Cover illustration by Dave Cutler/SIS

Smalltalk

[=4 L o) [2 0

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
Frangois Bancilhon, 0, Technologies
Grady Booch, Rational
George Bosworth, Digitalk
Jesse Michael Chonoles, ACC of Martin Marietta
Adele Goldberg, ParcPlace Systems
R.Jordan Kriendler, I8M Consulting Group
Tom Love, JP Morgan
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, /8M
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalitalk Report
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems

Reed Phillips

Mike Taylor, Digitalk

Dave Thomas, Object Technology International

Columnists
Jay Almarode
Kent Beck, First Class Software
Juanita Ewing, Digitalk
Greg Hendley, Knowledge Systems Corp.
Tim Howard, FH Protocol, Inc.
Alan Knight, The Object Peaple
William Kohl, RothWell International
Marl Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems (orp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc
Richard P. Friedman, Founder, President, and CEQ
Hal Avery, Group Publisher

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Preduction Manager
Andrea Cammarata, Art Director
Elizabeth A. Upp, Assaciate Managing Editor
Margaret Conti, Advertising Production Coordinator

Circulation
Bruce Shriver, Jr, Circulation Director
John R.Wengler, Greulation Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Jeff Smith, Advertising Manager, Central U.S.
Michael W.Peck, Advertising Representative
Kristine Viksnins, Exhibit Sales Representative
212.242.7447 (v),212.242.7574 (f)
Diane Fuller & Associates, Sales Representative, West Coast
408.255.2991 (v), 408.255.2992 (f)
Sarah Hamilton, Director of Promotions and Research
Wendy Dinbokowitz, Promotions Manager for Magazines
Caren Palner, Senior Premotions Graphic Designer

Administration
Margherita R-Monck, General Manager
David Chatterpaul, Senior Accounting Manager
James Amenuver, Business Manager
Michele Watkins, Assistant to the President

WSIGS

PUBLICATIONS

Publishers of JouRNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, THE X JOURNAL, REPORT ON
OBJECT ANALYSIS & DESIGN, OBJECTS IN EUROPE, and
OBJEKT SPEKTRUM (GERMANY)

June 1995

Table of Contents

June 1995 Vol 4 No 8
Features
Segregating application and domain 4
Tim Howard

All domain information in an application should reside in “domain objects”"—cohesive objects that
are void of dependents or model behavior—to facilitate the segregation of application and
domain information.

Host platform accessing framework:

Multimedia: an example

Yoel Newman

An object-oriented approach to accessing external resources makes it possible to incorporate
function libraries into Smalltalk; in this case, a multimedia interface with support for 0S/2.

10

Columns

The best of comp.lang.smalltalk 15
Math

Alan Knight

Certain types of calculations require alternatives to floating point numbers.

Getting Real 17

Queries in Smalltalk
Jay Almarode
Smalltalk can serve as a flexible and powerful query language.

Smalltalk Idioms 20

Clean code: Pipe dream or state of mind?
Kent Beck
Small objects/methods and clean code go a long way toward avoiding bugs.

Project Practicalities 23

Controlling coupling
Mark Lorenz

Higher reuse and lower development/maintenance costs are the rewards for
avoiding unnecessary coupling.

& } _Managing Objects
& T Managing project documents
Jan Steinman and Barbara Yates

Principles and guidelines for producing, maintaining, and using
project documentation in Smalltalk.

25

Departments
Editors’ Corner 2

Product Review Cooper & Peters’ edit for Visual Smalltalk 29
reviewed by Ron Charron

Recruitment 30
Product Announcements 32

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar—Apr, July—Aug, and Nov-Dec.Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. ® Copyright 1995 by SIGS Publications. All rights reserved.
Repraduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be reproduced with express permission from the publisher. Second Class Postage
Pending at NY, NY and additional Mailing offices. Canada Post International Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic §199, Canada & Mexico $224, Foreign $239.To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509, Ottawa, Ontario K2C 3N2, Canada, or via Internet to streport@objectpesple.on.ca.Preferred formats for figures
are Mac or DOS EPS, TIF, or GIF formats. Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, PO. Box 5050, Brentwood, TN 37024-
5050.For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and Inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

1

Editors’ Corner

talk to clients embarking on their first Smalltalk

project is that the problems they will face will be as
much cultural as technical. Unfortunately, reference
materials dealing with the cultural issues are very difficult
to find. There is a real need for informative articles deal-
ing with process, requirements tracing, testing, reward
systems, etc. To help fill this void, we are very pleased to
welcome our new co-columnists Jan Steinman and
Barbara Yates. Jan and Barbara have been involved in
numerous large Smalltalk projects and have a great deal
of “front line” experience to share with us through their
“Managing Objects” column.

In what we think is a very positive step for the
Smalltalk industry, 11 of the leading companies have
joined together to form the Smalltalk Industry Council
(STIC); STIC is a non-profit trade association dedicated
to growing the Smalltalk market. The initial members of
STIC are: American Management Systems, Easel
Corporation, IBM Corporation, Knowledge Systems
Corp., Linea Engineering, Objectshare Systems Inc.,
Object Technology International Inc., ParcPlace Systems
Inc., RothWell International Inc., Servio Corporation, and
The Object People. There will undoubtedly be many more
members by the time you read this.

STIC was formed with the following mandate:

e Establish Smalltalk as the object-oriented environ-

ment of choice for corporate developers.

* Create a focal point for the Smalltalk community.

e Listen and respond to the needs of Smalltalk users.

* Encourage the participation of all segments of the

Smalltalk industry:

¢ Encourage standards for Smalltalk.

This mandate is very similar to ours as editors of THE
SMaLLTALK REPORT and so we enthusiastically endorse
the efforts of STIC and its executive director, Reed
Phillips. If STIC is to be truly representative of the
Smalltalk community, however, it must have strong par-
ticipation from the user community. Users are noticeably
absent from the current list of members (as is at least one
major Smalltalk vendor!). STIC can provide a unified
voice for the Smalltalk community when needed but it
should also be an important focal point for Smalltalk
users to voice their concerns. For membership informa-
tion contact STIC at the address below.

As its first project, STIC commissioned International
Data Corporation (IDC) to study the market perception of
Smalltalk in relation to other procedural and object-ori-
ented programming languages. The study, entitled

ONE OF THE POINTS WE ALWAYS EMPHASIZE when we

Paul White

John Pugh

“Smalltalk Market Accelerates,” concluded that: Smalltalk
is more compatible with typical corporate developer skills
than competing object-oriented languages; Smalltalk is
gaining popularity in corporate MIS; and misconceptions
about Smalltalk (in areas such as speed, memory require-
ments, use of garbage collection, and steep learning curve)
are outdated. Based on a telephone survey of 296 corpo-
rate developers with typically 15 years programming expe-
rience, the study makes excellent reading for anyone
embroiled in a language decision debate or wanting to get
an appreciation of how Smalltalk is being perceived and
used in the corporate world.

The study paints a very rosy picture for the future of
Smalltalk stating that Smalltalk is the fastest growing O-O
language (vendor revenues are estimated to rise from $56
million in 1994 to over $250 million by 1998) and that many
organizations are already developing large mission-critical
systems with Smalltalk. As documented in the study, the
strengths of Smalltalk for enterprise-wide development are
many and far too numerous to list here. The list of per-
ceived weaknesses is much smaller. Here are three of the
main ones: (1) the lack of experienced Smalltalk program-
mers; (2) the need for better deployment options (e.g.,
smaller runtime images) and better mechanisms (binary
format) for distribution of and use of third-party class
libraries; and (3) the need for better interoperability with
networks, GUIs, and databases. No big surprises here!

For STIC membership information or a copy of IDC
report #9818, “Smalltalk Market Accelerates,” contact the
Smalltalk Industry Council at 919/821-0181, info@STIC.
pdial.interpath.net.

We hope you enjoy this issue!

Editors’ Note added in proof: Just as we were going to
press we heard of the announcement that two major
Smalltalk vendors, ParcPlace and Digitalk, have signed an
agreement to merge the two companies. The new compa-
ny will be named ParcPlace-Digitalk, Inc. The merger,
expected to be completed before the end of August, is sub-
ject to the approval of the companies’ shareholders.
According to a joint press release the merger is not expect-
ed to effect the delivery of either company’s next product
release. ParcPlace expects to release the next version of
VisualWorks in the fourth quarter of 1995. Digitalk
expects to deliver a release of Visual Smalltalk Enterprise
for Windows 95 and Windows NT/Server in the fourth
quarter of 1995. Long-term product plans are expected to
be announced at the ParcPlace International Users
Conference, July 20-Aug 2, 1995, in San Jose, CA.

