposal
Kent Beck

Introducing a MetaObiject class lessens the risks of meta programming.

Project Practicalities 22
Rules to live by
Mark Lorenz

How to resolve or, better yet, avoid some problems frequently encountered in
0-0O development.

Managing Objects 26
Managing project documents

Jan Steinman and Barbara Yates

Techniques for managing base image changes when projects
require changes to a vendor's code.

Departments

Editors’ Corner 2
Recruitment 28

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar-Apr, July-Aug, and Nov-Dec. Published by
SIGS Publications Inc, 71 West 23rd St, 3rd Floor, New York, NY 10010. © Copyright 1995 by 5IGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be reproduced with express permission from the publisher. Second Class Postage
Pending at NY, NY and additional Mailing offices. Canada Post International Publications Mail Product Sales Agreement No. 290386,
Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at 835
Meadowlands Drive #509, Ottawa, Ontario K2C IN2, Canada, or via Internet to streport@objectpeople.on.ca. Preferred formats for figures
are Mac or DOS EPS, TIF, or GIF formats. Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send daomestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwoad, TN 37024-
5050.For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845.Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

1

Editors’ Corner

talker's mind these days, the ParcPlace-Digitalk

merger, we would like to give a warm welcome to
Ralph Johnson and Bob Hinkle, our new columnists.
Ralph and Bob will be taking us “Deep in the Heart of
Smalltalk,” a column for Smalltalk afficianados who
want to learn more of the inner workings of parts of
the Smalltalk system where few people dare to tread.

As most of you are surely aware by now, Digitalk
and ParcPlace have merged to form a new company
that, at least for now, will be
known as ParcPlace-Digitalk Inc.
This obviously represents a
major shift of power in the
Smalltalk market. Although it
certainly doesnt match the
world significance of many of the
major takeovers and mergers
that have been occurring in the
software industry such as the
IBM/Lotus buyout, it does leave those of us in the
software development trenches scratching our collec-
tive heads.

Although it came as quite a surprise to many
(including us), it would be hard to not admit that the
writing was on the wall. There were telltale signs such
as Digitalk not joining the new Smalltalk Industry
Council (STIC) and deciding not to have their devel-
opers conference this year. And there certainly were
many rumours that Digitalk was a takeover target,
although names such as Microsoft and HP were far
more commonly referenced as suitors than ParcPlace.

This merger leaves some obvious questions. Similar
to the IBM/Lotus deal, Digitalk and ParcPlace appear
to have quite different corporate cultures, with differ-
ent philosophies with respect to engineering, cus-
tomer support, product development, and marketing.
Moreover, their two products represent quite different
implementations of the Smalltalk language. Although
their base class libraries are very similar, most of the
facilities that allow Smalltalk to communicate with
the outside world are implemented in quite different
ways. The user interface architectures, for example,
are quite different.

Probably the most commonly asked question has
been “will there continue to be two separate Small-
talks?” But no matter what the answer is to this ques-
tion, many other questions remain. If there are two sep-
arate products, how will they differentiate between

BEFORE WE TALK ABOUT THE TOPIC on every Small-

Probably the most
commonly asked question
has been “will there
continue to be two
separate Smalltalks?”

John Pugh Paul White

them? Will one become the “low-end” product and the
other a more deluxe version? Or will one product be
sold as providing tight host integration where the other
stresses cross-platform portability? If they do decide
there will be only one product, will it be one of the exist-
ing ones, or something brand new? And where does
that leave their collective installed base of customers?

Beyond the language and platform facilities there
are other issues. Will Digitallk’s Team/V team program-
ming tool (which ironically was originally designed to
run in the ParcPlace environ-
ment) become the standard for
both Smalltalks, or will ENVY
remain the configuration man-
agement tool of choice for
ParcPlace and many Digitalk
users? This is a significant issue
for existing clients, because
switching from one facility to the
other is no simple task. Similarly,
what are the implications for third-party products
such as WindowBuilder, Repertoire, Object Explorer,
etc? Both companies have separately expressed a gen-
uine desire to bring VARs on board to support their
products; where does this merger leave them?

Having listed so many questions to be answered, we
should be quick to point out that there are some obvi-
ous positives to the merger. The most tangible benefit is
the bringing together of some of the very best minds in
the programming language business, let alone the
Smalltalk world. The engineering talents of both com-
panies has never been in doubt, and if they can gener-
ate synergy from this merger, the opportunities are
immense. Each company has solutions for difficult
parts of the client/server application development
puzzle that the other lacks. Together, they have the
opportunity to build a product line that is an even more
formidable competitor in the client/server arena.

The new company has promised to present their
vision for the future at their upcoming (joint!)
Developers Conference in San Jose at the end of July.
I'm sure it will prove to be a lively event, with many anx-
ious corporate clients wanting to know the future of
their development tool. Only time will tell whether this
move opens up new opportunities for the Smalltalk
community. We certainly wish this new endeavour well,
and wish good luck to our many friends at both these
organizations.

Enjoy the issue!

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

An integrated object modeling tool provides model-driven

development for enterprise-wide applications

= E =i 15

: o L[> b
; . L Of Parnons

. | Demo 2] Finance Whare the money la._ |0 ‘ é .
: Authorizalio [JEEESEEEN ChangePool P
nTool
| ni PoraonBrowssr [.i N]

All object models are managed in a shared repository,
supporting team development and traceability

ger
: date

alus: maritalStatus |-
phaNumaeric

Peraon Browser

T o=dn

il

:

21
single a
| 292-92-9229 |

mm n nAtee’s. | ssn: alphaNumeric _____ ——t h é
o —ir] rmom) |rmow) |
I!MR help Boundad Polnt = CanadaApp | ||
ﬁ. D _view | [, pint | 20—
i] = ol ¢
un pdi 150 o = — 1]
o= ol ' <!
o A description: text
M pras L = namz:;lop;;:aNumsr
30 num, 'srzons: fnteger
(_thde § =N§v-DWIDdE!5'P U 23ase7astod '.
(o=l l Jan
— _ ay
Powerful drag and drop “enzymes” make application | ' [}
development intuitive :
Comprehensive set of widgets, including business !
graphics, multimedia, and others make application _— -

development easy and powerful

VERSANT Argos™ is the only application development
environment (ADE) that makes it casy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Arpgos can help you deliver your
critical applications in weeks, instead of years.

s today at
NT, ext. 415

contact u
1.800-VERSA
or via €
info@versa

mail at
nt.com

1380 Willow Road * Menlo Park, CA 94025 e (415) 329-7500

©1994 by Versant Object Technology. VERSANT, VERSANT Argos and The Datibase For Objects are rademarks of Versant Object Technology Corporation. All ather company names and logos are registered trademarks of the individual companies.

Remembrance of things past:
Layered architectures for Smalltalk

applications

started off a sentence with “in my day...?” I know

that it always irritated me, and as an adolescent I
swore that I would never succumb to the temptation to
start a sentence that way myself. Well, teenage oaths not
withstanding, I'm going to do it anyway.

When I first learned Smalltalk, a little over six years
ago, [was taught by my mentor Sam Adams that Smalltalk
applications are built in layers (see Fig. 1). Having come
from an engineering background where I was strongly
influenced by the layered architecture of the OSI seven-
layer communication model, this seemed only fitting and
proper. Layered architectures promote good software
design by separating concerns of one layer from another,
reducing the complexity of the application of a whole,
and encourage reuse both within the elements of a layer,
and between layers (for a discussion of layered architec-
tures in computer networks, see Tannenbauml).

DIDN’T YOU ALWAYS HATE IT when your father

SMALLTALK APPLICATION LAYERS

The four layers that I was taught comprise a good
Smalltalk application are:

1. The GUI layer. This is the layer where the physical
window and widget objects live. Any new user interface
widgets developed for this application (an activity that
seems to have been more common several years ago than
today) would also be put in this layer. In almost all cases
today, this layer is completely generated by a window-
builder tool.

2. The Mediator layer. This layer is partially generated by
the window-builder and partially coded by the developer.
The primary classes of this layer have been variously
called “ViewManagers” or “ApplicationCoordinators” in
Digitalk’s Smalltalk products, and “ApplicationModels” in
Parcplace’s products. This layer mediates between the
various user interface components on a GUI screen and
translates the messages that they understand into mes-
sages understood by the objects in the domain model.

3. The domain model layer. This is where the real “meat”
of the application resides. An object-oriented analysis
and design should result in a set of classes that primarily
reside in this layer. Examples of the type of objects in this
layer would include Orders, Employees, Sensors, or whatev-
er is appropriate to your problem domain.

Kyle Brown

4. The infrastructure layer. This is where the objects that
represent connections to entities outside the object world
reside. Examples of objects from this layer include
SQLTables, 3270Terminals, SerialPorts, and the like.

Now that you've seen the description of these architec-
tural layers, you might be saying to yourself, “Well, of
course; I always build my applications like that.” If so, the
rest of this article might seem familiar to you. On the
other hand, if you're scratching your head and going “But
why...” or, even worse, smacking your forehead and
declaring “Why didn't I see that!” then please read on. I
assure you your projects will benefit.

Something that stood out to me during the recent
Smalltalk Solutions conference is how rarely novice
Smalltalk programmers see their applications as divided
into layers. I believe that this is a result of the wonderful
new tools that the Smalltalk vendors have provided to us
over the past few years.

Back in the old days, Smalltalk programmers would lov-
ingly handcraft each of their classes one at a time. You don't
really gain an appreciation of how difficult it is to build a
new graphics class or a database framework until you've
coded one yourself. However, in the modern point-and-
click world, building a complex order-entry screen seems
as simple as drawing the GUI using your window-builder
of choice, telling it to generate the resulting Smalltalk class-
es, then hooking those classes into the database by using
the vendor-supplied database connectivity classes.

While the new tools have vastly increased our produc-
tivity as programmers, it has become easy to lose sight of
the bigger picture. While it is possible to completely code
an application without ever creating a new class of your
own, it is not necessarily desirable. Part of the appeal of
object-oriented programming is the ability to create
reusable classes that represent your problem domain. In
that way, a month or a year from now when you (or some-
one else in your organization) is getting ready to work on
the next application, you can pull those classes off the shelf
and use them as is, or specialize them through subclassing.
It is this reusability that gives O-O programmers the pro-
ductivity advantage over their 3GL programmer peers.

Let’s say you've just coded an order-entry screen the
way [described above (see Fig. 2). Six months later your
customer comes up to you and says “I've decided that I

4

The Smalltalk Report

Reuse Depends on

Quality Documentation

" Reusable
-Components

Code
Quality

. Non-reusable
Components

Low

High

Low

Documentation
Quality

Svnopsis Software

8912 Oxbridge Court, Suite 300, Raleigh NC 27613
Phone 919-847-2221 Fax 919-676-7501

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

Reusable software requires readily available, high
quality documentation.

And the easiest way for Smalltalk developers to get
quality documentation is with Synopsis. Install it
and see immediate results!

Features of Synopsis

« Documents Classes Automatically

« Builds Class or Subsystem Encyclopedias

+ Moves Documentation to Word Processors

+ Packages Encyclopedias as Help Files

Products

Synopsis for IBM Smalltalk $295 Team $395
Synopsis for Smalltalk/V and Team/V $295
Synopsis for ENVY/Developer for Smalltalk/V $395

don't like this GUI you've built; I want a drag-and-drop
interface. Oh, and by the way, we're changing from a
relational database to an ODBMS next week. Can I have
the changes by Friday?” At this point you might be tear-
ing out your hair and considering looking into a promis-
ing new career in food service. Or, if you had instead
coded your application into layers, you could be taking
it all in stride, saying “OK, first I'll have to redraw the
GUT; that’ll only take a little while; then I can start think-
ing about the rest of the problem.”

RULES FOR PROPER LAYERING
So, now that I've convinced you that layering your appli-

cation is a good idea, how do you actually go about it? At
KSC we believe that applications are like sandwiches. We
follow the approach of building a Smalltalk application
inside out; we begin with the hamburger and work our
way out to the bun.

The primary focus of your effort in a non-trivial
Smalltalk application should be in defining what domain
objects you have, then building and testing them. We have
found that if you begin with a statement of what your
problem is, and then develop an O-O model using a
behavioral OOA&D methodology, you can usually get a
good handle on the domain layer of your system. For
instance, if you are building an order management and

GUI (View) layer

Mediator layer

Domain Model layer

Infrastructure layer

Database

Application
Model

Figure 1. Smalltalk application layers.

Figure 2. Missing domain model.

July-August 1995

| LAYERED ARCHITECTURES

inventory system, you might discover objects like Order,
Warehouse, and Good and investigate how they interact with
each other. You can then proceed from a design model to
building a prototype of these objects. The key here is to
discover how the objects interact, and how you can take
advantage of the paradigm to make your objects more
understandable and reusable. The domain layer should be
developed, as much as possible, without undue consider-
ation as to how the database will be implemented, or how
the GUIs will look. While these considerations are impor-
tant to the application as a whole, they should not be
allowed to “pollute” the purity of your object model.

After you have built and tested your prototype object
model, you can then begin to work your way out to the
layers surrounding the domain model in Figure 1. Let’s
begin by looking at the development of the
ApplicaionModel layer. As I stated earlier, this layer should
be primarily for mediating between the different ele-
ments on your GUI, and translating messages from the
GUI into messages understood
by your domain model. It should
follow the intents of the
Mediator pattern and the
Adapter pattern from Gamma.

In a nutshell, a Mediator is an
object that “encapsulates how a
set of objects interact.”2 P-273
An example of this kind of medi-
ation is that an ApplicationModel may disable a set of but-
tons or menu items based upon the state of other buttons
or menu items. The ApplicationModel keeps these widgets
from knowing about each other, and promotes good fac-
toring of the design. It doesn't make much sense to
involve the domain layer in these, purely user-interface
actions, so the Mediator also insulates the two from each
other.

An Adapter “converts the interface of a class into anoth-
er interface clients expect.”2 P-139 GUI Widgets have one
interface that they respond to—they are concerned with
the state of their selection, what they are displaying, etc.
On the other hand, the domain model is concerned with
a different sort of interface—it is concerned with the state
of Orders, or how Employees are related, etc. An
ApplicationModel should adapt the one interface to the

Infrastructure layer

r—-——---7T1T—- - - == == 1

| SQL Brokers | Communications |
Brokers

— | J

| SQL Classes | Communications |

I

Classes

Figure 3. Infrastructure microlayering.

Just remember to consider

¢ the implications of each design
decision to determine

if it violates proper layering...

other. It should not attempt to take over the responsibili-
ties of either, but make their communication smooth.

In general, your ApplicationModels should be thin,
dumb, and small. By these characterizations I mean that
an ApplicationModel should have few methods (thin vs.
fat), the methods themselves should serve only to trans-
late and mediate, rather than control (dumb vs. smart),
and that the ApplicationModel objects themselves should
have little state, or few instance variables (small vs. large).
Remember that the task of a GUI should be to present a
face to the world that reflects the state of the objects in
your application. Resist the temptation to represent the
state of the application in the GUI itself.

A common example of cooperation between the
Mediator layer and domain model objects would be in the
validation of values entered into a GUI. Many novice
designers will immediately code all validation logic into
the mediator layer, without considering the conse-
quences that decision makes. If the information that you
want to validate is held in an
object in the domain model,
does it really make sense for the
range checks and other valida-
tions to be made in different
object in another layer? The prin-
ciple of encapsulation indicates
that the behavior should accom-
pany the information. On the
other hand, the GUI must represent the visual aspects of
the validation; this would include warning the user if an
incorrect value is entered or preventing the value from
being accepted. The two objects should cooperate along a
well-defined path of communication rather than stuffing
the responsibility all in one object or the other.

Another example of improper distribution of responsi-
bility between the Mediator layer and the domain model is
in the representation of calculations, or intermediate
results in a calculation. If your application calls for you to
display the line items in an order, and the sum of their
costs, should the calculation of that sum reside in the
ApplicationModel class, or in the Order that contains the line
items? While you can code the calculation into the
ApplicationModel, it would be more reasonable to allow the
Order itself to do this calculation. In that way, the summed
cost would be available to other presentation options;
such as a paper report, or a summary report of many
orders. Following these rules leads to objects with a better
distribution of responsibilities, which results in more
reusable objects.*

Finally, let’s take a look at the division on the other
end; between the domain model and the infrastructure
of your application. I think it's become abundantly clear
by now that it is an absolute no-no for the Mediator layer

* Wirfs-Brock3 contains a good discussion of the benefits of well-
distributed behavior.

The Smalitalk Report

your Smalltalk class reuse? Now you can with...

MI - Multiple Inheritance for Smalltalk

MI™ from ARS
« adds multiple inheritance to VisualWorks™ Smalltalk
* provides seamless integration that requires no new syntax
* installs into existing images with a simple file-in
* is written completely in Smalltalk

Leading methodologies (OMT, CRC, Booch, OOSE)
advocate multiple inheritance to facilitate reuse. Smalllalk’s
lack of multiple inheritance support impedes the direct
application of these methodologies and limits class reuse.
M! is a valuable tool which enables developers to apply

advanced design techniques that maximize reuse.

Introductory Price: $195

services, please call 1-800-260-2772 or e-mail Info@arscorp.com.

\

To order Ml or for more information on ARS'’s family of products and lmproved § Improved GClass -

L i VR R

Applied Reasoning Systems Corporation (ARS) Is an innovative developer of high
quality Smalftalk development tools, application frameworks, intelligent software APPLIED REASONING SYSTEM S
syslems, and related services that provide advanced solutions to complex problems.

Smalltalk Products * Consulting « Education » Mentoring

2840 Plaza Place = Suite 325 = Raleigh NC = 27612

Phone: (919) 781-7997 » Fax: (919) 781-4414
E-mail: info@arscorp.com

to communicate directly with the infrastructure layer,
but what is appropriate communication between the
domain and infrastructure layers? In general terms, the
communication should preserve encapsulation bound-
aries. A “microlayering” approach might work out best
(Fig. 3). Just as novices are tempted to put all their logic
in their Mediator code, an equally naive approach is to put
all the database knowledge into the domain classes
themselves, or (slightly better) in their metaclasses.

A better approach to building connections between
domain and infrastructure layers is to build a layer of
“helper” or “broker”objects.t A “broker”+ is an object that
serves as an adapter between the domain object that must
communicate to the outside world, and the communica-
tion medium, be it a network protocol, a mail protocol like
SMTEB or a relational database. Again, the primary advan-
tage here is the preservation of encapsulation; if you can
encapsulate the knowledge of a protocol or interface into
one set of (reusable) objects, and provide an adapter
between them and the domain layer, you will be better able
to change one without necessitating changes to the other.

T For an discussion of architectures for relational database interac-
tion, see Vasan.4

* By “broker,” 'm not referring to a CORBA-style Object Request
Broker (ORB). A broker is any object that adapts an object model
to a non-object-oriented procedural interface. Brokers must, by
necessity, know a little about each world to bridge the gap
between them.

FINAL NOTES

While applying a layered architecture to your applications
will not be a panacea for all your software ills, it may allevi-
ate some of the more grevious symptoms. Just remember to
consider the implications of each design decision to deter-
mine if it violates proper layering or enhances the reusabil-
ity of the individual classes by supporting the architecture.

Acknowledgement

The author thanks Bobby Woolf for pointing out the prop-
er patterns that ApplicationModels should follow, and all
his peer reviewers at KSC for their help and advice.

References

1. Tannenbaum, A. CompUTER NETWORKS, Prentice Hall,
Englewood Cliffs, NJ, 1988, pp. 9-14.

2. Gamma, Helm, Johnson, and Vlissides. DESIGN PATTERNS:
ELEMENTS OF REUSABLE OBJECT-ORIENTED SOFTWARE, Addison-
Wesley, Reading, MA, 1995.

3. Wirfs-Bock, R. Characterizing your application’s control style,
SMALLTALK SoLuTIONS '95 CoNrFERENCE NotEs, New York, 1995.

4. Vasan, R. Techniques for object and relational integration,
OsjEcT MAGAZINE 3(1):52-53, 60, 1993.

Kyle Brown is a Senior Member of Technical Staff at Knowledge
Systems Corp. He has been developing industrial applications in
Smalltalk for over five years. As part of his consulting practice, he
has built applications for Engineering, MIS, and scientific comput-
ing. Since joining KSC, Kyle has enjoyed teaching the principles of
reuse and good O-O design to a variety of clients through the KSC
Smalltalk Apprentice Program. He can be reached via email at
kbrown@ksccary.com.

July-August 1995

Segregating application and

domain

dedicated to the topic of segregating application

information and domain information in
VisualWorks application development. The first article
presented the case of why it is essential that an applica-
tion have a strict segregation between its application
information and its domain information. The second
article covered the implementation of domain objects,
which are the keepers of the domain information. This
third article discusses the application classes, which pro-
vide the user interface for the domain objects.

This article introduces what I refer to as the domain
adaptor architecture, which is a framework for building
applications in VisualWorks. This archictecture is a spe-
cialization of application model architecture and is
designed to work specifically with domain objects. First I
will introduce the domain adaptor, which is a special type
of application model developed for viewing and editing a
domain object. Then I will discuss how domain adaptors
bind the user interface to the information in the domain
object. The full source code for the domain adaptor archi-
tecture, along with examples, is available from the
archives at the University of Illinois (st.cs.uiuc.edu).

THIS IS THE THIRD ARTICLE IN A SERIES of three

DOMAIN ADAPTOR

In the second article of this series, I talked about domain
objects, the keepers of the domain information. These
domain objects do not exhibit model behavior nor do
they know how to present themselves in a user interface.
Now what we need is a special type of application model
architecture that allows us to easily build applications for
displaying and editing these domain objects. I refer to
this type of architecture as the domain adaptor architec-
ture because it adapts purely domain information to a
user interface. At the center of the domain adaptor archi-
tecture is the domain adaptor. A domain adaptoris a type
of application model that provides a user interface for a
domain object and allows the user to view and edit that
domain object.

Each class of domain adaptor is designed for a specific
class of domain object. For example, suppose we have the
domain class EmployeeReview, which describes all the
information for a single employee review. To view an
instance of such a class (a domain object) we might create
a type of domain adaptor called EmployeeReviewUI. There
can be more than one domain adaptor class for each class
of domain object, but each class of domain adaptor is

Tim Howard

designed specifically for only one type of domain object.
As an example, we can design EmployeeReviewUI,
ShortFormEmployeeReviewUI, and LongFormEmployee-
ReviewlUI to operate on an EmployeeReview object—each
presenting the employee review information in a different
way. Each domain adaptor operates on only one domain
object at a time. Continuing with our example, an instance
of EmployeeReviewUI will present to the user one instance
of EmployeeReview for viewing and/or editing.

The domain object on which a domain adaptor oper-
ates is accessed and replaced using value model proto-
col—the messages value and value:. In our example, when
the user is done filling out the employee review in the
user interface, thereby populating the EmployeeReview
domain object, we can access that domain object by
sending value to the EmployeeReviewUI domain adaptor.
We can then place this domain object in a database, add
it to a collection of such reviews, etc. When the user is
ready to read or edit the next employee review, we simply
send value: anEmployeeReview to the EmployeeReviewUI
domain adaptor. The domain adaptor then automatically
populates its user interface with the information in the
new domain object.

Because each type of domain adaptor is designed for a
specific type of domain object, it knows how to create a
new instance of that type of domain object in the event
that one is not provided at the time the user interface is
opened. In the employee review example, the code:

EmployeeReviewUI open

will open a window on a new instance of EmployeeReview,
because one is not initially provided. If we already had a
populated instance of EmployeeReview, we would open an
interface on it with the following:

EmployeeReviewUI openOn: anEmployeeReview.

The abstract implementation for all domain adaptors is
defined in DomainAdaptor:. DomainAdaptor is a subclass of
ExternalApplicationModel and defines two instance vari-
ables: domainChannel and domainIsChanging.

Because the superclass ExtendedApplicationModel! is a
subclass of ApplicationModel, all domain adaptors are
application models and, therefore, define and operate
user interfaces. Furthermore, all domain adaptor classes
inherit the development features defined in
ExtendedApplicationModel. The domainChannel instance
variable is a ValueHolder that references the current

The Smalltalk Report

Oddly enough, a company with possibly the largest
and most deployable Smalltalk/OO workforce is
virtually unknown - Until Now.

Over 400 Experienced Smalltalk/00 Developers,
Mentors & Trainers Available Today.

Object/nteligence

The Object Services Company

o On-Site Smalltalk/OO Programming & Mentoring
o On-Site Customized Smalltalk/OO Training

o OODBMS Development: ObjectStore, Gemstone & Versant

o GUI Front-End Design/Build to Legacy Systems
o Object Madeling, Analysis & Design
o Smalltalk/Object Mapping to Sybase, Oracle & DB2

o call (800) 789-6595 or o-mai: infoeobjectint.com

Objectinfelligence Corporation = 900 Ridgefield Dr., Ste. 240 « Ralelgh, NC 27609 « (919)878-6695 Fax

domain object. The domainIsChanging instance variable is
a Boolean that is true when a change of domain is in
progress. The DomainAdaptor class implementation can be
divided into three parts: domain object management,
aspect support protocol, and interface opening protocol.
Domain object management involves managing the
domain object itself. The aspect support protocol is a set
of methods that allow you to easily set up aspect models
that operate on the information in the domain object. The
interface opening protocol is an extension of the interface
opening protocol defined in ExtendedApplicationModel,
which allows a domain adaptor to be opened and initial-
ized to an existing domain object in a variety of ways.

In the first article of this series, I presented an object
diagram of an application model. For convenience, this
diagram is provided again in Figure 1. Figure 2 is the
object diagram for a domain adaptor. Notice that in
Figure 1 the domain information is logically related via
the application model. In Figure 2, however, the doman
information is logically related via the domain object.
Thus the domain information can be easily uncoupled
from the application information and placed in a data-
base. Likewise, another domain abject, of the same type

rasource

application
application information
model
interface
spec
=
information
domain
informalion
Cos > .
information
Figure 1. Application model object diagram. Figure 2. Domain adaptor object diagram.
July-August 1995 9

| SEGREGATING APPLICATION & DOMAIN

can be retreived from the database and plugged back into
the domain adaptor. Accessing the domain object and
inserting a new domain obejct is as easy as sending the
messages value and value:, respectively.

ADAPTING THE DOMAIN INFORMATION

In designing a domain adaptor, our main goal is to define
aspect models that operate on the various aspects of
information in the domain object. When the various
interface components bind with these aspect models, the
result is a user interface that views and edits the informa-
tion in the domain object.