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

All object models are managed in a shared repository,

i 7 b i |-dri . a0
izeml tegmi‘};rbjeen ct m_:ngdemaégﬁ?;um Tiven supporting team development and traceability
 —— = | 4: o Ly
= R L] Te —r
—~eTgr - i Namé . Damediption Wumber |*
N . _ _ - - | otPemcns
et Enidll It ol Demo _t Finance Where the money Is... | 0 .
: i ot i rym: | Main — m$nm & ChangePaol
iiﬁif by oI % “H 3"’ Y - et
e e | I e T
: : ! @! é . 3 f":;lu) L sl Person Browsaar]) 'E
ook B . s ! B ‘;ﬁ:&m:g:;lsmlus . l-—:——-—-—-) Q

g

bl

Kl

salaryHislory: integerDataSeriesy

o)
add
[Poe e 1| o] § [Sndgipoo s — h
T B
visw m 240] s .
R w5 L ot
Zomnif g9 2hor) ol
upd m:’ : . namz:sl;g;’all:::nal: .
(_tide J W Y tasseras e ’
[cem] dan
Powerful drag and drop “enzymes” make application t b
development intuitive - '
Comprehensive set of widgets, including business 1 15 T : -5

graphics, multimedia, and others make application

development easy and powerful

VERSANT Arpgos™ is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Argos automatically generates mult-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

today at
t us 415

Contac
1.800-VERSANT, ext.

info@versant.com

1380 Willow Road ® Menlo Park, CA 94025 » (415) 329-7500

©1994 by Versant Object Technology. VERSANT, VERSANT Argos and The Datbase For Objecrs are trademarks of Versant Object Technolugy Corporation. Al other company names and logos are regi i trad ks of the individual comp

Segregating application

and domain

cated to the topic of segregating application infor-

mation and domain information in VisualWorks
application development. The first article presented the
case of why it is essential that an application have a strict
segregation between its application information and its
domain information (THE SMALLTALK REPORT 4[8]). This
second article discusses the implementation of domain
objects, the keepers of the domain information. The third
article will cover the application classes that provide the
user interface for the domain objects.

In the first article, we talked about the need to bundle
domain information into cohesive objects relevant to the
problem space. A typical example would be an address
object that references four pieces of domain information—
the street, city, state, and zip. More than likely, these four
pieces of information would be strings. The first article
also used the example of an employee object that contains
all kinds of information relevant to an employee of a com-
pany. Such information probably includes various strings,
numbers, and Booleans. Because all employees have an
address, it is quite likely that an employee object also con-
tains an address object. Objects such as employee and
address are referred to as domain objects. A domain object
is a logical container of purely domain information, usual-
ly represents a logical entity in the problem domain space,
and is void of any dependents or model behavior. The
remainder of this article covers the general characteristics
of domain objects and introduces the class DomainObject—
an abstract superclass for all domain objects. Source code
for DomainObject, as well as examples, is available from the
archives at the University of [llinois (st.cs.uiuc.edu).

T HIS IS THE SECOND ARTICLE IN A SERIES of three dedi-

GENERAL CHARACTERISTICS

The DomainObject class has been created to provide the
common characteristics of all domain objects. Its super-
class is Object but this could be changed for the benefit of
a particular persistent object store. All domain informa-
tion in an application should reside in objects that are a
kind of DomainObject.

Some may refer to a domain object as a domain model.
This is true to the extent that these objects are modeling
the domain problem space. For example, all the domain
objects making up an airline reservation system may be
referred to as the “airline reservation domain model.”
However, the term “model,” as used in Smalltalk, strongly
implies an object that has dependents, and, as was point-

Tim Howard

ed out in the first article, domain objects should not have
dependents. Therefore I prefer the term domain object to
the term domain model.

It is very important that domain objects avoid model-
type behavior at all cost. They should not deal in any way
with interface issues and they should have no depen-
dents. In general, domain objects should not:

e contain models such as ValueHolders or SelectionInLists
* have dependents,
» deal with user interface issues
* contain non-domain information
» perform application type functions
Domain objects should know how to do certain things,
however. In general, they should know how to:
¢ copy themselves completely and correctly
e compare themselves to other domain objects of the
same type
« provide testing and other services concerning their
domain information
e facilitate other objects that choose to print or display
them
As a developer, you should minimize the amount of direct
communication you have with a domain object. Such
communication should be restricted to the application
model, and ultimately the user, as much as possible.
Remember, the domain object exists as a way to bundle
certain domain information logically into a single, cohe-
sive object and to model the domain space. Sometimes,
however, it is necessary to directly manipulate the domain
object. In such cases, it is your responsibility as the devel-
oper to ensure that any visual updates are initiated be-
cause there is no dependency mechanism to do it for you!

AGGREGATION AND ASSOCIATION

When designing domain object classes, it is very impor-
tant to keep track of which references indicate aggregation
and which references indicate association. Often times a
domain object references other domain objects because it
is made up of, or composed of, these other domain objects.
This concept of composition is referred to as an aggrega-
tion. An aggregation is a reference to an object that speci-
fies composition. An employee object, for example, could
be an aggregation of an address object, a work history
object, a name object, and perhaps other objects as well.
That is, an employee object is composed of these other
objects and each instance of Employee has its own unique
instance of Address, WorkHistory, etc.

4

The Smallitalk Report

THE OBJECT PEOPLE

A Smalltalk/Relational Database Interface

TOPLink allows Smalltalk applications
to make full use of relational database
facilities in an efficient manner with

a minimal impact on your application.
TOPLink is designed to allow objects
to be mapped to relational databases
using mechanisms which are indepen-
dent of the Smalltalk model designed
by your team, allowing your appli-
cation to take advantage of the power
of Smalltalk and the performance and
robustness of relational databases.

What} so great >
about TOPLink e

Lots of people sell relational database
interfaces for Smalltalk...

The difference between "~ :*'* ;-1 and many of the relational
database interfaces available is its ability to store and retrieve
objects, and not just row data. Many interfaces will allow
you to associate a class with a table, and then copy the data
from a row in that table to a new instance of thart class.
Unfortunately, that is not sufficient.

To be useful, it should be possible to store and retrieve the rela-
tionships between objects as well as the actual data that makes
up the object. You should be able to handle data types that the
database does not support (such as symbols); objects that
contain references to themselves (either directly or indirectly);
objects that have references to other, complex objects; and
many other features that are fully supported by V{3 ik,

TOPLink provides a full, object-level

persistence mechanism, that supports

all of these features and more,

including the following:

* objects can be stored across
multiple tables;

¢ multiple objects can be stored
in a single table (i.e., each row
in a table can contain one or
more objects);

¢ full support of object identity
and caching;

e multiple sessions and multiple

database systems;
. » support for inheritance;
s support for stored procedures; and
s full proxy support for complex object instantiation.
3101 7Lk is extensible and provides you with the ability to
tune your application to maximize the performance you
require,
1w L is currently available for IBM Smalltalk,
VisualWorks and Visual Smalltalk.
404 k. supports many database systems, including

Sybase, Oracle, DB2/2, Informix, Paradox, dBase, Btrieve,
and others.

1)
-

Wl

'y cLuE
Pk

R
,,-JI'A
P

the next generation relational
database interface

The Object People Inc.

509-885 Meadowlands Dr.
Ottawa, Ontario, K2C 3N2
Phone: (613) 225-8812 FAX: (613) 225-5943

109 Upper Shirley Avenue
Southampton, England $015 SNL
Phone: 44 1703 775566 FAX: 44 1703 775525

E-mail: info@objectpeople.on.ca

| SEGREGATING APPLICATION & DOMAIN

There are times, however, when one domain object
maintains a reference to another domain object for the
purpose of illustrating a relationship. In such cases, the
perception is that the first domain object knows about the
second but does not contain it, per se, as part of its aggre-
gation. This is what is referred to as an association. An asso-
ciation is a reference to an object that does not indicate
composition. For example, an employee object may refer-
ence a comparny object as its employer and reference a sec-
ond employee object as its supervisor. We would never con-
sider an employee to be composed of a company nor com-
posed of other employees, yet it is nec-
essary to maintain these references for
purposes of indicating the supervisor
and employer relationships. When an
employee object changes supervisors, it
merely breaks the reference to the
employee object that is currently associ-
ated as its supervisor and references a
new employee object instead.

Unfortunately, there is no real distinction between an
aggregation reference and an association reference in
Smalltalk because they are implemented the same way—
that is, with instance variables—and it is only a matter of
perspective that draws the distinction. When one object ref-
erences another, it is not always apparent whether the first
object is composed of the second object or just trying to
illustrate an association with the second object. Therefore,
it is up to the designer of the domain object, and the devel-
oper who uses it, to know when an instance variable is used
to indicate an aggregation relationship or an association
relationship. This distinction will have profound effects on
domain objects with respect to copying, persistent storage,
and initialization, as well as other matters.

DOMAIN OBJECT STRUCTURE

For convenience, the objects referenced by a domain
object can be divided into four groups: atomic objects,
mutable objects, collections of atomic objects, and collec-
tions of mutable objects. Each of these presents its own
set of unique problems for managing the domain infor-
mation. The first two groups express a one-to-one rela-
tionship between the domain object and the object it is
referencing. The last two groups express a one-to-many
relationship between the domain object and the elements
in a collection.

In most applications, there are certain types of objects
that should not be edited directly but instead should be
replaced with another object of a similar type. Such
objects are referred to as atomic objects. Atomic objects are
those perceived to be the smallest units of information
from which the problem space can be described, and they
should not be edited but, instead, replaced by another
atomic object. If you look at a domain object as a tree
structure, then the atomic objects are the leaf nodes of that
tree. Usually counted among the atomic object types are

The one-to-many
relationship is a fiction,
however, and you should

recognize it as such.

the standard literal data types such as strings, integers,
floats, dates, and Booleans. Atomic objects can also be
other domain objects that are referenced by association.
Such domain objects, as well as strings, are examples of
atomic objects that can be edited but should not, in order
to maintain the integrity of their atomic nature. It is the
developer's responsibility to ensure that a domain object’s
atomic information is never edited, only replaced.