In the second article of this series, I categorized the
domain information into atomic objects (such as num-
bers, strings, and dates), collections, and other domain
objects. Consider an Applicant domain object used to
describe someone applying for a job and having the fol-
lowing instance variables:

Variable Type

name String

ssn String

references SortedCollection of Strings
address Address

The Applicant domain object references objects of each of
the three categories of domain information. The name and
ssn instance variables are atomic in nature. The references
instance variable is a collection. The address instance vari-
able references yet another domain object, an Address
object, whose instance variables are defined as follows.

Variable Type

street String
city String
state String
zip String

An object diagram for the Applicant domain object is
shown in Figure 3.

To provide a user interface for viewing and editing an
Applicant object, we need a special type of domain adap-
tor; therefore, we define the class ApplicantUI as a subclass

SESCON

Figure 3. Applicant object diagram.

of DomainAdaptor. Each class of domain adaptor needs to
implement the domainClass instance method, which indi-
cates the type of domain object for which the domain
adaptor is designed. In our example, we would define the
following in the protocol “domain accessing”:

domainClass
~Applicant

We can also draw the user interface as is shown in Figure
4. The address portion of the user interface is not explicit-
ly drawn in this canvas but is actually a subcanvas, as will
be demonstrated shortly.

Now we need to define aspect methods for our domain
adaptor which bind the information in the domain object
to the various components in the user interface. First we
will consider the atomic objects—strings, dates, integers,
floats, and Booleans. Such information is usually present-
ed to the user using input fields, text editors, check boxes,
and radio buttons. VisualWorks already provides a mecha-
nism, the AspectAdaptor, by which we can adapt a domain
object’s atomic information such that it can be displayed
by these interface components. An AspectAdaptor is a value
model whose value actually belongs to some other
object—in our case, the domain object. When several
AspectAdaptor objects operate on the same domain object,
it is convenient to keep that doman object in a ValueHolder.
Fortunately, each domain adaptor has such a ValueHolder,
its domainChannel instance variable. Because setting up an
AspectAdaptor can be somewhat complicated, the
DomainAdaptor class defines certain aspect support meth-
ods to set up the AspectAdaptor for us. In the applicant
example, we need an AspectAdaptor for both the name and
ssn attributes of the domain object. Therefore, in the

Applicant

- Address
Street:

City:

2ip:

Figure 4. ApplicantUl user interface.

10

The Smalitalk Report

“aspects” protocol of the ApplicationUI class we define the
following two methods:

name
~self aspectAdaptorFor: #name

ssn
~self aspectAdaptorFor: #ssn

Notice how simple these methods are. The method
aspectAdaptorFor: aSymbol is defined in DomainAdaptor and it
automatically sets up an AspectAdaptor for the domain
object instance variable named by aSymbol. The domain
adaptor’s domainChannel instance variable is used as the
subject channel for the AspectAdaptor so that whenever the
domain object in domainChannel is replaced with another,
the AspectAdaptor is automatically switched over to the new
domain object, and, furthermore, the corresponding inter-
face component is updated with the new information. A
useful variation of the aspectAdaptorFor: method is the
aspectAdaptorFor:changeMessage: method, which will set up
the AspectAdaptor such that whenever its value is changed,
a change message is dispatched to the application model.
The AspectAdaptor works very well for the atomic type
information, but what about the collections contained by
our domain objects? Collections are typically presented to
the user in list components. For example, we want to dis-
play the applicant’s skills in a list component and also
allow the user to add and remove skills. What we need is a
collection version of the AspectAdaptor. We need some-
thing that will allow a domain adaptor not only to display
a domain object’s collection in a list component, but also
permit the user to add and remove elements from that
collection. Furthermore, when the current domain object
is replaced, this new type of adaptor must switch its focus
to the collection in the new domain object and have the
list component redraw itself with the new information.
For this purpose, I have created the CollecHonAdaptor class.
DomainAdaptor defines aspect support protocol for setting
up a CollectionAdaptor. For example, to have our
ApplicantUI show the skills of an applicant, we would add
the following method to “aspects” protocol of ApplicantUTI:

skills

~self
collectionAdaptorFor:
collection: #skills

We can now easily adapt the atomic objects and collec-
tions in our domain objects to the user interface managed
by the domain adaptor. But what about domain objects
that contain other domain objects? In our example, our
Applicant object holds on to an Address object—which is
itself a domain object. Do we have an adaptor for it? Yes, its
called a domain adaptor! What kind of interface compo-
nent do we use to display an Address object? A subcanvas
managed by an AddressUI domain adaptor! The domain
adaptor architecture is fully recursive. Furthermore, all

#skdlls

PUTTING YOU ON TOP
OF YOUR APPLICATIONS.

ANTATVYS America's ParcPlace®
A ’
LAN Tl \L\ S Pmlu Cortified C: J
1697 Cole B, Sui Gensultants ParcPiacs is egitrod vadamark
Gor. Cotoagag For Smalttalk of PPl Sygams. e
olden, CO 1-3316
(303) 274-3000_FAX Fiua 274-3030 Implementations
E-Mail chalin@lessar.com

three types of adaptors operate on value model protocol.
The messages value and value: access the domain informa-
tion from the adaptor whether that information is atomic,
a collection, or another domain object. In the applicant
example, we would add the following method to the
“aspects” protocol of ApplicantUI:

address
~self domainAdaptorFor: #address model: AddressUI

This method automatically instantiates a domain adaptor
of the type AddressUI. This AddressUI domain adaptor will
operate on the Address object contained by our Applicant
object and display that Address object in a subcanvas.
AddressUI is just another domain adaptor originally

[EIE

Address

Street:

City:

Zip:

Figure 5. AddressUl user interface.

July-August 1995

11

[~ = " Database Solution]

Database Solution
| g~ for Smalltalk |
| ODBTall A ctass library for oDBC |

| Database Access |

» ODBC 2 x support for 50+databases I
= PARTS Workbench visual development components
« Native ODBC data type support I

= Online documentation, source included, no runtime fees
=« programming examples and sample application
« 00 to RDBMS mapping framework, based on types &
l brokers, ideal for complex client-server applications I
= compatible with OTI’s ENVY/Developer

Versions Available for Windows, Windows—NTI
I 0S/2, VisualAge and Visual Smalltalk/E |
"simple but elegant ... " - Australian Gilt Securities

Also available:

| Socktalk-Client Server Solution for Smalltalk/V |
A Windows Sockets Class Library I

I
I Consudting Services
I E Tuuls fox. 0l Swallseth delypor

S

Tel: 416-787-5290
Fax: 416-797-9214
CompuServe: 73055,123
Internet:72642,2217
@compuserve.com

designed as a window interface for an Address object, as
shown in Figure 5.

It is important to emphasize that we are using another
domain adaptor, developed completely independently of
ApplicantUI and Applicant objects, but that can be easily
incorporated into the ApplicantUI domain adaptor. This
allows us to take either a bottom-up or top-down
approach to building user interfaces for our domain
objects. It also facilitates reuse because an AddressUI can
be used independently or incorporated into several other
applications requiring an address. As domain objects

Table 1. Adapting interface components to domain information.

become aggregations of other domain objects, their cor-
respdonding domain adaptors are just mirror aggrega-
tions of other domain adaptors. In this way, domain adap-
tors can be designed for even the most complicated
domain objects.

I'would like to point out that all the aspect support pro-
tocol in DomainAdaptor is defined in such a way that our
aspect models do not need corresponding instance vari-
ables defined in the domain adaptor class. This provides
for a much cleaner class definition (see “Extending the
Application Model”). For a complete list of the aspect sup-
port protocol and how it is used, browse the class
DomainAdaptor.

Table 1 summarizes the types of domain information,
the corresponding interface component used to display
that information, and the adaptor used to connect the
domain information to the interface component.

SUMMARY

This article introduced the domain adaptor architecture,
which is a framework for building VisualWorks applica-
tions based on domain objects and a strict segregation of
application and domain information. The centerpiece of
the domain adaptor architecture is the domain adaptor—
an appliction model that knows how to operate on a
domain object. The domain adaptor keeps its domain
object in a ValuHolder referred to as the domain channel.
Each time the domain object is replaced by a new domain
object, the domain adaptor updates its interface with the
new information. A domain adaptor uses model adaptors
to bind information in its domain object to the interface
components. An AspectAdaptor binds simple information
to input fields, check boxes, and radio buttons. A
CollectionAdaptor binds collections to list components.
Domain adaptors are themselves model adaptors and
bind contained domain objects to subcanvases. There is a
great deal more to the domain adaptor architecture than
can be presented in a single article. Not covered are such
topics as the role of dialogs, the interface opening proto-
col, child windows, buffered adaptors, and strategies and
guidelines. If you program in VisualWorks, I stongly
encourage you to obtain the source code and work the
examples. After only a few hours of exploration, the mer-
its of this approach to VisualWorks application develop-
ment will be quite evident. The full source code for the
domain adaptor architecture framework and examples
are available from the archives at the University of Illinois
(st.cs.uiuc.edu).

Reference
1. Howard, T. and B. Kohl. Extending the application model, THE
SMALLTALK REPORT 3(7):1, 4-7, 1994.

Tim Howard is the President and cofounder of FH Protocol, Inc.
He is interested application development using O-O technolo-
gies in general, and using the language of Smalltalk in particular.
He can be reached at thoward@fhprotocol.com or by phone at
214.931.5319.

Domain Interface Model Adaptor

Information Component

Type

String, Number, Input Field AspectAdaptor

Date

Text Text Editor AspectAdaptor

Symbol Radio Buttons AspectAdaptor

Boolean Check Box AspectAdaptor

OrderedCollection List CollectionAdaptor

SortedCollection

DomainObject Subcanvas DomainAdaptor

DomainObject Window DomainAdaptor
12

The Smalitalk Report

ParameterizedCompiler:

Deep in the Heart of Smalltalk

Bob Hinkle

Ralph E. Johnson

A case study in making

code reusable

OMETIMES YOU CAN TELL at the start of a project

that your code must be reusable. But more often,

you don't realize that something needs to be
reusable until you try to reuse it, and you end up trying to
add reusability to existing code. This is not easy, because
reusability is a result of the design of a system, not just the
result of some coding tricks. So, making code reusable
often requires changing its design significantly.

Recently we needed to reuse the VisualWorks compiler to
implement a new breakpoint mechanism. Unfortunately,
the compiler was not designed to be reused the way we
wanted. As a result, we had to rewrite it to be more para-
meterizable and easier to customize.

This column exposes some of the more arcane inner
workings of Smalltalk, and shows why it is both useful and
powerful to allow programmers reflective access to these
parts of the system. It also shows several common tech-
niques for making Smalltalk programs more reusable. The
solution described here is based on VisualWorks Version
2.0, although it can be adapted to previous versions of
Smalltalk-80.

THE PROBLEM

Our previous article! described how to debug the behav-
ior of individual objects using lightweight classes. To
make debugging easier, and as something of a side pro-
ject, we also introduced breakpoints, a common feature
of modern programming environments that had so far
been represented in Smalltalk-80 only by its poor cousin,
the halt message. While the breakpoints we introduced
had several benefits over self halt—notably their indepen-
dence from the Change List and their ease of addition and
removal—they also had several limitations. In particular,

Bob Hinkle is an independent Smalltalk consultant and writer. His
current focus is the improvement of existing tools and the cre-
ation of new tools to revitalize the Smalltalk environment.He can
be reached at hinkle@primenet.com. Ralph Johnson learned
Smalltalk from the Blue Book in 1984. He wrote his first Smalltalk
program in the fall of 1985 when he taught his first course on
object-oriented programming and design. He has been a fan of
Smalltalk ever since. He is the only author of DESIGN PATTERNS:
ELEMENTS OF ReusABLE OBJECT-ORIENTED SOFTWARE to regularly pro-
gram in Smalltalk, and continues to teach courses on object-ori-
ented programming and design at the University of Illinois.

the breakpoints could only be set at the very beginning of
a method, and they were unconditional. We want to
implement breakpoints that can exist between any two
statements in any block and that can be either absolute or
conditional. Conditional breakpoints stop execution only
if some expression evaluates to true. This expression is a
general block of Smalltalk code evaluated in the context of
the breakpointed method, allowing access to method and
block parameters and temporaries.

These new requirements force changes to our previous
implementation. Because breakpoints can be conditional,
we must be able to insert an arbitrary block of code any-
where breakpoints are allowed, and provide an interface
for users to enter and edit breakpoint condition strings.
Because breakpoints can occur in the middle of a method,
we need a more general mechanism for installing break-
point code. We used to wrap a new brealkpoint method
around the unchanged original method, but now we must
insert breakpoint code in the body of the breakpointed
method. Furthermore, the code we insert must not only
work correctly but also respect the source code map, so
that stepping through breakpointed methods in the debug-
ger works as the user expects. Finally, because breakpoints
can occur within a method, their position must be indicat-
ed graphically in a method’s source. Combined with our
continued desire to insert breakpoints without affecting
the Change List, this implies the need for two levels of source
code for breakpointed methods: one to display in browsers,
and the other to store to and retrieve from disk.

While the current compiler, comprising Compiler,
Parser, and their co-workers, is very powerful, we have to
extend it significantly to overcome these various difficul-
ties. We need to change the compilation process, so we
can insert our breakpoint code into the method’s body
and produce methods with distinct display and stored
source texts. Extending an existing component this way is
a typical step in system building, and many of the tech-
niques for implementing design and redesign are equally
typical, falling into previously identified patterns (see
Gamma? for a catalog of common patterns in the object-
oriented world). We'll apply patterns called Factory-
Method, Strategy, and Visitor, as well as a program refac-
toring technique we call Trail Splitting.