Mutable objects are objects referenced by the domain
object that can be edited directly. Such objects are other
domain objects referenced as part of the original domain
object’s aggregation. As was illustrated
previously, an employee object might
contain a work history object, address
object, and name object—each being
another type of domain object and
part of the employee object's aggrega-
tion. It is necessary to ensure that the
instance variables that reference other
domain objects are properly initial-
ized—either in the accessor method, as is shown below, or
in an initialize method.

address
"Return the employee's address."

~address isNil
ifTrue: [address := Address new]
ifFalse: [address]

A domain object can contain a collection of other objects.
In this way, domain objects can express a one-to-many
relationship with other objects. These collections, for the
most part, are loosely typed. That is, all the elements in the
collection are usually of the same type or a similar type.
The collection’s accessing method should initialize the col-
lection if necessary (or it should already have been done in
an initialization method). Suppose we have a Company
domain object that maintains a collection of vendors in its
vendors instance variable. The vendors accessing method
might look like the following.

vendors

~vendors isNil
ifTrue: [vendors := OrderedCollection new]
ifFalse: [vendors]

Be careful when expressing one-to-many relationships. A
designer might say that one student object references many
course objects. This one-to-many relationship is a fiction,
however, and you should recognize it as such. The reality is
that a student object references a collection object that ref-
erences many course objects. The actual implementation of
a one-to-many relationship in Smalltalk introduces a level
of indirection imposed by the collection object. This indi-
rection is in no way trivial and should be taken into
account during implementation and, if possible, even dur-

The Smalitalk Report

Reuse Depends on

Quality Documentation

" Reusable
Code Companents

Quality

Non-reusable
Components

High

Lo -
" Documentation

Quality

Synopsis Software

8912 Oxbridge Court, Suite 300, Raleigh NC 27613
Phone 919-847-2221 Fax 919-676-7501

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

Reusable software requires readily available, high
quality documentation.

And the easiest way for Smalltalk developers to get
quality documentation is with Synopsis. Install it
and see immediate results!

Features of Synopsis

« Documents Classes Automatically

« Builds Class or Subsystem Encyclopedias

« Moves Documentation to Word Processors

« Packages Encyclopedias as Help Files

Products

Synopsis for IBM Smalltalk $295 Team $395
Synopsis for Smalltalk/V and Team/V $295
Synopsis for ENVY/Developer for Smalltalk/V $395

ing design. Failure to account for this indirection can
adversely impact the success of the implementation.

The elements in the collection can be either atomic or
mutable objects. In the event that the elements are all of an
atomic nature, there are really just two editing operations
that can occur—adding or removing an element. Suppose
the vendor objects in the vendors collection are meant to be
atomic, i.e., they are meant to be added to or removed from
the collection, but not edited directly. In such a case, the
vendor collection element-accessing methods might be:

addVendor: aVendor

self vendors add: aVendor
and
removeVendor: aVendor

self vendors remove: aVendor ifAbsent: nil

Such collection element accessing and mutating methods
are very beneficial because they allow the domain object
to know when its collection is being modified.

In the event that the elements in the collection are
other mutable domain objects, then each element is
directly editable. Such a collection and its elements con-
stitute part of the domain object's aggregation. With these
types of collections, elements can be added to or removed
from the collection as described previously, or accessed
and edited directly as is shown below.

vendor := company vendorWithName: 'ACME'.

vendor contact: 'Franklin Black'
In the code above, a vendor object is accessed from a com-
pany object’s collection of vendor objects. Then this vendor
object is edited by changing its contact.

COPYING DOMAIN OBJECTS
It is very important that domain objects lmow how to copy
themselves such that the copy and the original do not share
any information they are not meant to share. There is noth-
ing more frustrating than editing what you suppose to be a
copy only to find out that the original has changed as well!
Copying objects is a very rich topic; however, within the
constraints of a single article I can only cover the highlights.
All objects know how to copy themselves because the
copy method is defined in Object. The copy method, by
default, only makes a shallow copy. A shallow copy is just a
new object header and a new set of handles to the same
objects referenced by the original object. For domain
objects, a shallow copy falls far short of the mark. If we
make a shallow copy of an employee object and edit the
copy’s address, we will also be editing the original employ-
ee’s address! Fortunately, the copy method also initiates a
post copy operation. A post copy includes any additional
copying that might need to be conducted beyond the shal-
low copy. It is implemented in the postCopy method. Each
type of domain object that defines instance variables
should also implement its own postCopy method to define

June 1995

7

| SEGREGATING APPLICATION & DOMAIN

what its copies are to look like. A postCopy method should
almost always begin with the statement super postCopy.
This ensures that the any instance variables defined by the
superclasses are also copied appropriately. An implemen-
tation of postCopy should result in a fill copy. A full copy
can be edited without adversely impacting the original
object (a full copy is not necessarily a deep copy).

In implementing a domain object’s postCopy method,
we must be sensitive to the type of reference made by
each of the domain object’s instance variables. For copy-
ing domain objects, the following guidelines apply based
on the type of object referenced by each instance variable.

» Atomic objects need not be copied since they will be
replaced anyway.
* Mutable objects should be copied.
* Collections of atomic objects should be copied, but
their elements need not be copied.
* Collections of mutable objects should be copied, and
their elements should be copied as well.
For the last guideline above, the DomainObject class provides
a private method called copyCollection: that takes an original
collection as an argument and returns a copy of that collec-
tion whose elements are copies of the original’s elements.

COMPARING AND TESTING

Domain objects need to know how to compare themselves
to other domain objects. Mostly this is for the benefit of
certain collection operations such as sorting, detecting,
and tests for uniqueness.

Each domain object should be able to determine if it is
equal to another domain object of the same type. The
exact determination of equality is strictly up to the design
requirements. For instance, in one design, an Employee
class might implement the method = as:

= anEmployee

~self fullName = anEmployee fullName
and another design might use

= anEmployee

~self ssn = aEmployee ssn

In the first case, the designers determined that two employ-
ees are the same if their names are the same. In the second
case, the designers feel that two employees are the same if
their social security numbers are a match.

Very often domain objects are presented in a sorted
collection. The default behavior for a SortedCollection is to
rank its elements using a less than or equals comparison.
This makes it convenient to implement a <= instance
method in each domain object class. Usually, a <= method
conducts its comparison on the same parameters as the =
method, but not always. For the above, employee objects
might be ranked alphabetically as:

<= anEmployee

~self fullName <= aEmployee fullName

In the event that you do not want to rank a collection
according to <=, you can also pre-define sort blocks to
determine the ranking. Sort blocks allow the same type of
domain object to have different types of ranking over dif-
ferent SortedCollections. A sort block takes two arguments
representing two consecutive elements in the collection.
The sort block’s implementation describes the relation-
ship that must hold between the two consecutive ele-
ments. The default descending ranking looks like:

[:e1:e2 | e1<=e2].
An ascending sort block looks like:
[:e1:e3 | el>=e2].

A sort block access method for ranking employee objects
by ssn would look like:

descedingSSN

~[:el:e2 | el ssn <= e2 ssn).

and a sort block access method for ranking by name
would look like:

alphabeticalByName

~[:el:e2 | el fullName <= e2 fullName].

In addition to comparing itself to other domain objects, a
domain object can perform several useful tests and func-
tions on its domain information for client objects. Very
common among these tests is a test for type or class. For
example, the DomainObject class can implement isAddress
to always return false and the Address class can imple-
ment it to always return true. This makes the isAddress
message the test to ascertain if a domain object is an
Address or not. There are several other problem-specific
testing methods you may want to include in a domain
object class testing protocol.

PRINTING AND DISPLAYING

Domain objects should not be responsible for displaying
themselves on a display surface. However, they can make
it easier for other objects that wish to display them.
Domain objects should provide several mechanisms for
representing themselves as strings, text, and even visual
components. There are three categories of printing and
displaying methods: print methods, display methods, and
visual block methods.

The print methods consist of the printString and the
printOn: methods. Every Smalltalk object knows how to
respond to the message printString by returning a string that
describes itself. The default implementation provided in
Object is to just return the object’s type, such as 'an
ApplicationModel' or 'a PluggableAdaptor'. The printString mes-
sage is used to describe an object in programming tools
such as the Inspector and the Debugger. For the purposes of
debugging and inspecting, it would be nice if the printString

The Smalitalk Report

Oddly enough, a company with possibly the largest
and most deployable Smalltalk/OO workforce is
virtually unknown - Until Now.

Over 400 Experienced Smalltalk/00 Developers,
Mentors & Trainers Available Today.

Object/nteligence

The Object Services Company

e On-Site Smallalk/OO Programming & Mentoring
o On-Site Customized Smalltalk/OO Training

e OODBMS Development: ObjectStore, Gemstone & Versant

o GUI Front-End Design/Build to Legacy Systems
¢ Object Modeling, Analysis & Design
o Smalltalk/Object Mapping to Sybase, Oracle & DB2

Call (919) 859-7384 or e-mai: infoeobjectint.com

Oblectinfeligence Corporation e 6300-138 Creedmoor Rd., Ste. 196 e Ralelgh, NC 27612 « (219)848-0045 Fax

message returned something a little more descriptive than
just the type. For this reason, it is advantageous to cus-
tomize the printString behavior for your object types.
However, the printString method is not responsible for
building the string. This is done in the printOn: aStream
method. It is this method you want to override for your
domain objects. For example, by default a Person object will
return 'a Person' as its print string. We might want to over-
ride the printOn: aStream method to return something like:

'‘Person—Jones, William Robert'.