July-August 1995

13

| DEEP IN THE HEART OF SMALLTALK

THE SMALLTALK COMPILER

Because most of the changes in this project center around
the process of compiling code to produce new methods,
we will examine how the compilation process currently
works to see how it can be extended. The current process
involves six major steps:

1. The user selects accept in the TextView of a Browser.

2. The Browser passes its current text to the currently
selected class using the message #compile:classified:,
which forwards to ClassDescription>>compile:classi-
fied:notifying:.

3. The class creates a new Compiler—the new compiler’s
class is actually defined in the class method
#compilerClass, but this always returns Compiler—and
passes the source text using the
message #compile:in:notifying:
ifFail:.

4. The Compiler initializes itself
and eventually calls the
method that does the work,
fitranslate:noPattern:ifFail-need-
SourceMap:handler:.

(@The Compiler creates a
Parser, which it uses to cre-
ate a parse tree from the source text. The Parser
works with a ProgramNodeBuilder to create this tree,
which comnsists of instances of the various sub-
classes of ProgramNode.

(b)The compiler creates a new CodeStream and tells
the root of the parse tree, using the #emitEffect:
message, to generate byte codes into the
CodeStream. The name scope for variables in the
parse tree is resolved using a subinstance of
NameScope created by the compiler.

(c) The resulting CompiledMethod is packaged into a
MethodNodeHolder, which is returned as the
result.

5. The Class obtains a CompiledMethod from the
MethodNodeHolder using the message #generate
(which is currently trivial, returning the
CompiledMethod from step 4(c)).

6. The Class updates the Change Set, writes the source
text out to the Change List, sets the CompiledMethod's
sourcePointer, and adds the new method to its
MethodDictionary.

Most of the work is done in step 4. Each substep of 4 is a
major production point, a place where an important
object is produced and returned to be used in the next
step. Step 4(a) creates the parse tree, step 4(b) creates the
byte code stream, and step 4(c) creates the method itself.
Nine classes of objects are instantiated in steps 4(a)
through 4(c) (counting parse tree nodes as subinstances of
ProgramNode), and there is much built-in flexibility in the
process. The compiler’s and the parser’s classes are
specified in #compilerClass and #preferredParserClass,
respectively. Furthermore, new methods and blocks are
instantiated in CodeStream using the messages

It is both useful and powerful
to allow programmers
reflective access to {the inner
workings} of the system.

#methodClass and #blockClass sent to the compiler. In addi-
tion, instances of CodeStream, NameScope, and
MethodNodeHolder are created by Compiler’s messages
#newCodeStream, #scopeForClass:, and #newMethodHolder.
These implementations are examples of a design pattern
called FactoryMethod, which works by using methods
either to specify a class for instantiation or to produce a
new instance. Either way, Factory Methods can be over-
ridden in subclasses, making it relatively easy to introduce
new kinds of collaborators into a complex process.

While quite flexible already, this process has some limita-
tions. ProgramNodeBuilder is hard-coded into #translate:no-
Pattern:ifFail:needSourceMap:handler:, and ProgramNodeBuilders
always produce subinstances of ProgramNode. More impor-
tantly, while Factory Methods are
helpful, they do require subclassing
to introduce new object types into
the compilation process. We will
make this process more flexible, so
that programmers can define new
behavior at each production point,
by taking advantage of the fact that
classes are objects. The various class-
es used in the compilation process
will be stored in instance variables of a new compiler, so that
new kinds of collaborators can be easily introduced by setting
these variables to new values. Finally, if we think of compila-
tion as a production line, there are four stages intermingled
with the three production points of step 4. At each stage, we
may wish to transform the object(s) flowing through the pro-
duction line to affect compilation. In the first stage we can
transform the input text, in the second the parse tree, in the
third the bytecode stream, and in the fourth the compiled
method itself. Our breakpoint project exploits two of the pro-
duction points and one of the intervening stages, and in
future articles we will see uses for specializing the other pro-
duction points and transformation stages.

REFACTORING THE SMALLTALK COMPILER

Our new compiler, ParameterizedCompiler, allows program-
mers to override behavior at each production point and
transformation stage, providing great flexibility in the com-
pilation process. It achieves this flexibility by parameteriz-
ing each class of objects used during compilation, allowing
any subset of these classes to be replaced with new special-
izations. Also, the ParameterizedCompiler lets you intervene
at each transformation stage by sending messages to its
client, To support this flexibility, the ParameterizedCompiler
requires a new collaborator, who supplies it with the class-
es it should use and responds (even if trivially) to the trans-
formation-stage messages. This collaborator will be an
instance of the new class MethodProducer.

While these tasks could be performed by Para-
meterizedCompiler itself, there are several reasons why it’s
better to introduce a new object instead. The Compiler in
Smalltalk, as the entry point to the entire compilation
aggregate, is already a big, complex object, and adding new

14

The Smalitalk Report

responsibilities only makes it bigger and more complex.
This makes it difficult to understand in its own right, and
also difficult to extend with new interventions, because the
programmer must determine which methods and interac-
tions have to do with the core job of compiling and which
are designed to be specialized. Specialization becomes eas-
ier when the methods intended to be overridden are con-
centrated within the locus of a single object. This is an appli-
cation of the Strategy pattern, which bundles algorithms in
different objects, allowing them to be varied independently
from their clients. Thus, different kinds of Behaviors can
exploit this flexibility to create their own compilation algo-
rithms, by simply defining an extension of MethodProducer
that introduces new kinds of collaborators or new respons-
es to transformation-stage messages. For example, the
lightweight classes of our previous article! only need to
introduce a new kind of method that stores its source text
locally. Supporting breakpoints requires an altered parser
and a new method class, as well as manipulation of the
parse tree in the second transformation stage. In a future
project to add active variables, we'll use a MethodProducer
with a specialized parser, a new ProgramNodeBuilder that
provides a new kind of ProgramNode, and a new extension of
NameScope. Each of these examples can be handled by a
slightly modified MethodProducer that, by interacting differ-
ently with ParameterizedCompiler, specializes compilation to
suit each particular kind of Behavior.

The class definitions for these two new cooperative
classes are as follows:

Object subclass; #MethodProducer
instanceVariableNames: 'client’
classVariableNames: "
poolDictionaries: "
category: 'Parameterized Compiler'

SmalltalkCompiler subclass: #ParameterizedCompiler

instanceVariableNames: 'producer parserClass
builderClasscodeStreamClass nameScopeClass methodClass
blockClass holderClass '

classVariableNames: "

poolDictionaries: "

category: 'Parameterized Compiler'

Every class responds to the message #methodProducer by
returning the default MethodProducer for building the
class’ methods, just as they now define their default com-
piler class. This class-specific MethodProducer is responsi-
ble for creating a new compiler, and, if necessary, for ini-
tializing the instance variables that specify what classes
are used during compilation and responding to messages
from the compiler at each transformation stage.

MethodProducer and ParameterizedCompiler are intro-
duced into the standard compilation process by changing
the compiling messages in ClassDescription and Behavior.
We redefine the method ClassDescription>>compile:classi-
fied:notifying: (mentioned in step 2 above) and add a new
method to which it will forward:

for VisualWorks~

Help Designer Is not just a programmer's tool - now any team
member can create high quality on-line help. This powerful
development tool Is rich in featurses, provides flexible set of tools,
and facilitates the reuse of components within your applications.
Here Is what you get:

73
Help Editor @ Context-sensltive help
% Help Viewer # Inline and outline
% Image Edltor » Tag Help
Text Editor # Hypertext links and
Help Manager references

Control Panel
® Help Custom Controls

» Popup definitions

» Keyword search

History support

#» Macro definitions

® Access to font, paragraph,
and color attributes

Embedded objects

#» Run-time editing mode

#» Platform independent help
files

GreenPoint, Inc.

77 West 55 Street, Sulte 110
New York, NY 10019
EMall:75070.3353 @ compuserve.com

VisualWorks™ is a trademark of ParcPlace Systemsa

FREE DEMO AVAILABLE !
TO ORDER CALL 212-765-68982

FAX REQUEST 212-765-6820

compile: code classified: heading notifying: requestor
~self
compile: code
classified: heading
notifying: requestor
producer: (self methodProducerForText: code)

compile: code classified: heading notifying: requestor
producer: producer
~producer
compile: code
in: self
classified: heading
notifying: requestor
The actual MethodProducer created in the first of the two

methods above is provided by implementing two addi-
tional methods in Behavior:

methodProducer
~MethodProducer new client: self

methodProducerForText: aTextOrString
~self methodProducer

The first method instantiates a MethodProducer of a type
suitable for the class, and classes can override this
method to use new subclasses of MethodProducer. The sec-
ond method, while trivial now, lets a class use different
MethodProducers depending on the method and/or source
code to be compiled.

July-August 1995

15

HOW TO CONTACT SIGS PUBLICATIONS

submit materials for publication
de proposals, outlines, and manuscripts; industry news; press
; product announcements; letiers fo the editor—send 1o
& Paul White, Editors

d to order a subsaription, renew,
Iress of an existing subscription

one: 212.242.7447 Fax: 212.242.7574

MOVING CODE TO MethodProducer

The MethodProducer responds to #compile:in:classified:
notifying: with a method similar to the old ClassDescription>>
compile:classified:notifying:.

compile: code in: aClass classified: aProtocolnotifying:
aRequestor ifFail; aBlock
| methodNode selector method |
sourceCode := code.
Cursor execute showWhile: [
methodNode := self newCompiler
compile: code
in: aClass
notifying: aRequestor
ifFail: aBlock.
selector := methodNode selector.
method := methodNode generate.
self storeSource: code method: method class:aClass
selector: selector classified: aProtocol.
aClass loadMethod: method selector:
selectorclassified: aProtocol].
~selector

The differences between this method and the old Class-
Description compilation method are the three underlined
messages. First, MethodProducer uses a Factory Method,
#newCompiler, to create the compiler it will work with. In
default cases, this method will return a ParameterizedCompiler
that uses the same group of collaborators as Compiler, so
compilation will proceed much as it used to do. For more
specialized requirements, such as breakpoints and light-
weight classes, #newCompiler will be overridden to return a
ParameterizedCompiler with new kinds of collaborators.

Unlike ClassDescription>>compile:classified:notifying:,
which directly added the newly compiled source code to
the Change List, MethodProducer makes a separate call to
store source, which provides an easy way for future spe-
cializations to extend or override (and which will be
exploited to support both lightweight class methods and
breakpoint methods). MethodProducer defines the source-
storing message by sending #storeSource:method:selec-
tor:classified: to the designated class, which responds by
updating the Change Set and Change List. Frequently, as
happens here, moving a method from one class to anoth-
er requires splitting off a portion that remains in the old
class, where it is easier to access local instance variables
and conceptually more self-contained.

Finally, ClassDescription implements loadMethaod:selector:
classified: by classifying the selector under the specified
protocol in its ClassOrganization and then adding the new
method to its method dictionary. As with source storing,
this behavior from the old compilation message is better
performed by the ClassDescription itself than by a
MethodProducer operating on it

PARAMETERIZING THE COMPILER
ParameterizedCompiler is quite similar to its superclass,
SmalltalkCompiler. It adds accessor methods to set the value

16

The Smalitalk Report

of each of the classes used in the compilation process. It
uses five Factory Methods to instantiate its co-workers, pro-
viding a locus for overriding in future subclasses. Instances
of Parser, ProgramNodeBuilder, and MethodNodeHolder are
instantiated simply by sending #new to the class. The other
two methods are:

newCodeStream
AcodeStreamClass new owner: self

scopeFor(lass
~self nameScopeClass forClass: class

These implementations show why Factory Methods some-
times produce classes and sometimes produce instances:
because different “factories” (i.e., classes) sometimes need
different messages and associated information to produce
valid instances. ParameterizedCompiler overrides the key
worker method of step 4, #translate:-noPattern:ifFail:need-
SourceMap:handler:, as follows:

translate: aStream noPattern: noPattern ifFail-failBlock
needSourceMap: mapFlag handler: handler
| methodNode holder codeStream method |
methodNode :=
self newParser
parse: aStream
class: class
noPattern: noPattern
context: context
notifying: handler
builder: self newBuilder
saveComments: mapFlag
ifFail: [*failBlock value].
methodNode := producer transformTree: methodNode
in: class.
handler selector: methodNode selector. "save selector
in case oferror"
codeStream := self newCodeStream.
codeStream class restartSignal
handle: [:ex |
codeStream := self newCodeStream.
ex restart]
do: [codeStream class: targetClass outerScope:
selfscopeForClass;
requestor: handler.
mapFlag ifTrue: [codeStream saveSourceMap].
noPattern
ifTrue: [methodNode emitValue:
codeStreaminContext: context]
ifFalse: [methodNode emitEffect:
codeStream].
method :=3D codeStream makeMethod:
methodNode].
holder :=3D self newMethodHolder.
holder node: methodNode.
holder method: method.
mapFlag if True: [holder sourceInfo: codeStream

Applying OMT

A Practical Step-by-Step Guide to Using the Object

Modeling Technique
KURT DERR

Applying OMT was written to
illustrate the process for
implementing an application
using the very popular Object
Modeling Technique (OMT)
created by James Rumbaugh.
Designed as a how-to guide,
this book instructs readers on
the implementation process
and on practical approaches

Applying OMT

for OMT. The included
diskette provides relevant

(ISBN; 1-884842-10-0) C++ and Smalltalk code.
4 This is an essential reference

To order a copy of for anyone wishing to learn

Applying OMT object-oriented analysis and

call (609) 488-9602 design or who uses or wants to

or see our Ho!ne Page pegin exploration of the
http//www.sigs.com/ Object Modeling Technique.

WS

Available at selected book stores. Distributed by Prentice Hall.

sourcelnfo].
~holder

There are two things to note here in contrast to the super-
class’ implementation of this method. First, no classes are
referred to by name—they’re all accessed by the instanti-
ation methods shown earlier, so that they can be easily
changed and specialized. Second, there is a new message
send just after parsing, which is our second transforma-
tion stage. (In a similar way, messages can be added at the
other stages so that the compiler’s producer can trans-
form the objects flowing through the production points.)
The producer working with this ParameterizedCompilier is
given the newly obtained parse tree and the class it is
being compiled in with the #transformTree:in: message.
The producer is expected to return the parse tree that
should be used for code generation. By default, Method-
Producer will simply return the parse tree that is the first
parameter of this message, but in some cases (including
when breakpoints are present), it will need to be able to
manipulate the parse tree.

A parse tree, as returned from the parser in step 4a, is
represented by its root node, an instance of class
MethodNode. That node, and all others in the tree, are
subinstances of the abstract superclass ProgramNode,
which defines the common behavior of all members of a
parse tree. Each superclass of ProgramNode has a different
instance layout. For example, a MethodNode contains a
single block as its child in the tree, while a messageNode

July-August 1995

17

| DEEP IN THE HEART OF SMALLTALK

has both a receiver and an array of arguments as its chil-
dren. This makes it hard to enumerate over a parse tree.

Fortunately, help is provided in the form of Program-
NodeEnumerator, an abstract class that outlines the proce-
dure for enumerating over a parse tree. ProgramNode-
Enumerator is an instance of a common design pattern, in
this case one called Visitor. The Visitor pattern represents
an object that operates on each object in a complex, het-
erogeneous structure, performing some function on each
member that is dependent on the type of the member.
However, ProgramNodeEnumerator is only an abstract rep-
resentation of a Visitor: it doesn’t actually do anything
when it “visits” the various nodes in a parse tree. We
implement a concrete sub-
class in the form of Program-
NodeEvaluator, a class that pro-
vides the normal block-based
enumerations used in the
Collection classes, including
#do: and #select:.

The ProgramNodeEvaluator
interacts with the ProgramNodes
using a technique called dou-
ble-dispatching: the evaluator
sends the generic #nodeDo:
message to each node with the
evaluator itself as a parameter, which in turn sends back a
class-specific message to the evaluator, such as
#doMessage:receiver:selector:arguments: from a MessageNode
and #doAssignment:variable:value: from an AssignmentNode.
The evaluator implements these messages by sending itself
#doNode for each node passed to it; in the case of the
AssignmentNode, that would mean the variable node and the
value node, while in the case of the MessageNode it includes
the receiver node and all the argument nodes. Finally, the
evaluator implements #doNode: by evaluating the block
with the programNode parameters as an argument and then
sending #nodeDo: back to that node to continue the enu-
meration. The enumeration terminates because the various
leaf nodes, such as LiteralNode or VariableNode, have no
ProgramNode children for the evaluator to #doNode: on.

There is one final issue to consider before our imple-
mentation is complete. Prior to our work, parts of the sys-
tem could compile a method by sending appropriate
messages to its target class, or they could parse or compile
methods by sending messages to an instance of a Parser or
Compiler obtained by the class’ #compilerClass message.
Now, however, it is important that all method parsing and
compiling be done through the appropriate Method-
Producer, so that any extensions or variations in the com-
piled code are handled consistently and correctly. As a
result, we have to search through the image to find all
places where Parser and Compiler are used directly to see if
they are still correct. If they are not, we must change the
site to use either the class or its MethodProducer.

We use the term “refactoring” to describe a common
process that developers use to reorganize a program with-

ParameterizedCompiler
allows programmers to override
behavior at each production point
and transformation stage,
providing great flexibility in the
compilation process.

out changing its basic functionality—examples include
introducing abstract classes, renaming variables and mes-
sages, changing inheritance relations to composition rela-
tionships, and so on. Programmers refactor programs to
make them easier to reuse, maintain, and understand.
Refactorings are a new and useful way for programmers to
think and communicate about what they do, and they also
establish a basis for developing tools to support refactoring
work. In our experience, the process described in the previ-
ous paragraph is a common refactoring applied while
doing system rework, and we call it Trail Splitting. When
our system rework introduces one or more new ways of
thinking about an existing process, it splits one existing
trail into many. We must then
find each place where the trail
forks and point the way (by
changing code as necessary)
down the correct path. We also
applied this refactoring in the
implementation of breakpoint
methods (as we'll see next
issue) and when we intro-
duced lightweight classes.1 For
the latter, we created a new
message, #dispactchingClass,
which returned the first class
in an object’s look-up chain, as opposed to the existing
#class message, which returned the class used to instanti-
ate the object, define its layout, and many, many other
things. Any method that had previously sent the message
#iclass to obtain information now returned by
#dispatchingClass had to be changed.

CONCLUSION

This concludes the implementation of a new, more flexi-
ble compilation framework. Next issue, we will use the
MethodProducer-ParameterizedCompiler pair to implement
breakpoints. In the process, we'll see how this new sub-
system increases the environment’s programming flexi-
bility as well as some extensions that allow different
MethodProducers to be combined.

Authors’ note

Source code for the parameterized compiler is available by
anonymous ftp from st.cs.uiuc.edu. Look for the file
ParameterizedCompiler20.st in pub/st80_vw (or Parame-
terized Compiler41.st in pub/st80_r41 for ObjectWorks4.1
support).

References

1. Hinkle, B., V. Jones, and R.E. Johnson. Debugging objects, THE
SMALLTALK REPORT 2(9), 1993.

2. Gamma, E. et al. DesiGN PATTERNS: ELEMENTS OF REUSABLE
OBJECT-ORIENTED SOFTWARE, Addison-Wesley, Reading, MA,
1994.

18

The Smalitalk Report

Smalltalk Idioms

g . L
kw%i&w‘%‘%@"

Ken c

A modest meta proposal

one’s written summary of one of the talks I gave at

Smalltalk Solutions. I sound like a wild-eyed, fire-
breathing, spiky-haired maniac! It is so strange to see how
others see me, especially in public. I'll admit to being in
rare form in New York, a little over the top on the outra-
geous meter, but really...

The other shock this month was news of the
ParcPlace/Digitalk merger. I see the press release. I check
the date. Nope, not April 1. Hmmm...Is this some kind of
elaborate joke (badly timed and in extremely bad taste)?

Now that I'm over the shock, I can see positives and
negatives in the deal. It makes sense for Digitalk because
(as Robert Yerex from ObjectShare pointed out) they gota
much better valuation than they would have on the open
market. It makes sense for ParcPlace because their worst
nightmare was Digitalk’s technology married to some-
body with cash and marketing clout.

The outlook for customers isn't so one-sided. If all goes
well, the current products will get their holes filled.
VisualWorks will get native widgets and better perfor-
mance. V will get a better garbage collector and fuller
application model. Digitalk’s culture of getting stuff out
the door married with ParcPlace’s culture of striving for
elegance could be a potent brew. On the other hand, if
sales aren’t going well there will be a lot of pressure to
drop one or the other image before PPD can architect an
orderly transition.

All this spells opportunity for the other vendors to
invoke that good old FUD factor, and pick up some quick
market share. They'd better, because if they don't and PPD
starts hitting on all cylinders—look out!

l JUST GOT AN ISSUE OF SMALITALK REPORT that had some-

CLIENT: OOCL

I've gotten several questions about what it’s like to be a

consultant. By the time this is published, everyone on the

planet who knows how to write Smalltalk may already be

a consultant, but just in case, I thought I'd provide a short

sketch of one of my clients and what I do for them.
Orient Overseas Container Ltd. (OOCL hereafter) is a

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, PO. Box 226, Boulder Creek, CA 95006-0226,
408.338.4649 (voice), 408.338.3666 (fax), or by email at
70761,1216 (Compuserve).

$1.5 billion (US) global container shipping company
headquartered in Hong Kong. Their business is delivering
those standard-sized containers you see pulled by trucks
on the highway from point A to point B, where A and B
could be anywhere in the world. They own or lease hun-
dreds of thousands of containers and chassis. They oper-
ate 30 some container ships. They run terminals, depots,
and transshipment yards all over the world. They interact
with hundreds of thousands of customers, all of whom
rely on OOCL to get shipments delivered on time. They
handle more than one million shipments per year.

While these aren't numbers to impress Federal Express
(with a peak of three million shipments per day), they are
pretiy respectable, especially when you factor in the
tremendous amount of capital involved in the form of
containers, ships, and yards. Container shipping is heav-
ily regulated worldwide, so small reductions in cost or
improvements in productivity make a huge difference on
the bottom line.

OOCLs current IS operation is centralized in Hong
Kong, built around a large IBM mainframe. To gain flexi-
bility, reduce cost, and better address local requirements
(imagine having to satisfy a hundred different customs
bureaucracies with one system), they decided to move to
a more distributed, client/server system. They chose
Smalltalk (VisualWorks) for the front-end implementa-
tion language.

The project, IRIS-2, is medium-scale by IS standards.
They plan to have around 40 developers when things are
in full swing. They located in Silicon Valley to be closer to
Smalltalk talent,

I've been involved with IRIS-2 since it began its life in
these United States. I've had a number of jobs as the pro-
ject has matured:

» At first we were all just trying to figure out the architec-
ture, so I was a design consultant. We slung CRC cards,
acted the part of objects, and learned about each oth-
ers’ specialities.

» As the design became clearer, David Ornstein and I
wrote an architectural prototype of a critical part of the
design so we could be sure we weren't just making
beautiful diagrams.

* I helped design and deliver the “Smalltalk Boot Camp,”
a three-day simulation of the entire software lifecycle
intended to bring teams closer together and promote
good programming practices.

* OOCL has generously sponsored my pattern writing,

July-August 1995

19

| SMALLTALK IDIOMS

using the Smalltalk Best Practice Patterns I have been
working on as part of their developer guidelines.

* I have been visiting about twice a month all along to
review code, suggest improvements, and tune perfor-
mance.

I have learned a number of interesting lessons for myself
and for projects like this, which are becoming the norm in
the Smalltalk world. On my part, I have learned:
» A stand-up lecture is useless for teaching. I have given
a series of lectures about patterns that seemed to have
no impact. To address this, we held a “Pattern Bowl,”
where teams were challenged to find patterns or the
absence of patterns in existing code. I think everyone
learned more in those two hours than in tens of hours
of lecture before.
» Be outrageous. What we are doing is difficult. It is risky
(does anyone know the source of the factoid that 50%
of all software projects never deliver?) There is a lot at
stake. Plodding along in a humdrum way doesn’t cut it.
If I want to have impact I have to go for risk and flash,
not “just the facts.” The Pattern Bowl is a good exam-
ple. We had prizes, applause, an obnoxious timekeeper
(me), tension, competition, and the all-important
fuzzy animal to go into the keeping of the winning
team. Hokey? Yes, but it works.
* Don't be too hard on yourself. A consultant can only
do so much. In the end, the success of the project isn’t
my responsibility. I'm responsible for doing the best I
can, and suggesting other things that I can see need
doing. When a deliverable slips, it doesn't help to get
caught up in the emotion. It’s hard to care but not too
much, but that’s what it takes to be effective.
This project has shown me that Smalltalk has some seri-
ous holes. I have been swimming in Smalltalk for so long
that I no longer see the water. Newcomers to Smalltalk
find it anywhere from irritating to impossible. For the
market to grow, the vendors absolutely have to address
the issues raised by new Smalltalkers.

For projects, I learned:

e Baby steps. Do one small thing, then one slightly larg-
er thing, and on and on. The temptation to jump in
with both feet is overwhelming. The argument always
goes “I have committed to this date. I can't do it with
baby steps. I have to ramp up more quickly.” The result
is always disaster. Always. OOCL has done a good job of
trying to stick to baby steps and of getting back to baby
steps when they have gotten too big too fast.

* Program in pairs. The most productive form of pro-
gramming I know (functionality/person/hour) is to
have two people working with one keyboard, mouse,
and monitor. Our educational system trains us not to do
this and some upper managers have a hard time with it
(“Why did we buy all those workstations and cubicles if
we don't use half of them?”), but it makes a bigger
change in productivity than any other single change.

» Follow standards. There are two parts to this. First, you
have to have standards. In writing patterns, I'm deeply

embroiled in exactly what the standards should be, but
honestly, it is far better to have adherence to good stan-
dards than deviation from perfect standards. Second,
you have to follow them. OOCL has recently put in
place a schedule of peer review that makes sure every-
one’s code is seen by a critical audience at least every
couple of months. This ensures that everyone has a
motivation to understand and follow the standards, if
only to avoid being ripped in public.
There’s a lot more, both to the project and what I've
learned, but it will have to await another column. I'm
running out of space and I still haven't gotten to my tech-
nical topic...

A MODEST META PROPOSAL

“Meta programming? Isn't that what PhD’s do to get the-
sis? What does that have to do with getting my next
deliverable out?” Even if you don’t know it, you're proba-
bly already doing some meta programming. Meta pro-
gramming is writing programs that manipulate not your
objects, the way usual programs do, but the representa-
tion of your objects. For example, the fact that each
object has a hidden “class” instance variable, and you
can fetch any object’s class and ask it interesting ques-
tions, is meta programming. IsKindOf:, respondsTo:,
instVarAt:—these are all messages about how the receiv-
er is represented.