To do this, we would implement the printOn: aStream
method for the Person class as:

printOn: aStream

aStream
nextPutAll: 'Person—'
nextPutAll: self lastName;
nextPutAll: ', ';
nextPutAll: self firstName;
space;
nextPutAll: self middleName

Most domain object classes will want to implement the
displayString method and perhaps other display methods.
The display methods are similar to the printString method
in that they return a string or text representing the receiv-
er. The display methods are used primarily by list and

table components. An object can have several different
display methods—of which displayString is the default.1
The visual block methods return blocks called visual
blocks. A visual block is a block that describes how an
object should be represented graphically in a list, table, or
notebook tab and it takes two arguments—the widget (a
SequenceView, for example) and the index of the element
in the collection. A visual block should evaluate to an
object that understands visual component protocol.

SUMMARY

This article covered domain objects, the containers of an
application’s domain information. The abstract superclass
of all domain objects is DomainObject. Domain objects
should not reference application information nor perform
application type functions. Domain objects should howev-
er: know how to copy themselves correctly, compare them-
selves to other domain objects, facilitate objects which print
or display them, and provide comparing, testing, and other
services concerning their domain information. Source code
for DomainObject and examples, are available from the
archives at the University of Illinois (st.cs.uiuc.edu).

Reference
1. VisuaLWonks List COMPONENTS, June 1994.

Tim Howard is the President and Cofounder of FH Protocol, Inc. He
is interested in application development using O-O technologies in
general,and using the language of Smalltalk in particular.He can be
reached at thoward@fhprotocol.com or by phone at 214.931.5319.

June 1995

Host platform accessing

framework

Multimedia: an example

the approach outlined in a previous article “An object-

oriented approach to accessing external resources.”!
It covers the elements necessary for incorporating external
resources such as communications protocols, database
access, and multimedia services for VisualWorks 2.0. The
DLL and C Connect (DLLCC) product is a prerequisite for
this example.

T HIS ARTICLE PRESENTS AN EXAMPLE implementation of

EXAMPLE

An abstract multimedia interface with concrete support
for OS/2 serves as a medium for illustrating the elements
of the framework. This is only an example, and is not nec-
essarily a full implementation of the multimedia interface
in OS/2. The example is simple enough to describe in a
small article and robust enough to illustrate the approach
outlined in the previous article.

Specifically, the abstract interface does not include sup-
port for asynchronous communications between the API
and VisualWorks. The interface only implements blocking
API calls. This is an abstract interface limitation since
MMPM/2 includes a mechanism for asynchronous multi-
media support.

The previous article proposed a layered approach for
accessing external resources (Fig. 1). At the lowest frame-
work level lies the Externallnterface subclass, which only

MultimediaObject High Level
DigitalVideo Implementation
WaveAudio Layer

Multimedialnterface API Wrapper
MMPM2Interface Layer
WinMultimedialnterface

ExternalInterface API Access
MMPM2DLL Layer
WinMultimediaDLL

API

Yoel Newman

makes function library calls as defined by the API. The next
level consists of a two-tiered API wrapper layer. There is an
abstract superclass that defines the behavior that each of
the subclasses must implement. There is also a set of con-
crete subclasses that use the low-level Extemallnterface
subclasses in their implementation to support the abstract
interface. Finally there are the high-level implementation
classes that encapsulate aspects of the behavior in the
functon library. By programming to the abstract wrapper
classes’ public interface, the high-level layer can use the
concrete wrapper layer subclasses interchangeably.

The rest of the article will discuss each layer in greater
detail.

API access layer
VisualWorks requires the Externallnterface subclass,
MMPM2DLL, to support calling the function library (Fig. 2).
Parsing the file “mcios2.h” creates the definitions needed
to access the multimedia features by making direct API
calls. The API calls needed for this example are
mciSendString and mciGetErrorString. The header file
“os2def.h” is also a requirement because “mcios2.h”
makes use of the standard redefined OS/2 types. For
example, the redefinition of unsigned long is ULONG and
the redefinition of unsigned character * is PSZ.

The following code is an example of subclassing the
Externallnterface:

ExternalInterface subclass: #MMPM2DLL
includeFiles: 'os2def.h mcios2.h '
includeDirectories: 'd:\vw20ga\mmpm2 '
libraryFiles: ‘mdm.dll '
libraryDirectories: 'e:\mmos2\dIl '
generateMethods: "
beVirtual: false
optimizationLevel: #debug

instanceVariableNames: "
classVariableNames: "
Externallnterface API Access
MMPM2DLL Layer
WinMultimediaDLL

Figure 1.The framework levels.

Figure 2. APl access layer.

10

The Smalltalk Report

Are you maximizing your Smalltalk class reuse? Now you can with...

MI - Multiple Inheritance for Smalltalk

MI™ from ARS
» adds multtiple inheritance to VisualWorks™ Smalltalk
* provides seamless integration that requires no new syntax
¢ installs into existing images with a simple file-in
* is written completely in Smalltalk

Leading methodologiss (OMT, CRC, Booch, OOSE)
advocate multiple inheritance to facllitate reuse. Smalltalk’s
lack of multiple inheritance support impedes the direct
application of these methodologies and limits class reuse.
Ml is a valuable tool which enables developers to apply

advanced design techniques that maximize reuse.

Introductory Price: $195

To order M! or for more information on ARS’s family of products and
services, please call 1-800-260-2772 or e-malil Info@arscorp.com.

Applied Reasoning Systems Corporation (ARS) is an innovative developer of high .
quality Smalitalk development tools, application frameworks, inteligent sofware Y NS 21=F: S ol I L Te RS A 1 =K
systems, and related services that provide advanced solutions to complex problems.

Smalitalk Products * Consuiting * Education « Mentoring

il PG 7

Phone/Fax: (819) 781-7987 « E-mall: Info@arscorp.com

poolDictionaries: 'MMPM2DLLDictionary '
category: 'Externallnterface-0S/2'
The #debug mode should be the initial optimization level.
In #debug mode, function methods contain strict type-
checking wrapper code. This type-checking code helps in
the development and debugging of the interface class at
the expense of performance. In #full mode, a significant
decrease in function calls overhead occurs due to remov-
ing the type checking wrapper from the function meth-
ods.2 p-19
The generateMethods: keyword message takes a String
as an argument. The String argument is a list of pattern-
match strings. These patterns determine which external
entries in the header files become compiled into
Smalltalk methods.2: Pp.17.38
For the multimedia example the string is: ‘mciSendString
mciGetErrorString'.

APl wrapper layer
The two-tiered API wrapper layer contains an abstract
interface class (Fig. 3) and the concrete subclass imple-

mentors (Fig. 4). The abstract superclass, Multimedia-
Interface, defines the behavior that each of the subclasses
must implement. The concrete subclass, MMPM2Interface,
uses the low-level ExternalInterface subclass, MMPM2DLL, in
its implementation to support the abstract interface.

Both IBM and Microsoft use the Media Control
Interface (MCI) as the abstract interface for their function
library implementation. In this example, MCI will also
serve as the abstract interface. This is an appropriate
choice for the 0S/2 and Windows environment. If broader
platform support and code portability are requirements,
then MCI may not be a suitable choice for the abstract
interface. There is no guarantee that all vendors will use
MCI as their abstract multimedia interface. Therefore, to
cover a broader platform base, using a more generic and
abstract interface whose implementation uses MCI is a
better choice.

To understand the multimedia example, it is important
to be familiar with the Media Control Interface. MCI pro-
vides services to applications for controlling devices in the
multimedia environment. These services are available

Multimedialnterface API Wrapper
MMPM2Interface Layer
WinMultimedialnterface

Multimedialnterface API Wrapper
MMPM2Interface Layer
WinMultimedialnterface

Figure 3. APl wrapper layer: Abstract interface.

Figure 4. APl wrapper layer: Concrete subclass.

June 1995

1

| MULTIMEDIA: AN EXAMPLE

through an interpretive string interface (mciSendString).
The MCI string interface enables application control of
media devices using textual string cornmands. The follow-
ing are example MCI string commands:

==> open foo.wav
==> open foo.wav alias
wave

To open the file foo.wav:
To give foo.wav the alias wave:

To wait for the MCI command
to complete before returning

from the API call: ==> open foo.wav
alias wave wait

To play the alias wave

from the beginning and

wait for the MCI command

to complete before returning

from the API call: = => play wave from
0 wait

To close alias wave and

release any allocated resources: = => close wave

The following series would open a file, play the file, and
close the file:

open foo.wav alias wave wait
play wave from 0 wait
close wave

For more information about MCI, refer to either the OS/2
or Windows multimedia documentation.

The example code provides multimedia support for
0S/2. Implementing support for the Windows environ-
ment requires a WinMultimedialnterface concrete sub-
class (Fig. 4). This subclass has the responsibility of imple-
menting the abstract interface for the Windows environ-
ment.