Smalltalk makes meta programming easy. Too easy, in
fact. When you meta program, you are no longer really
programming in Smalltalk, you are inventing a new pro-
gramming language that is an extension of Smalltalk.
Used indiscriminately by application developers, meta
programming is a disaster. Just as not everyone can write
reusable software, not everyone can write new program-
ming languages. When everyone is writing in their own
Smalltalk increment, and all the increments are different,
disaster lurks. You can no longer read a line of code and
guess what it does correctly. Risk soars and so does the
cost of maintenance.,

On the other hand, the meta programming facilities of
Smalltalk can come in extremely handy. They can even
save a project. If having some new kind of control struc-
ture vastly simplifies your program, chances are you can
implement it in Smalltalk and take advantage of it.

How, then to provide the needed facilities without
exposing them unnecessarily? The problem as I see it is
that they are all implemented up there in Object. It's just
too easy to stumble across isKindOf:, use it to solve a short-
term problem, and never discover the powerful polymor-
phism lurking just around the corner. I propose to put up
a wall between application programmers and meta pro-
gramming by introducing a new class, MetaObject, upon
which all the current meta protocol in Object (and some in
Behavior as well) will be heaped.

This is not an original idea. I got the idea in 1987 from
Patti Maes’ OOPSLA paper. I don't remember the exact
title any more, but it introduced the idea of meta objects.

20

The Smalitalk Report

I've had the idea floating around in my head since then,
but I didn't do anything about it until I was bored on a
flight recently. Pulling out my trusty ThinkPad, I whipped
together an implementation. I liked the result enough to
publish it here.

MetaObject is an Adaptor on any object. An Adaptor
changes the protocol that an object accepts by interpos-
ing an object with the changed protocol.

Class: MetaObject
superclass: Object
instance variables: object

You create a MetaObject by giving it the object to adapt:

MetaObject class>>on: anObject
~self new setObject: anObject

MetaObject>>setObject: anObject
object := anObject

There is a Facade in Object, Object>>meta, for creating a
MetaObject. Clients will use this interface.

Object>>meta
~MetaObject on: self

The infamous isKindOf: becomes “inheritsFrom:” in
MetaObject:

MetaObject>>inheritsFrom: aClass
~gelf objectClass includesBehavior: aClass

ObjectClass replaces Object>>class:

MetaObject>>objectClass
~self object class

I don't have space here to show all the implementations of
the MetaObject protocol. Table 1 shows the old and new
meta protocol. In some cases, I'm not thrilled with the

Table 1.0ld and new meta protocol.

new names. I'll happily entertain suggestions for better
selectors.

This is certainly not an exhaustive list. It’s just what I
came up with in a couple of hours. It should be possible to
move more meta programming protocol in MetaObject.

Given this amount of protocol, I was able to quickly
produce an Inspector that used a MetaObject to display and
modify instance variables.

MetaObject provides the following advantages:

» It discourages casual use of meta programming pro-
tocol. If you see “meta” in application code, you'll know
to perk your ears up and make sure it really belongs.

* It collects scattered protocol. Some j4

meta programming protocol is implemented in Object,
some in Behavior, some in Class. MetaObject brings it all
together in one place.

o It is flexible. If a particular class needs a different kind
of MetaObject for some reason, it can override “meta.”
You might do this, for example, to give a uniform pro-
gramming environment on Smalltalk and C++ objects.

» It simplifies Object. Let’s face it. Object is too darned big.
VisualWorks 2 (the Envy version, anyway) defines 166
methods on Object. Visual Smalltalk Enterprise 3.0
defines 348. IBM Smalltalk gets by with 101. MetaObject
is a step in the right direction.

MetaObject has the following disadvantages:

* One more class. Don’t we have enough classes in the
base system already? We will have to teach people to
use it and convert old code.

* One more object. Now, when you want to have access
to meta protocol you have to create a whole new

. instance of MetaObject.
How about it? Next time you need meta programming,
implement a little MetaObject first and see how it feels. Let
me know if you like it.

(VisualWorks)

switchWith: anObject
inheritsFrom: aClass
instantiates: aClass

become: anObject
isKindOf: aClass
isMemberOf: aClass

Object meta message MetaObject message Explanation

class objectClass Return the class the
receiver instantiates.

changeClassToThatOf: aClass objectClass: aClass Change the receiver's class.

(VisualWorks)

class allInstVarNames keys Return the named instance variables (MetaObject lets you treat
an object like a Dictionary).

class allInstVarNames size size Return the number of named instance variables.

instVarAt: aNumber at- aString Return the value of an instance variable.

instVarAt: aNumber at: aString Change the value of an instance variable.

put: anObject put: anObject

allOwnersWeakly: aBoolean owners Return a Collection of all objects refering to the receiver.

Swap two objects identities.
Return whether the receiver inherits from aClass.

Return whether the receiver is an instance of aClass.

July-August 1995

21

Rules to live by

ObjectWorld Boston about problems O-O software

projects encounter and how to recover from them or,
better yet, avoid them in the first place. It got me to
thinking about the lessons we've learned and how they
keep coming back over and over again. It's been awhile
since I listed a set of these topics, so here goes.

IWAS RECENTLY ON A PANEL DISCUSSION at

ERRORS AND RECOVERY

There are a number of problems we could discuss, cer-
tainly too many to exhaustively list here. So in this section
I'll list some of the problems I see most frequently on the
projects I work on.

Missing model

This problem results when you connect a graphical user
interface (GUI) directly to your existing database (DB).
This design keeps you from achieving reuse and lower
maintenance costs when developing your software sys-
tems. Object technology’s great potential is primarily
achieved by developing and leveraging a model of your
business domain. This model is surfaced through the
GUIL. A database is merely persistent storage underneath
the object model.

If you need a quick ad hoc solution to some need in
your organization, you can by all means slam together an
application that is all GUI and DB. Just don’t kid yourself
into believing that you will have an easier time reusing,
maintaining, and extending the application over time.

Some of the development products available today
make leaving out the model between a GUI and DB very
easy to accomplish. Interfacing objects to a relational
database (RDBMS) used to require a “broker” layer of
software to handle the data movement to and from object
state data and database rows. IBM’s VisualAge is an exam-
ple of one such product. VisualAge handles many of the
details of accessing RDB row data. In fact, as Figure 1
shows, you can make direct connections from GUI wid-
gets to database row information.

Mark Lorenz is founder and president of Hatteras Software Inc., a
company that offers services and products to help other compa-
nies use object technology effectively. He welcomes questions
and comments via e-mail at mark@hatteras.com or phonemail at
919.319.3816.

Project Practicalities

Mark Lrenz

Staffing behemoths

This problem occurs when you have offices full of people
and the project is just starting to develop an object model.
It occurred on a project of mine a few years back. Another
modeler and I showed up to begin developing an object
model. We were shown around the group and discovered
that there were over 25 developers and all the surrounding
support staff on the project. We gathered a couple of tech-
nical leads and a couple of domain experts and the six of
us went into a conference room to start the rapid model-
ing sessions. I asked the woman who eventually became
the de facto chief architect on the project “what are all the
other people doing while we're in here?” The answer was
“they have things to do.” Well, they basically wasted time
waiting for us to get far enough along with a model and
subsequent architecture of subsystems and contractual
interfaces. They were then put to good use.

My previous work discusses how to architect your sys-
tem so that teams can work relatively independently and
still be productive in building a cohesive system. 1,2
Using these techniques, you can effectively grow your
organization and avoid the costly mistake of staffing too
many too soon.

lll-behaved object model

An “object model” that has all data and no behaviors is a
typical indication of this problem. A group from a telepho-
ny project once proudly marched me into a room to see
their object model pasted onto a wall. The pages and pages

DetabaseQuery

-TE]

currentRow of resuliTable of DalabaseQuery

resuliTable of DatabaseQuery

Figure 1. Example VisualAge application with no model.

22

The Smalitalk Report

of output included every imaginable piece of state data that
could be associated (and had been in their legacy data-
base!) with the classes they had identified. And not one
class had a single behavior in it! Figure 2 shows an example
of what this type of model looks like. You can spot it from
across the room, even if you can't read the details, because
the middle state portions of the class boxes are filled with
text and the bottom behavior portions are empty.

An object model must focus on behavior, as shown in
Figure 3. I've purposely left all state data off this diagram
to drive the point home that behaviors and their alloca-
tion are essential to success. Certainly, you will want to
(eventually) show state data in your object model.

Missing management

There are differences in managing a team developing O-O
systems using different processes and methodologies
rather than traditional techniques. Managers need train-
ing in what to track, what it means, how to schedule, how
to organize teams, and so on.

Figure 4 shows an example of basing schedules on use
cases, scenario scripts, and subsystems. This is different
than traditional schedules, which are generally based on
functional line items. This new type of schedule has
dependencies on the team organization also. For example,
most of the time one small teamn will work on one subsys-
tem start-to-finish. This requires that work on business
scenarios that affect their subsystem be scheduled serially
along with other subsystem teams. Support subsystems
can be worked on independently, as long as they are ready
before dependent business scenarios need them.

Persistence black hole
I have seen whole projects eaten alive by this problem.
There are various facets to integrating O-O systems to

Customer Account
name number
address ¢ balance
phoneNumber transactions
Laccounts
Transaction
number
lineltems
date
total

Figure 2. Example of a data model mistaken for an object model.

legacy systems and databases. It requires brokering to
map between the object’s state data and the RDB rows,
as shown in Figure 5. This is often just the tip of the ice-
berg, however. When you start getting into issues of dis-
tributed objects, shadow objects, system startup and
shutdown, and error recovery, the situation gets much
more complicated.

Basically, you end up spending a large percentage of
your time getting into the object database (ODBMS) and
support tool businesses. You worry about how to handle
long DB transactions, rollback, and other issues. This obvi-
ously takes time away from your real business, such as
building a finance, insurance, or retail application.

Depending on your requirements and the products
available when you encounter this beast of a problem,
you have different options. An easy one, if it meets your
needs, is to use an ODBMS such as GemStone, Versant, or
ObjectStore.

AN OUNCE OF PREVENTION
Preventative measuring
0O-0 metrics can assist you in various ways, from develop-
ing better estimates for new projects to checking on the
quality of projects already underway. The goal is to find
and resolve problems as soon as possible.
The OO metrics that give you the most “bang for the
buck” are organized as follows:
» Method size—number of message sends
» Class size—number of methods and variables
¢ Coupling—law of Demeter, global usage
» Inheritance—method overrides, hierarchy nesting
depth
» Complexity—McCabe for classes
See OBJECT-ORIENTED SOFTWARE MEeTRICS3 for a complete
discussion of each of these.

Customer Account

hasPhoneNumber:
isPreferred
hasCheckingAccount

withdraw:
deposit:
isOverdrawn

owner
balance

Transaction

logTo:
isSuspended
commit
total

Figure 3.The same business represented by a true object model.

July-August 1995

23

| PROJECT PRACTICALITIES

KA.
‘e

Eial S - N P

=]

S
' ScerwloaLHtest o

[Database broker contracts J|

Flgure 4_Example schedule based on use cases.

Design, don't just code

Most project teams focus on coding issues, such as lan-
guage syntax and tricks, instead of what's really impor-
tant—the object model and design conventions. I recom-
mend the following techniques for your design (dlscussed
in greater detail in RAPID SOFTWARE DEVELOPMENTZ).

Instantiation integrity. This technique ensures that
your model state is valid at all times through the use of
custom class instantiation methods. For example, if your
business rules require a SalesTransaction to have a
Customer associated with it, you might have a class
method such as:

SalesTransaction class

for: aCustomer
"return an instance of myself with my customer set
to aCustomer"

~self new
customer: aCustomer;
yourself

Collection protection. This technique protects your state
from mistakes made by your clients by passing them
copies of your information. For example, if a view class
asks the Store for its employees, a copy of the Collection is
returned so that the real Collection cannot be corrupted.

Store
employees
"return a copy of my employee collection"

~self myEmployees copy

Laissez-faire initialization. This technique makes your

objects more robust by having them self-initialize as need- |
ed at runtime. It also allows for business rule enforcement |
and ease of redesign because you have a point of control
for state access.

Store
myEmployees
"Private: return my collection of employees"

(myEmployees isNil) ifTrue: [self
myEmployees: OrderedCollection new: 10.].
~myEmployees

Invest in an object model

The most important O-O software asset is your business’
object model. It is absolutely essential to your success -
that you spend time developing a model of your business
concepts, relationships, and service requests before
design and implementation. Get O-O and domain experts
in a room, write use cases and scenario scripts, and draw -
object model and collaboration diagrams.

Get mentoring L
The fastest way to get your people over the learning curve -
is through mentoring. There is no replacement for direct
interaction with people who have developed O-O systems
before. Developing a good O-O system takes a lot more
than a language class!

Run your project like a group of small projects :
The Standish Group did a study of 8,380 applications and
found that 78% of small company software projects were *
successful, whereas only 9% of the large company pro-
jects were successful 4 The message to me is that the only _ﬁ
realistic way to run a large project is by dividing the team -
up into relatively independent smaller teams.