The concrete subclass, MMPM2Interface, has to handle
the following items in its implementation:

* Memory allocation and deallocation.
* Exception handling.
* Maintain and enforce the state of the APL

Memory allocation and de-allocation. The BlockClosure
message valueNowOrOnUnwindDo: is used to handle the API
call. The method evaluates the handler code whether an
exception occurs or not. The main reason for using the
valueNowOrOnUnwindDo: message is to free the memory
allocated on the external heap. The method for freePointer
is faster than the method for free. However, only non
garbage-collectible pointers should receive the message
freePointer:

mciSendString: aString
"aString is a MCI command. The interface calls the
connection to execute aString."
| aRec aStringPtr |
["Begin unwind block"
aStringPtr := aString copyToHeap.
aRc := self
connection
mciSendString: aStringPtr
retumBuffer: self buffer
returnBufferSize: self bufferSize
callbackWindowHandle: self handle
userWindowHandleParameter: self
handleParameter.
"End unwind block"] valueNowOrOnUnwindDo:
[aStringPtr notNil ifTrue: [aStringPtr freePointer]].
aRc = self succesful APIRET
ifFalse:
[self mciGetErrorString: aRc]

The concrete multimedia implementation for OS/2 uses
an instance variable to store a CPointer buffer. The meth-
ods for mciSendString: and mciGetErrorString: require a
CPointer buffer to perform the API call. Without storing the
buffer in an instance variable, the environment would
incur a performance penalty because a CPointer is being
allocated and then deallocated for each API call
Sometimes there is a fine line between optimization and
technique. Using an instance variable to store the buffer
makes sense from a design standpoint as well. Accessing
the buffer using its get and set selector is preferable to
passing it as a parameter in a keyword message.

meiGetErrorString: anErrorCode
"Translates anErrorCode to a literal string
representation of the error."
| aRe anErrorString |
aRc := self
connection
mciGetErrorString: anErrorCode
returmnBuffer: self buffer
retumBufferSize: self bufferSize.
aRc = self succesful APIRET
ifTrue:
[anErrorString := self buffer
copyCStringFromHeap.
self class
multimedialnterfaceErrorSignal
raiseWith: anErrorString]
ifFalse:
[self class connectionExceptionSignal raise]

MultimediaObject High Level
WaveAudio Implementation
DigitalVideo Layer

MultimediaObject High Level
DigitalVideo Implementation
WaveAudio Layer

Figure 5. High-level implementation layer: Abstract interface.

Figure 6. High-level implementation layer: Concrete subclass.

12

The Smalitalk Report

")
m
-
m
o)
n

B Y C OOWPER +

variable declaration:

auto-suggests solutions
Exception handling. The concrete subclass implemen- ontypos, ond even hunts

tors have a responsibility to handle exceptions when they down pool dictionaries
occur. The implementation must also implement the
hierarchy of exception handling signals defined in the
abstract interface to resolve any API call failures.

The MultimediaInterface exception handling hierarchy is: senders, implementors

and references have

undo/redo: mista
can be undone a

redone without li
even over metho
multimedialnterfaceSignal replace capabitity and

multimedialnterfaceErrorSignal configurable scope
connectionExceptionSignal
syntaxErrorSignal

The method mciGetErmrorString: will raise the multimedia-
InterfaceErrorSignal for an unsuccessful API call. The textu- it
al representation for the error code becomes an exception functions for text:
parameter when raising the exception. If the function
mciGetErrorString fails, the method will raise the exception
connectonExceptionSignal.

adjustable scope, and code format

regular expressions you to creatH
and switch b

code format

Maintain and enforce the state of the API. There are

many approaches to handling state within the API wrap- code.-aware editing:
per layer implementation. Two possible approaches are: auto indent, variable
1. Maintain the state of the API using an instance variable. completion, block indent,

In this approach, the concrete implementor has the and commaent filling

responsibility for maintaining and enforcing the state.
The drawback to this approach is that it relies heavily
on case-style statements in its implementation.

2. Use the State pattern by implementing concrete sup- CIIELLILIEIEELELED
port using multiple subclasses representing the differ- gl bbbttt
ent states of the API. The State pattern will “allow an |uuihruhiii
object to alter its behavior when its internal state
changes. The object will appear to change its class.”3

For this example, concrete support for MMPM/2 would

include the classes:

context-sensitive
hypertext on send
implementors, an
references searc

of just one method

» The programmer’s editor for Smalitalk

2

ARAPAHOE STE'E4285 -BOULDER-CO-80302-67¢

Multimedialnterface assign key bindings
MMPM2Interface to any public edit
MMPM2State method for more direct
MMPM2Reset use of the keyboard configurable
CPNOR 1 highlighting: ¢
MMPM2Initialized readanitity o
MMPM2Loaded feedback on

The MultimediaInterface class declares an abstract multi-
media interface. The MMPM2Interface class maintains a
state object (an instance of a subclass of MMPM25tate) and
delegates all state-specific requests to this state object.
Subclasses of MMPM2State implement state-specific Eree
behavior particular to the specific state of the interface.3

For simplicity, this example uses approach 1—using an For your demo, contact us today.
instance variable to maintain and enforce state.

CIS 71571,407

PH 303-546-6828
High-level implementation layer

The two-tiered high-level implementation layer defines a
class for handling the high-level abstract multimedia
behavior (Fig. 5) and concrete subclass implementors for
handling the specific multimedia behavior. The abstract

class, MultimediaObject, defines the abstract behavior for ™
all multimedia objects. The concrete subclasses e d- t
June 1995

2525

ANTALYS.
PUTTING YOU ON TOP
OF YOUR APPLICATIONS.

America’'s
Premier
Consullants
For Smalltalle
Implemenlalions

Alnlalys

Sl

DigitalVideo and WaveAudio (Fig. 6) provide the specific
behavior for digital video and wave audio.

The MultimediaObject subclasses hold an instance of a
MultimediaInterface subclass in the instance variable,
interface:

play: anMCICommand
"play the device, close the file on error."
MultimediaInterface multimediaInterfaceErrorSignal
handle:
[:exception |
self interface state == #open
ifTrue: [self interface close]]
do:
[self interface
command: anMCICommand;
open;
play;
close]

One approach to establishing the correct platform inter-
face is to do so at runtime. The MultimediaObject subclass-
es detect which platform is running and set their interface

to the appropriate instance of a Mulimedialnterface sub-
class. Another approach to establishing the class of the
interface is to use a class initialization method that either
stores or sets the current platform. These types of tech-
niques provide basic elements of platform independence.

defaultMultimedialInterface
self platform isNil
ifTrue: [self initialize].
self platform = = #0s2
ifTrue: [*Multimedialnterface os2]

This example uses lazy initialization for the platform if
not currently set:

initialize
"Initialize the platform"
Platform := 0SHandle current0S
The current platform is available using:

Externallnterface currentPlatform #(#o0s2 'os2 0S/2

Vv2.30"
OSHandle current0S #0s2
OSHandle currentPlatformID 'os2 0S/2 V2.30'

In the current implementation, the classes DigitalVideo and
WaveAudio do not contain any significant implementation
differences. The reason the implementations are in sepa-
rate subclasses is that DigitalVideo supports the display of
video in a user defined window. Support for digital video
display in a user defined window requires minor modifica-
tions to the DigitalVideo implementation. The WaveAudio
implementation requires minor modification to support
use of non-blocking, non-natification, API calls.

SUMMARY

Smalltalk is a pure object-oriented environment. At first,
it may seem the use of function libraries is incompatible
with accepted Smalltalk idioms. However, using an object
oriented approach to accessing external resources creates
a higher level implementation that extends the develop-
ment environment interface. This article and the preced-
ing article (Fig. 1) have discussed and demonstrated an
object-oriented approach for incorporating function
libraries into Smalltalk.

References

1. Newman, Y. and M. Parvin. An object-oriented approach to
accessing external resources, SMALLTALK REPORT 4(7), 1995.

2. ParcPlace Systems, VisuaLWoRks DLL aND C CoNNEcCT USER’S
GUIDE, 1994.

3. Gamma, E. et al. DESIGN PATTERNS: ELEMENTS OF REUSABLE
OBJECT-ORIENTED SOFTWARE, Addison-Wesley, Reading, MA, 1994.

Yoel Newman is a Senior Systems Consultant and can be reached
at yoel_newman@aol.com.

14

The Smalltalk Report

Math

AST ISSUE WE DISCUSSED some of the problems with
L using floating point numbers, particularly in calcula-

tions involving money. Far too many people seem to
be unaware of the difficulties involved and very surprised
to find round-off errors in their calculations. In this install-
ment, we're going to look at some of the alternatives.

FIXED POINT

A more suitable representation for money is fixed-point
numbers. These support a fixed number of places after
the decimal point, and an unlimited number in front of it.
Several Smalltalk implementations already support fixed-
point, and in those that don't it's not difficult to imple-
ment them.

There are two obvious implementations for fixed-point
numbers. The first is as integer numbers of some smaller
unit. For example, to represent money, you might deter-
mine the smallest unit you need to be accurate to (e.g.,
1/100th of a cent) and do all your computations in this unit.

This representation works for addition and subtrac-
tion, and is quite reasonably fast, but it has problems
multiplying and dividing. It also has problems if you have
fixed-point numbers with different degrees of precision.