24

The Smalltalk Report 23,,1
E,

g

| |
View
objects
v v on
OBJECI- ORIENTED
Customer Address pww
-._—_ Model FOCUS on BOOKS
' ObjECtS f Your complete guide to 455 Litles % vidi-ns
{ The criteria for judging a geodt huuk
L—T ust-read” books
: The Traps & Pitfalls of
N:mrr / M uﬂ'.d#
CustomerBroker AddressBroker DBBroker
layer
name |phone dedress | accoun] —l DBRecord
JOURNAL oF OBJECT-ORIENTED PROGRAMMING (JOOP)
‘, is the technical magazine designed to help programmers
DBMS and developers better understand object technology and
Database . ; . . ; ;
use it more effectively. With each issue, you'll receive the
latest technical breakthroughs and information, usable
research, innovative ideas, product news and reviews,

Figure 5.Use of a DBBroker. and other useful advice nine times per year!

Edited by O-O expert Richard Wiener, JOURNAL OF
OBJECT-ORIENTED PROGRAMMING is filled with informa-
tive articles and regular columns by top industry leaders
including James Rumbaugh, Ivar Jacobson, Donald

Firesmith, Andrew Koenig and others.

Terminology OmECI- OR'EN:IED

* behavior: The services provided by an object to other _p
objects, through messaging and method invocation.

« collaboration diagram: Graphical representation of
the subsystem groupings of classes and the contractu-
al relationships between subsystems and key classes.

SUMMARY

We've gone over a number of the most common problems
we run into on O-O projects. We've discussed ways to
resolve them when they happen and, more importantly,
how to avoid them in the first place.

RETURN COUPON TO:
SIGS Publications, PO Box 5049, Brentwood, TN 37024-9737

For faster service, call: 1-800-361-1279 or fax; 615-370-4845.

* object model: Objects and their relationships required
to represent your business domain and business rules.
¢ distributed object: An object that resides on another

[YES! Send me one year (9 issues) of JOOP for §69.
Plus, FREE issues of Cross-Platform Strategies and
Client/Server Developer.

Pprocessor.
» object database: A persistent store that works seam-
lessly with abject definitions and/or instances.
» shadow object: An object that has a proxy stand-in on
the local processor, but actually resides on another
processor.

Method of Payment
U Check Enclosed (payable to S/GS Publications)
1 Charge My: O Visa O Mastercard 0 Amex

Card No.

Signature

Exp. Date

Name

Company
Address

City/State/Zip
Country/Postal Code A50701

Important: Non-U.S, orders must be prepaid. U.S. orders include shipping. Canadian and
Mexican orders please add 525 for air service. Outside North America add $40. Checks must
be paid in U.S. dollars drawn on a U.S. bank. Please allow 6-8 weeks for delivery of first issue.

References

1. Lorenz, M. Architecting large projects, THE SMALLTALK REPORT
4(6):28-29, 1995.

2. Lorenz, M. RariD SOFTWARE DEVELOPMENT, SIGS Books, New
York, 1995.

3. Lorenz, M. and J. Kidd. OBJECT-ORIENTED SOFTWARE METRICS,
Prentice Hall, Englewood Cliffs, NJ, 1994.

4. The Standish Group International. CHa0s, 1994.

July-August 1995 25

Managing Objects

Managing project
documents

tinuous documentation,” and outlined what that

entails. We also promised to give you some concrete
examples and source code, so you could begin to imple-
ment a continuous documentation process.

First of all, we’ll need to change how classes store
their comments...WE INTERRUPT THIS COLUMN TO
BRING YOU A BASE IMAGE CHANGE ALERT! ALL
USERS WITHIN 200 KILOBYTES OF THE IMAGE MUST
EVACUATE IMMEDIATELY! WHEN YOU ARE ALLOWED
TO RETURN, YOUR PRECIOUS, CAREFULLY CRAFTED,
WORK-OF-ART CODE WILL TAKE ON STRANGE AND
(we hope) WONDERFUL NEW BEHAVIOR! HAVE A
NICE DAY!

Whew! We almost slipped one by the Base Image Police
there, but they caught us! So, let's retitle this column and
proceed.

l N OUR PREVIOUS COLUMN, we made a case for “con-

MANAGING MODIFICATIONS (OR“WHO CHANGED
basicNew?”)
Pity the poor Smalltalk vendors! You buy an object library
in C++, and you typically get linkable object code—it
works, or it doesn't. But when Smalltalk customers don't
like what they got from their vendor, they simply change
it—which often introduces bugs, which are often subse-
quently reported back to the vendor! (All of this applies to
third-party code as well.)

Consider the myriad ways that basic Smalltalk can
become polluted:

* Beginner naiveté. “Delay := Delay forSeconds: 1.”

* Enough lmowledge to hurt yourself. A seasoned ST/V
user tries VisualWorks, and writes a cleanup method
that does “MyClass alllnstances do: [:inst | inst become:
nil].”

* Enough Imowledge to make it look random. The same

Jan Steinman and Barbara Yates are co—founders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987.Between them, they have over 20 years
Smalltalk experience. They can be reached at Barbara.Byte-
smiths@acm.org or Jan.Bytesmiths@acm.org.

o
Jan Steinman Barbara Yates

code as above, but cleverly made conditional upon rare
low-memory conditions, and then forgotten.

e Unintentional overrides. Such as implementing
nextPutAll: in a Stream subclass that normally inherits it.

* Forgotten halts and other test or debug code.
Beginners often put halts in system code (rather than
putting halts in their own code, then stepping info the
system code), and sometimes they forget to take them
out.

* Well-meaning changes gone awry. Such as the data-
com specialist who changed Integer printOn: so that if
the shift key is held down, they print in hexadecimal.
(This one didn't quite make it to production before
someone noticed strangeness when extending selec-
tion in a table by shift-clicking...)

* Downright malicious. Nah, no Smalltalker would
make malicious changes, right? But if someone did, say
a disgruntled soon-to-be former employee...

Always keep in mind that base changes are the enemy of
reuse. One of the big wins of reuse is that less testing is
needed when you reuse previously tested code, The down
side is that changing code that is heavily reused increases
the testing burden, because you aren't really sure all the
uses of the changed code agree with each other.

Why are changes necessary?

In team programming, base changes fall into two cate-
gories. Personal changes are necessary for individual
developers. Individuals need to be able to experiment
with base changes before foisting them on their team-
mates; they may experiment with base changes to better
understand the environment; or they may simply want to
customize their own environment. If you are using a code
management system (such as ENVY or Team/V), you gen-
erally have numerous options for balancing the needs of
the team for stability against the needs of the individuals
for experimentation.

The second category is where the trouble begins.
Although you should do whatever you can to discourage
it, sometimes you need to make project- or corporation-
wide base image changes. These changes might include:

26

The Smalltalk Report

* Fixing bugs in vendor’s code. This is fairly unusual, but
if you do find a bug that is getting in your way, and it
has an obvious fix, you will probably want to incorpo-
rate it into your base. Also, maintainers love getting bug
reports with fixes, so if you fix the bug carefully, docu-
ment it properly, and submit it with your bug report to
the vendor, there’s a good chance it will be in the next
release from the vendor, which makes your re-integra-
tion job that much easier.

Make enhancements to the vendor-supplied tools.
This is the category for which the Base Image Police
caught us! The combination of dynamic compilation
and full source code means you can easily tailor the
Smalitalk development environment to your organi-
zation's specific needs. These kinds of changes have
little possibility of getting into a vendor’s product,
and so they must be done in such a way that facili-
tates re-integration with future
vendor releases.

Make enhancements to the ven-
dor-supplied framework classes.

“When Smalltalk customers

label if the window is open, or a custom short label if the
window is iconified.

Another useful encapsulated state change is arranging
for an instance variable that normally holds a method
selector so that it can hold a block. This can be a useful
change to “pluggable views” for increasing the dynamic
behavior of your system, and if properly done, is essen-
tially invisible to old code.

A big problem with this technique is that object state is
directly visible to subclasses. If some poorly written sub-
class directly accesses the state you have changed, rather
than going through the access methods you changed in
tandem, there will be trouble, and it may be difficult to
diagnose.

Method overrides don't seem like changes, but they can
have tremendous impact. (If you don't believe us, override
Behavior basicNew with a new implementation in the Object
class, then purposely introduce a
bug and see what trouble that
causes!)

Overrides are tempting, because

This is similar to the previous don’t like what they gOt they do not change actual base
case with one important differ- from their vendor, they image code, but for that same rea-
ence: the changes you make to son an override is difficult to track
framework classes will be deliv- S zmply change it.” and debug. They are more trouble

ered with your application, and

so must be more robust than

changes made to development tools. This should
involve regression testing to ensure that the framework
still functions with previously written code.

Limit scope and impact of changes

Base image changes can be categorized by their scope.
You should carefully analyze your needs, and limit the
scope of your change to the greatest degree possible. For
example, it may first seem that you need to add an
instance variable to a base image class and add two
methods that use that new state, but further analysis
might show that you really only need to change the use of
an existing instance variable, and then hide that change
by changing the methods that access that instance vari-
able. The following change categories are roughly in
order of desirability.

Single-method, non-state changes are the best. Such
changes should not change the arguments or answer of
the method, but only its side-effects. The answered object
should have the same behavior, and no additional con-
straints should be placed or assumed on variables or sent
methods.

Encapsulated state changes put different objects in
instance variables, but manage those changes through
the methods that access those variables. These changes
tend to have small impact on any given vendor release.
For example, you might need something better than sim-
ple truncation of window labels to use as icon labels, so
you could change the label instance variable to be a two-
element Array that either answers a full, title-bar length

when re-integrating new vendor

releases—none of your compari-
son tools will detect the override as a change, but it may
well conflict with vendor changes in the new release.

Finally, there is usually a reason for the inheritance of
such methods—if an override seems attractive, be sure that
the change shouldn't actually go into the inherited method.

Changing message arguments or return objects begins to
get messy, and should be avoided. Constraining arguments
or returned objects, such as requiring that an argument be
an Array rather than any kind of collection, might work for
your particular case, but it is certain to eventually break
someone else’s code that didn't share your assumption.

Changing object shape, or the number or ordering of
instance variables, is one of the most invasive changes
you can make, and is to be avoided. Adding instance vari-
ables by itself is not terrible, but if such a change is really
necessary, most of the time it is because the fundamental
behavior of the class is being changed—behavior changes
are what subclasses are for!

Changing interclass interfaces is really dangerous. You
might track down all uses in your context, but third-party
software won't know about your change, and your
Smalltalk vendor's next release certainly won't know
either! If changes this extreme are required, be certain to
document them well, to ease the inevitable problems that
eventually will result.

“Conditionalize” changes

Especially in the latter categories mentioned above, it

becomes increasingly important to factor your change in
continued on page 31

July-August 1995

27

The o
Ameri

Group®

The American Funds Group is one of the most
successful mutual fund organizations in the world.
Since 1931, we have provided our shareholders with
consistently superior investment results and out-
standing service. Share in the continued growth of
our Norfolk, VA Office.

We have been a financial industry leader in Small-
talk development for over 5 years. We are currently
developing a large client server based customer serv-
ice system. This application is being created using
the latest object oriented methods and is in the be-
ginning stages of development. Ideal candidates will
have the opportunity to be a part of the design team
whose responsibilities will include these initial
phases of development.

We offer a competitive salary and excellent
benefits package including:

® Medical, dental and vision care coverage

® Educational assistance

® An outstanding company-paid retirement plan

Positions are currently available for:

perience including OOA and OOD. Job responsi-
bilities will include leading in the overall design
and creation of class and object hierarchies.

In this position, you will develop GUI based client
server applications. At least one year of Smalltalk ex-
perience 1s required.

If you are interested in applying for any of the
positions listed above, please send your resume
and salary history to:

The American Funds Group
(Please specify position)

5300 Robin Hood Road
Norfolk, Virginia 23513

EQUAL OPPORTUNITY EMFLOYER

This positon requires 2 to 5 years of Smalltalk ex-

Recruitment Center

SNOWLEDGE SYSTEMS CORPORATION

Make No Compromises.

Join a leader in
Object Technology.

We are Knowledge Systems Corporation, the acknowledged leader in
Object Oriented Technology services. Working on the cutting edge of tech-
nology, we are poised to move lo greater heighls of technical diversity,
client serviceability, and employer opportunity. We are professional, team
oriented, and driven o excellence, but most of all, we are an employee-ori-
ented corporation thal provides an excellent working environment that will
challenge your abilitics and sharpen your skills. We are KSC. We are your
future.

Presently, we are secking Lo augment our technical training and consulting
staffs with professionals who have two plus years of demonstrated experi-
ence with OOA&D, IBM Smalltalk or VisualAge, ParcPlace VisualWorks,
Digitalk Smalltalk/V, and Envy.

As a leader in supplying our Fortune 500 client base with Object Oriented
solutions, Knowledge Systems Corporation is able (o offer a very competi-
tive salary, an excellenl bepefils package and many opportunities to grow
with the leader. Please send/fax your cover letier, resume, and salary
requirements to: Knowledge Systems Corporation, 4001 Weston Parkway,
Cary, NC 27513; or call (919) 481-4000; Fax (919) 677-0063 or e-mail to
Jjdemichiel@ksccary.com.. Equal Opportunity Eniployer.

AN 4
NLEDGE SYSTEMS CORPORATION

SMALLTALK POSITIONS
DIGITALK is seeking experienced Smalltalk instructors and

consultants for our world-class Professional Services team.
At DIGITALK you will work with one of the world’s lead-
ing development teams, use state-of-the-art products and
assist companies on the forefront of adopting object tech-
nology in client-server applications.

Requirements for Senior Consultants are: solid experience
with Smalltalk (3-5 years) and/or PARTS Workbench
experience. OOQA/D experience and GUI design skills.
Mainframe database experience is a big plus. Requirements
for instructors are: previous training experience in a relat-
ed field (2-4 years), understanding of OO concepts and
Smalltalk,

Positions are available in various sites throughout the U.S.
Compensation includes competitive salary, bonuses, equity
participation, 401(k) and family medical coverage. All posi-
tions require travel. DIGITALK is an equal opportunity
employer.

Please forward your resume to:
Director of Enterprise Services
Digitalk, Ine.

7585 S.W. Mohawk Drive
Tualatin, OR 97062
faxi (503) 691-2742
internet: holly@digitalk.com

DIGITALK

The Smalltalk Report

To place an ad in this section, call
Michael Peck at 212.242.7447

@bjectSpace

Object Technology Professionals

ObjectSpace, Inc. is a cutting-edge leader in the
object-oriented arena with awesome technological capability
and extraordinarily talented people dedicated to the creation

and deployment of advanced technologies.

Progressive growth has created immediate career opportunities
for Object Technologists who are highly technical and are
committed to excellence.

We have requirements for Object Technologists who have
strong object-oriented backgrounds and two years of
experience in one or more of the following:

Smalltalk Distributed Smalltalk
C++ VisualWorks
Fusion VisualAge
Rumbaugh Booch

We offer competitive compensation, performance-based and
travel bonuses and a complete benefits package.
For consideration, send a resume to:

ObjectSpace, Inc.
14881 Quorum Drive, Suite 400
Dallas, Texas 75240
1-800-OBJECT1
Fax: (214) 663-3959
jobs @objectspace.com

IF OPPORTUNITY CALLS...

. - LISTEN, even though you're not "looking" now.
Exceptional career-advancing opportunities for a
particular person occur infrequently. The best time to
investigate a new opportunity is when you don't have to!

You can increase your chances of becoming aware of
such opportunities by getting your resume into our full-
text database which indexes every word in your resume.
(We use a scanner and OCR software to enter it.) Later,
we will advise you when one of our search assignments
is an exact match with your expetience and interests, a free
service to you.

Founded in 1974, we are a San Francisco Bay Area
based employer-retained recruiting and placement firm
specializing in Object-Oriented software development
professionals at the MTS to Director level throughout
the U.S. and Canada.

We would like to establish a relationship with you for
the long-term, as we have with hundreds of other
Object-Oriented professionals.

Established 1974
Internet: lji@dnai.com URL: hitp://www.dnai.com/~lji

Voice: 510-787-2110 FAX/BBS(8N1): 510-787-3191
P.O. Box 817, Crockett, California 94525

ITT HARTFORD

CORPORATE OBJECT GROUP

If you want to see the future, take a look at our past: 185
years of smart decisions have made us one of the few, true
long-term success stories. That success continues today
with superb ratings and bold new products, making ITT
Hartford the smart decision for those with an eye on their
future. We are currently seeking technical professionals to
join our Corporate Object Group located in Hartford, CT.

OBJECT-ORIENTED BUILDER

The selected candidate will be responsible for the construc-
tion of corporate-level “infrastructure” object classes to pro-
vide utility functions and be leveraged by segment developers.
You will review and harvest classes deemed appropriate for
inclusion into the class library. Other duties include work-

ing with the Corporate Object Group and assisting project

teams in developing classes to meet specific needs. Experience

orks are required.

JECT DATABASE SPECIALIST

is required. Expele
and relational technology

CORPORATE CLA
This individual will assu
tration of class specil
repository. Tasks i
easy navigation th
multiple classes wif]
for library users
internal publicati
library is desi

July-August 1995

29

If youd like to play a
significant role in a large
object-oriented project...

we'd like to hear from you. OOCL's IRIS-2 project
takes a strong software architecture approach to
building an integrated information infrastructure.

The IRIS-2 development team is based in Santa
Clara, CA. OOCL, an industry leader in the container-
ized shipping business with over 140 offices around
the world and 2000 employees, offers reliable trans-
portation services to its customers via a global net-
work of ocean and intermodal routes.

Smalitalk Developers

We are looking for experienced VisualWorks/
Smalltalk system analysts/designers and developers
with strong interest in domain modeling, user inter-
face design, and persistence and distribution tech-
nologies. You will have the opportunity to work with
a highly skilled, highly motivated Smallitalk develop-
ment team in an environment which emphasizes
technical excellence, teamwork and professional
growth. If you are 0O fluent and eager to join the
league of the very best in Smalltalk development,
we'd like to talk to you.

Productivity Tools and Release Engineer

We are building a team to provide the OO tools and
infrastructure for software delivery. If you have expe-
rience in configuration management, release engj-
neering, and tools and utilities development, you can
play a role in helping us build quality into our devel-
opment process.

OOCL offers competitive compensation packages and the
technical and analytical challenges you expect in a state-
of-the-art environment. Apply by sending your resume to
Lori Motko via e-mail, indicating the position of interest, at
motkolo @ oocl.com, or mail to OOCL, 2860 San Tomas
Expwy, Santa Clara, CA 95051, or fax to (408) 654-8196.

C

Dedicated to Quality Service

Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS

This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.

e (CHECK OUT OUR

L™ NEW WEB PAGE!)
http://www.rwi.com/

BOX 270566 Houston TX 77277
(713) 660-8080;Fax (713) 661-1156
(800) 256-9712; landrew@rwi.com
malltalk RothWell Smalltalk RothWell

RothWell Smalltalk RothWell Smalitalk RothWell
Aeewrs [PAAYIOY HielewIS [PAAYIOY Hejew§

W

Smalltalk Engineers

objectWare Corporation is a Chicago-based
software consulting company with nationwide
presence in the telecommunications industry.
Qualified individuals will have hands-on
Smalltalk experience and familiarity with OMT.
Experience with UNIX and ODBMS are pre-
ferred.

We will challenge you to enhance your skills,
while providing you an opportunity to grow.
objectWare offers salaries commensurate with
your experience. For further consideration please
submit your resume with salary requirements to:

Sam Cinquegrani

objectWare Corporation

1618 N. Orchard Street

Chicago, Illnois 60614
e-mail: fida@interaccess.com

objectWare Corporation

30

The Smalltalk Report

MANAGING OBJECTS continued from page 27

a way that makes it easy to back out. For example, if you
want to add some special processing to what happens
when you compile a method, it is tempting to simply put
your modifications inline, but a better way is to make all
your modifications in a separate method, then condition-
ally send that message if it exists, by using testing meth-
ods such as respondsTo: or canUnderstand:. Note that these
tests can have a performance impact, but so can a broken
change that you can't isolate!

This “base-change boundary” is one of the few places
we tolerate the use of isKindOf:.
Using isKindOf: as part of your
program logic is contrary to
good O-O design, because it
imposes the sending method’s
viewpoint on another object
rather than obtaining the other
object’s willing collaboration.

However, at the base-change
boundary, isKindOf: is useful for
testing the existence of base
changes, so that they can be easily backed out without
changing the base once again. It still isn't good O-O design,
but it's a bit more justified when used to verify module
interface boundaries.

Another useful technique for managing changes is to
make them conditional upon an arbitrary “signature”
method. For example, you might implement hasBeen-
Hacked in Object, and then bracket your changes inside
“(self respondsTo: #hasBeenHacked) ifTrue: [...].” This way, if
a particular module of enhancements is present, they are
used by changed base methods, but if not, the base
changes skip the conditional changes.

Positive identification

There are two principle reasons to keep track of exactly
what you changed: it will make your integration with the
next new release from the vendor less painful, and it will
help you to back out a change if it proves to be a mistake.
Identification needs to happen at the method, module,
and system levels.

For method changes, we've implemented a “hot key”
that inserts “Modified by [user] on [date]: .” where “user” and
“date” are properly filled in, and the cursor is positioned
before the period to encourage the user to further describe
the change. We use this two ways. In a short method, we
simply place it after the normal method comment. In a
long method, we bracket our changes by placing this hot-
key comment both before and after the change.

Common code management systems allow version
names for code modules. Keep in mind that your base
image changes are not the main development stream;
they are a branch! So if you modify a code component
that the vendor named R1.43, you should not call your
version R1.44 because that will most likely collide with the
vendor’s next release!

“Keep in mind that your
base image changes are not
the main development stream;
they are a branch!”

We use two techniques for naming changed base
image modules; both help indicate a branch has taken
place. The simplest is to append a “dot level,” so the above
example becomes “R1.43.0”. This can get messy if you
have a number of changes from different sources, so we
often prepend some identifying information, such as
“Bytesmiths R1.43.0.” Either way makes re-integration
with new vendor releases easier.

At the system level, a separate document that records
every change or addition, organized by module, class, and
method, is highly useful. These release notes are necessary
even if your source code man-
agement system provides a ver-
sion comparison tool; it is very
useful to have a linear docu-
ment to review when things
start breaking!

In some cases, your code
management comparison facil-
ities can be harnessed to survey
changes and build templates
for these release notes (we plan
to demonstrate this in a future column), but document-
ing why and how the change was made will remain a
human activity.

Organizational issues

In organizations with multiple Smalltalk development
teams, there is usually an individual or a committee that
has the authority to decide whether a particular change to
the base image will be allowed. This role of base image
“Keeper” is particularly important when there is a shared
corporate-wide version of all base image classes.

A trial period for changes is a good idea. The Keeper
cannot always tell that a particular change is benign to
all the development teams’ applications. If any team
reports a problem with a change to the base image, the
Keeper can then modify or back out the change to correct
the problem.

Even when there is only one Smalltalk team, the
integrity of the base image is usually guarded by a Keeper,
who is the sole developer allowed to release changes to
the base classes, also based on a trial period. In our expe-
rience, a trial of about one development cycle (six to eight
weeks) is a good idea.

CONCLUSION

Now that you know how to make base changes in a way
that is limited in scope, conditional, identifiable, re-
integratable, documented, and “back-outable,” we
return you to your regularly scheduled column. In the
next issue, we'll give you some actual base image changes
to practice with as we proceed with examples of “contin-
uous documentation.”

July-August 1995

31

JUST PUBLISHED!

Rapid Software Development , ,
with Smalltalk The Ultimate Guide to Better

Smalltalk Development...Write Code
faster Without Sacrificing Quality.

RAPID SOFTWARE DEVELOPMENT WITH SMALLTALK covers the spectrum
e of O-0 analysis, design, and implementation techniques and
e 4 provides a proven process for architecting large software sys-
tems. By using detailed examples of an extended Responsibility-
Driven Design (RDD) methodology and Smalltalk, readers will
find techniques derived from real O-O projects that are directly
applicable to on-going projects of any size.

The author provides readers with specific guidelines that could
dramatically cut costs and keep projects on-time. Specifically,

Ab t th A h the author provides readers with project patterns that work,
out the Author... illustrations of design patterns, O-O metrics with example code
Mark Lorenz is the founder and to test design quality and of course, numerous Smalltalk code
president of Hatteras Software, examples.
Inc. a company that specializes
in helping projects use object .
technology successfully. The author has Readers w'"“'
already published two popular books on * Speed up the development process by fostering reuse
object technology entitled ORJECT-ORIENTED * Significantly reduce debugging time

SOFTWARE DEVELOPMENT. A PRACTICAL GUIDE and « Gain step-bv—step inst " h t K
ORJECT-ORIENTED SOFTWARE METRICS (Prentice ain step-by-5tep nstruction on how o makxe

Hall) and also writes a regular column for the object model more robust
THE SMALLTALK REPORT called “Project * Learn how to distribute responsibilities within
Practicalities.” the object model more effectively
* Discover a practical day-by-day breakdown
of a rapid modeling session
* See how to organize the development team most efficiently

PART OF THE This book will prove invaluable to anyone interested in speeding
OERIGIMELSIRN Available at selected book stores. up the consistent development of high-quality object-oriented
nBJEET Distributed by Prentice Hall software systems based in Smalltalk
TECHNDOLOGY istributed Dy ' 14 .
BFERICE
SIGS BOOKS ORDER FORM ==
(J YES! Please rush me ___ copy(ies) of RAPID SOFTWARE Name
DEVELOPMENT WITH SMALLTALK at the low price $24 per
Company
COPY. (ISBN: 1-884842-12-7; Approx 200 pgs.)
Title

Money-back Guarantee: If 1 am not completely satisfied, I may return
the book(s) within 14 days and receive a complete refund, promptly and Address
without question.

City/State/Zip
[Check payable to SIGS Books Country/Postal Code
(visa [J American Express (1 MasterCard Phone Fax
Card# Exp. SEND T0:
Signature SI65 Books, P0. Box 99425

Canada and Mexico add $10; Qutside North America add $15. IMpORIANT: NY Stale

residents add applicable sales tax. Please allow 4-6 weeks for delivery. Phon(: 609,‘88.9602 Fdx: 609.‘88.6'83

SHIPPING AND HANDLING: For US orders, please add 55 for shipping and handling; (O"iMSWOOd, N 08108-9970 . S I G S

	By ArticleTitle
	A modest meta proposal
	Managing project documents
	ParameterizedCompiler: Making code reusable
	Remembrance of things past: Layered architectures for Smalltalk applications
	Rules to live by
	Segregating application and domain

	By Author Name
	Beck, Kent
	Brown, Kyle
	Hinkle, Bob
	Howard, Tim
	Johnson, Ralph E.
	Lorenz, Mark
	Steinman, Jan
	Yates, Barbara

	By Topic
	Deep in the Heart of Smalltalk
	Managing Objects
	Project Practicalities
	Smalltalk Idioms