One way to get around these limitations is to use frac-
tions, as ParcPlace does for their fixed-point implementa-
tion. Their explanation, taken from the class comment, is
as follows:

There are two possible ways to express FixedPoint
numbers. One is as a scaled Integer, but the problem
here is that you can lose precision during intermedi-
ate calculations. For example, a property that seems
useful is that the calculation (1.000 / 7 * 7) should give
you back the number 1.000.

Fractions are accurate, because they can represent any
rational number, but are very slow compared to scaled
integers.

Coercion

Fixed-point in either of these implementations gives us
accuracy, but it's a bit of work to ensure that all calcula-
tions are done in fixed point. As X Alvarez points out:

FixedPoints are coerced...against Floats or Doubles due
to the higher generality...So my FixedPoint numbers
aren’t protected against being coerced to higher gener-

Alan Knight is a significant figure at The Object People, 509-885
Meadowlands Dr.,, Ottawa, Canada, K2C 3N2.He can be reached at
613.225.8812 or by email as knight@acm.org.

The Best of comp.lang.smalltalk

Alan Knight

alities...invalidating the “100.9f - 100.0f” approach
because I can’t be sure that no float or double sneaks in.

This problem can also arise if you just want to use double
precision. Curt Welch (curt@to.mobil.com) writes:

...we had to hunt down every floating constant in the
code and make it a double....And there’s no easy way
to be sure we found them all.

And don’t make the mistake of thinking that just
because the variables are set up correctly as doubles
that you are safe...For example:

a:=10.0d.

a * 0.1 produces: 1.0000000149012d (a loss of 6
places of accuracy).

The loss of accuracy occurs because the single-precision
constant is converted to a double, but it still has the accu-
racy of a single-precision number. The result has much less
accuracy than expected. This is a nasty problem, because
it's hard to ensure that nobody has forgotten the “d” (dou-
ble) or “t” (fixed-point) on the end of a numeric constant.

Changing the default

What we'd really like to do is to change the way the system
treats numbers. For ParcPlace, Douglas Johnson
(doug@rwi.com) writes:

In ParcPlace VW2, change the method readSmalltalk-
Float:from: on the class side of Number...There is a
line about 18 lines down that reads “coercionClass :=
Float.” change it to “coercionClass := Double.”

The same technique can be used to make the default
numeric class Fixed. Similar techniques should work in
other dialects, although it’s possible that in some versions
the relevant source code isn't available.

I don’t think I'd recommend this technique in general,
as it can still break down in some rather tricky ways.
When you make this change you are effectively changing
the compiler. This will change the default class of num-
bers from now on, but it doesn't affect code that was com-
piled before the change was made. Any existing methods
(including system methods) that have float constants in
them will still use regular floats. You'll probably need to
recompile any system methods with floats in them. Here's
a piece of code for ParcPlace that does this automatically.

CompiledMethod alllnstances do: [:eachMethod |
| classAndSelector floatLiteral |
classAndSelector := eachMethod who.

June 1995

15

Help Designer

for VisualWorks™

Help Designer is not just a programmer's tool - now any team
member can create high quality on-line help. This powerful
development tool Is rich in features, provides flexible set of tools,
and facilitates the reuse of components within your applications.
Here Is what you get:

Help Editor & Context-sensitive help
Help Viewer # Inline and outline

Image Editor « Tag Help

Text Editor & Hypertext links and

#® Help Manager references

& Popup definitions

» Keyword search

« History support

Macro dsefinitions

Access to font, paragraph,
and color attributes

Embedded objects

Aun-time editing mode

Platform independent help
files

GreenPoint, Inc.

77 West 55 Streel, Sulte 110
New York, NY 10019
EMall:75070.3353@ compuserve.com

Control Panel
% Help Custom Controls

FREE DEMO AVAILABLE !

TO ORDER CALL 212-765-8882

FAX REQUEST 212-765-6520

VisualWorks™ is a trademark of ParcPlace Systems

floatLiteral := eachMethod allLiterals
detect: [:eachlLiteral |
eachlLiteral class == Float]
ifNone: [nil].
(classAndSelector notNil and: [floatLiteral notNil])
ifTrue: [
classAndSelector first compilerClass
compileClass: classAndSelector first
selector: (classAndSelector at: 2)]).

Even that isn't necessarily enough. ENVY stores compiled
code in its database, and any references to floats in that
compiled code need to be changed (and I think the current
version of ENVY introduces a bug in allLiterals). There might
also be global or class variables holding numeric constants
or even blocks compiled before the compiler change.

Furthermore, we're only changing the default class.
Code that specifies a particular numeric type will still
compile to produce that type. For example, Float>>pi might
return 3.14159265358979d, which will be a double no mat-
ter what the default numeric class.

Application-specific numbers

As we've seen, dealing with numbers can be very tricky.
Fortunately, this is Smalltalk, and if none of the built-in
numeric types are satisfactory we can build our own and
integrate them into the system. These could be addition-
al numbers (e.g., complex) but they are more likely to be
application-specific quantities that have additional

behavior beyond simple arithmetic. In a sophisticated
application, we are likely to need a Money class that knows
the appropriate behavior for money objects. This may
need to handle a number of complex issues that don’t
apply to standard numbers. These include conversion
between different currencies and existing rules for how
round-off should be handled. Tom Stambaugh (tms@
stambaugh.com) writes:

If you or your client is serious about currency and
money manipulation, you need to familiarize yourself
with existing literature and work in the field. This is
not as easy or as obvious as you might think, and has
(not surprisingly) been the subject of much work and
standardization efforts. If your client is an SEC regu-
lated institution, you will also probably have to show
that your work complies with relevant regulations.
Probably, the most straightforward way to accom-
plish all this is to get your hands on an external math
package with the needed support, and wire wrappers
into the Magnitude family. While its certainly possible
to “roll your own,” and a number of the suggestions
here are quite reasonable, its also possible to code
yourself and your client into some *very* deep ratholes.

Tony Law (tlaw@cix.compulink.co.uk) adds:

...there are some currencies where the base unit is
small value where local legislation requires integer
calculation (Belgian Franc and Lira for example)....BT
here calculates phone bills using fractions of 1p in
unit costs, calculates VAT on the lot, then rounds the
answer. This would not be allowed in Italy, I believe
{(anyone from Belgium or Italy care to comment)?

A Money class (or classes) is a good way of dealing with these
issues. It should not, of course, inherit directly from a con-
crete numeric type (like Integer or Float) but from an abstract
class higher in the Magnitude hierarchy. Unfortunately, money
objects still don't make everything work automatically under
all circumstances. If I mix money and other numeric types, I
may still lose precision the sarme way as I would mixing floats
and doubles. For example:

(Money new amount: 1.0) + 0.1

will have to deal with the inherent inaccuracy in 0.1. If that
inaccuracy is less than the precision of the money object
(as it would be in this case) the float could simply be
rounded to the appropriate precision. If not, it either has
to raise an exception or introduce some inaccuracy into
the calculation. The real advantage of money objects is that
I have control over these decisions and can act in a man-
ner appropriate to the application.
There are lots of other extended numeric types that
might be useful in particular applications
» Numbers that automatically keep track of accumulat-
ed inaccuracy, providing ranges instead of exact
results (e.g. 1.53 £ 0.24)

continued on page 19

16

The Smalltalk Report

Queries in Smalltalk

there is a need to search over a collection to find

all the objects that match some criteria. With
Smalltalk, users have a computationally complete, exten-
sible language in which to express these queries. Every
collection class provides a means to iterate over its con-
tents, allowing any kind of complex behavior to be exe-
cuted on each element. For example, inside the argument
block of the do: method, an application developer can
send any desired message to each element in the collec-
tion, performing navigation through the network of
objects until some discriminating message is sent to
determine whether an object should be included in the
result or not. Class Collection provides
a default implementation of three
convenience methods to help in
composing these query results. The
methods select:, reject:, and detect:
are understood by all collections, and

AT SOME POINT in just about any large application,

Getting Real

Smalltalk users have
a complete, extensible

Jay Almarode

than the receiver. A later example will show how this dis-
tinction can be useful for certain kinds of queries.

The detect: method is often used when one wants to ask
about the existence of a condition among the objects in
the collection. For example, if you wanted to ask “Are there
any employees whose 401k contributions are greater than
10% of their salary?” you might execute the following:

aSetOfEmployees detect: [:emp |
emp 401kContribution > (emp salary * 0.10)].

This would return the first employee object encountered
that matched the condition. The detect: method could also
be used for a lookup operation when a user believes there
is only one object in the collection
that satisfies the search criteria.
However, this usage is ill-advised
because it would seem to work cor-
rectly even if there was more than one
object that matched, possibly hiding

subclasses may reimplement them to language in which data inconsistency problems. In this
provide a more optimized imple- . scenario, it is probably best to use a
mentation. Lo express queries. hash dictionary or some other collec-

The semantics of select:, reject:, and
detect: are easily understood by look-
ing at their default implementation in
class Collection. For example, the select: method iterates
through the collection (using the do: method, which is
implemented by subclasses), and evaluates the argument
block for each element. If the block evaluates to true, the
element is placed in the result. One thing to notice is the
kind of object that is returned as the result of the query. The
select: and reject: methods are defined to return an object
similar to the receiver. I say “similar” because the responsi-
bility of determining the appropriate kind of return value
actually belongs to the receiver. In SmalltalkDB, the
speciesForSelect method returns the kind of object that
should be constructed for select: and reject: queries. In
VisualWorks and Visual Smalltalk, the method that does
this is called “species”. The default implementation of this
method returns the same class as the receiver. Therefore, if
you send a bag the select: message, you will get a bag as the
result. Subclasses may override the speciesForSelect method
when it is desirable to answer an object of a different class

Jay Almarode can be reached at almarode@slc.com.

tion that provides optimized access

by key. Another alternative is to use

the select: message and explicitly test
the size of the result.

In SmalltalkDB, the mechanism for querying collec-
tions has been extended with a different kind of block,
called a SelectBlock. A SelectBlock, which is delimited with
(and }, restricts the kind of statements inside the block
to be conjoined predicates of a certain form. This form
allows the use of a dot notation to specify a path of named
instance variables to traverse. I will not get into a lengthy
syntactical description of this path notation; most
Smalltalk programmers should find it straightforward
after viewing a few examples. Using this notation, for
example, one could ask the query “Give me all employees
whose address is at a given zip code and who are older
than their spouse” by executing the following:

aSetOfEmployees select: [:emp |
(emp.address.zipcode = 97223) & (emp.age >
emp.spouse.age) }

The use of SelectBlocks has a number of advantages. The
main advantage is that the execution of the SelectBlock is

June 1995

17

[= = Database Solution|

Database Solution
I | Ed for Smalltalk/V |
| ODBTalk

A class library for ODBC |
| Database Access |
I ® ODBC 2.0 support for 50 +databases

B PARTS Workbench visual development components I
8 Native ODBC data type support I

® Online help, source included, no runtime fees
® pro examples and sample application
® 00 to RDBMS mapping framework, based on type:
& brokers, ideal for complex client-server apphcatlons
| Versions Available for Win16, Win32s,
Windows-NT, OS/2 and Vi!%al Smalltalk I

|"s1mple but elegant -.__\
I Also avallable

flian Gilt Securities I

I Soc r Solutwn JSor Smalltalk/V I
ws Sockets Class Library
CompuServe: 73055,123
Internet:

Tel: 416-787-5290 I
Consulting Services
I Tad fon 2e Snalttatd devdipen I
lucc@rtor_hookup.net

Fax: 416-797-9214 I
L———————————

handled by a subsystem that can utilize indexes and stan-
dard query transformation techniques to execute queries
faster. For large collections, iterating through the entire
contents may be prohibitively slow. In SmalltalkDB, sub-
classes of AbstractBag can have indexes created along any
number of paths to speed up queries. An index is used to
avoid brute force iteration by utilizing auxiliary structures
(B-trees and hash dictionaries) to perform fast searches.
Another advantage of using SelectBlocks is the concise-
ness of specifying queries using the dot notation. When
specifying a path traversal using the dot notation, the pro-
grammer does not have to worry about paths that cannot
be traversed (ie, a nil value is reached before the end of

aSetOfEmployees sclect: [:e | e.children.*.age >= 18 }

no children < |B H]

unknown

Figure 1.Find all employees with some child eighteen years or older.
(eSetOfEmployees select: (:e | e.children.*.age <18)) -
(aSetOfEmployees select: | :e | e.children.*.age >=18])

| -
‘=

unkmown

Figure 2. Find all employees with no child eighteen years or older.

the path). Objects that cannot be traversed the entire
length of the path are not considered when constructing
the query result. This can save writing some tedious code
that checks whether the value of an instance variable is nil
before proceeding along the path. If you write production
code that does not perform this kind of checking, you risk
getting a “Message not understood” error when the appli-
cation is running,.

With the latest release of GemStone, the dot notation
for SelectBlocks has been extended to allow paths that tra-
verse through instance variables whose value is a kind of
bag (including sets). This means that the value of an
instance variable along the path may be any kind of bag,
and the remainder of the path is traversed for all elements
contained in the bag. An instance variable whose value is
a bag is indicated by using an asterisk as one of the terms
in the path expression. For example, to pose the query
“Give me all employees with children who are 18 years or
older” one could execute the following:

aSetOfEmployees select: { :emp | emp.children.*.age>=18 }.

In this example, aSetOfEmployees contains instances of class
Employee with a named instance variable children whose
value is a set. Each set of children may contain instances of
Person (the superclass of Employee), which has a named
instance variable age whose value is an Integer. When eval-
uating the query, the asterisk in the path expression indi-
cates that the next object along the path is a bag, and the
path traversal is continued for all elements in the collection.

As mentioned earlier, the result of a select: or reject:
query is an object similar to the receiver, depending upon
the receiver'’s implementation of speciesForSelect. This dis-
tinction can be useful if the query result is a bag, which
allows more than one occurrence of the same instance,
rather than a set, which only allows one occurrence. If the
query result is a kind of bag, then a particular object’s num-
ber of occurrences in the result is equal to the number of
times the object satisfies the query. In the previous exam-
ple, if the result of the query contains three occurrences of
the same employee, then that particular employee has

(aSetOfEmployees select: (:e| e.children.*.age >= 18}) -
(aSetOfEmployess select: [:c | e.children.*.age <18 })

some children >= 18 r'.'
some children <]H

no children < 18

Ii"rﬁ'i i " <

Figure 3.Find all employees with all children eighteen years or older.

eSetOfEmployees reject; :e | e.children.®. uge >= 18]

Wimuguwm
ol f

il "'“ |

Eis
liLmummﬂmgmm..ﬁam

e

i

1I
glﬂ
it

Figure 4.Find all employees with no child eighteen years or older (using
reject).

18

The Smalltalk Report

three children who are 18 years or older. In building appli-
cations, if the receiver is a kind of set, but you desire the
query result to be a kind of bag, then you can create a sub-
class of Set, override the speciesForSelect method to return a
bag, and use the new subclass to hold your employees.

In SmalltalkDB, a query through a path that includes a
bag is defined such that an object satisfies the query cri-
teria if any subobject in the traversed bag satisfies the
query. In the previous query, an employee is contained in
the query result if he or she has any child 18 years or
older. Given these semantics, it is fairly easy to pose other
kinds of common queries. One way to characterize these
common queries is according to whether some, none, or
all of the subobjects in the traversed bag must satisfy the
selection criteria. The Venn diagrams in Figures 1-3 illus-
trate the partitioning of objects for each kind of query.
The diagrams divide the universe of employees into four
groups: (1) those employees with no children who are 18
years or older, (2) those employees with sorme children
younger than 18and some children 18years or older, (3)
those employees with all children 18 years or older, and
(4) those employees for which we do not know because
the path cannot be traversed to the end.

Now let's see how we can express each kind of query
using the semantics described above for querying through
a path containing a nested bag. Figure 1 illustrates the
query asking for all employees with some child 18years or
oldet, indicated by the shaded region. In this case, the
semantics of querying through a path with an asterisk
gives the desired answer. Figure 2 illustrates the query ask-
ing for all employees with no children that are 18 years or
older. This is achieved by taking all employees with any
child younger than 18 and using the difference operator to
subtract out all employees with any child 18 years or older.
Finally, Figure 3 illustrates the query asking for all employ-
ees with all children 18 years or older. This is similar to the
second query except that we start with all employees with
any child 18 years or older and subtract out those employ-
ees with any child younger than 18 years.

In the previous examples, it might seem that reject:
could be used for the second and third queries. However,
for SelectBlocks, reject: is defined as answering the differ-
ence between the receiver and the result of select: with the
same query block. In other words, aBag 1eject: aSelectBlock
is equivalent to aBag - (aBag select: aSelectBlock). This
means that using reject: will include objects that could not
be traversed entirely along the query path, because those
objects are excluded when select: is used. Figure 4 illus-
trates the difference when reject: is used for the second
query above. If your application ensures that all objects
can be traversed along the entire path, then using reject: is
equivalent to the second query above.

Hopefully this column has enlightened you to the flex-
ibility and power of using Smalltalk as a query language.
My next column will discuss the use of indexes to speed
up queries and how indexes can be extended for user-
defined classes.

405 El Camino Real, #106
Menlo Park, CA 94025, US.A.
voice: 1-415-854-5535

or 1-800-ST-SOFTWARE
Jax: 1-415-854-2557

BBS: 1-415-854-5581

email: info@smalltalk.com
compuserve: 75046,3160

The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. Give
us a call or send us an email - we’ll put you
on the mailing list and send you a copy of
our combination newsletter-catalog. It’s
informative and entertaining.

When you get the
chance, check out our new
dialect-neutral Smalltalk
bulletin board system at
415-854-5581, 8N1. 5

he
malltalk
tore

Send For Our Free Catalog!

COMP.LANG.SMALLTALK continued from page 16
e Numbers with associated units of measurement
($27.50, 300,000 km/s, 6.2 MWh)
¢ Numbers whose degree of precision can adapt to a
particular calculation. I might define a number as the
square root of two. If invelved in a calculation, it could
attempt to determine the accuracy of the other num-
ber(s) involved and compute a finite-precision repre-
sentation of itself to as many digits as required.
Smalltalk’s ability to define new numeric classes that can
interact transparently with the basic numbers opens up
an enormous range of possibilities. I've only scratched the
surface of this very interesting area.

Floats for money

Ultimately, what you need from numeric classes is deter-
mined by the particular needs of your application.
General principles are often wrong when applied to
exceptional circumstances. A good example comes from
Curt Welch (curt@to.mobil.com), who writes:

I'm working on a financial system in Smalltalk and all
our money values are floats and doubles. I wouldn’t
think of using some type of integer. The difference is
that our system is not an accounting system. It’s a risk
analysis system. We aren’t calculating account bal-
ances, we are estimating the value of a portfolio (and
how that value may change over time.)

The only really consistent rule is that you need to be careful.
Assuming that numeric types in a computer work the same
way as basic mathematics is dangerous in any language.

June 1995

Clean code:

Pipe dream or state of mind?

harder to write? I think I know exactly what I want to

say, but I've started writing three different times with-
out getting anywhere. Maybe this third time will work.

Simply put, here’s what I want to say—the best pro-
gramming style for Smalltalk is to have lots of little meth-
ods, and lots of little objects.

That’s a pretty broad statement, broad enough that it
can't possibly be true in all cases. What are the trade-offs,
the issues that affect programming style?

Why do I care? Why not just let a thousand different
styles blossom? Here’s what I've done over and over. I'll be
asked by a client to help them figure out what's going
wrong with a piece of code. The first thing I'll do is reformat
the code in question so I can follow the flow of control.
Then I'll start breaking big methods into smaller pieces,
asking the client to name the new methods I create.

At some point in this process the problem becomes
obvious. The proposed name doesn’t match what the
method is doing. A computation that should happen once
is happening twice. A computation that should be hap-
pening on only one side of a conditional happens on both.

I never get over feeling that a problem like this, where
the solution is merely to clean up, didn't need to happen
in the first place. It's not like what I do is profound—I
don't have to go away and think hard. I mechanically
apply a few simple patterns. The answer appears. I'm not
there to give deep advice. I just provide permission.

Here are the important patterns for this kind of
debugging:

* Composed Method. Give each method one simple
job. Keep all the operations in the method at the same
level of abstraction. This naturally results in many
methods, most of them a few lines long.

* Explaining Temporary Variable. Communicate the
sense of a complex expression by pulling a subexpres-
sion out and assigning its value to a variable named
for the meaning of the subexpression.

* Indented Control Flow. For messages with two or
more parameters, put each keyword and its argument

ls IT MY IMAGINATION, or are these columns getting

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, PO. Box 226, Boulder Creek, CA 95006-0226,
408.338.4649 (voice), 408.338.3666 (fax), or by email at
70761,1216 (Compuserve).

Smalltalk Idioms

on its own line, indented one tab. This makes multi-
keyword messages easy to spot and to read.

* Rectangular Block. Start blocks with two or more
lines on a fresh line, indented one tab. This makes the
shape of the control structures easy to scan.

Why don't these clients keep their code clean themselves?
Why do I have to step in for them to do what is obviously
(to me) the right thing to do?

Here are some reasons I've heard:

¢ “I don't have time.” Folks will spend half a day work-
ing on a bug, trying various fixes without success.
Often, 15 minutes of cleanup makes the problem
obvious and improves the code for the future at the
same time. Even if you don't find the bug right away,
you'll be in a much better position to fix it when you
do find it if the code is clean.

* “I don’t know how.” It might take a while to get accus-
tomed to the patterns above, but a few hours invest-
ment will pay off for years. If you don't agree with the
details of the patterns, if you indent code differently,
that's fine, but do it some way. Life is too short to con-
tinually make detailed coding decisions.

* “It's not important.” The cost of a piece of code over
its many-year life is dominated by how well it com-
municates to others, If it is easy to understand, it will
cost your company less while bringing the same ben-
efits.

» “It's the wrong thing to do.” Some people claim that
many small methods and many small objects are
harder to understand than fewer bigger objects and
methods. Software engineering is all about mapping
intention to implementation, moving from what to
how. Every method name, every class name is an
opportunity for you to communicate what is happen-
ing. Every method body and the code in every class is
the means by which you specify how it is to happen.
Big methods and big objects mean you are focused on
how, not what.

I finally realize why this has been so hard for me to write.
I'm frustrated. I keep explaining the principles of quality
code over and over, and I keep getting the same argu-
ments. I'm sure this reflects more on me than on anyone
else, but I'm still frustrated.

TRUE CONFESSIONS
Confession being good for the soul, and all moralizing
aside, do I really always keep my own code squeaky

20

The Smalltalk Report

clean? I like to think so, and for the most part it’s true, but
every so often reality comes up and smacks me in the face
(thanks, Reality, I needed that). Here's a nasty incident
from my recent past that illustrates the value of clean
code and how I sometimes resist it.

Original code

I've been working on a new-from-scratch version of
HotDraw, the graphic editor framework I wrote with Ward
Cunningham at Tektronix lo these long and many. Anyway,
here is the code that gets invoked when the mouse button
goes down and the editor is in selection mode.

SelectionTool>> button1Down: aPoint
self originalPoint: aPoint.
self previousPoint: aPoint.
self figure: (self drawingPane figureAt: aPoint).
self figure isNil
ifTrue: [self drawMarquee]
ifFalse:
[(self selectedFigures includes: self figure)
ifTrue: [*self].
self resetSelections.
self selectFigure]

There are two cases—if the mouse is over a Figure when
the button goes down, the Figure should be selected.
Otherwise, this should start group selection. This method
is only eight lines long, it reads okay, so what's the prob-
lem? Well, it certainly violates the rule that a method
should do one job. I wasn't satisfied, but it worked okay so
I left it alone.

Here's the code for when the mouse moves while the
button is down:

SelectionTool>> button1Move: aPoint
| delta |
self previousPoint: aPoint.
self figure isNil
ifTrue: [self moveMarquee]
ifFalse:
[delta := aPoint - self previousPoint.
self selectedFigures do: [:each |
each moveBy: delta]]

If we are selecting a group, track the mouse. If we are mov-
ing a Figure (or actually all the selected Figures), move
them. Now I begin to get glimmerings of what is wrong.
The conditional code “self figure isNil ..."” is repeated. Let's
look at the “button up” code.

SelectionTool>>button1Up: aPoint
self figure notNil ifTrue: [*self].
self drawMarquee.
self selectAll: self selectedFigures

Here the same conditional appears, but in a different guise.
I worked with this code for about a month never realizing
how hard it was to manipulate until I added Handles.
Handles are like Figures because they live in the Drawing, but

they are like Tools because they interpret input. When the
selected Figure is a Handle, the Tool doesn't do anything
itself, it just passes the input along to the Handle.

I started to extend the code above to implement the
case where the mouse is over a Handle. It wasn’t going well
so I finally took a step back and asked myself “why?”

One simple change I could make is adding an
“isSelectingGroup” method:

SelectionTool>>isSelectingGroup
~self figure isNil

I could replace the tests in the three input methods above
so they read better. Then I could add a “shouldDelegateInput”
method so I could tell if the Tool should delegate input:

SelectionTaol>>shouldDelegateInput
~self figure acceptsInput

However, this doesn't solve the deeper problem, which is
the repeated conditional code. All good programming
style codes down to this: say everything once and only
once. Having the same conditional code in three methods
violates this rule.

State Object

State Object is the pattern for eliminating repeated condi-
tional code and adding flexibility at the cost of additional
objects and messages. Here's how I did it. First I created
SingleSelectionState and GroupSelectionState:

Class: SingleSelectionState
superclass: Object
instance variables: figure previousPoint

Class: GroupSelectionState
superclass: Object
instance variables: originalPoint previousPoint

Then I gave them each their portion of each of the three
input methods. The instance variables figure and
previousPoint moved from the Tool to the SingleSelectionState.
The variables originalPoint and previousPoint moved from the
Tool to the GroupSelectionState. The messages Tool>>select
Figure and Tool>>drawMarquee have to take an additional
parameter because the Tool no longer stores these variables
directly.

The way I added these methods was to mechanically
copy each of the SelectionTool input methods to each state,
delete the parts that didn't apply to that state, and then
change messages to “self” into messages to “aTool” where
necessary:

SingleSelectionState>>button1Down: aPoint for: aTool
self previousPoint: aPoint.
(aTool selectedFigures includes: self figure)
ifTrue: ["self].
aTool resetSelections.
aTool selectFigure: self figure

June 1995

21

| SMALLTALK IDIOMS

GroupSelectionState>>button1Down: aPoint for: aTool
self originalPoint: aPoint.
self previousPoint: aPoint.
aTool drawMarquee: self marqueeRectangle

SingleSelectionState>>button1Move: aPoint for: aTool
| delta |
delta := aPoint - self previousPoint.
self previousPoint: aPoint.
aTool selectedFigures do: [:each | each moveBy: delta]]

GroupSelectionState>>button1Move: aPoint for: aTool
aTool drawMarquee: self marqueeRectangle.
self previousPoint: aPoint.
alool drawMarquee: self marqueeRectangle

SingleSelectionState>>button1Up: aPoint for: aTool
"Do nothing"

GroupSelectionState>>button1Up: aPoint for: aTool
aTool drawMarquee: self marqueeRectangle.
aTool selectFiguresIntersecting: self marqueeRectangle

Invoking the state
Now I had to set up the right state in the first place:

SelectionTool>>setSelectionState: aPoint
| figure |
figure := self drawingPane figureAt: aPoint.
self state: (figure isNil
ifTrue: [GroupSelectionState new]
ifFalse: [SingleSelectionState figure: figure])

SelectionTool>>button1Down: aPoint
self setSelectionState: aPoint.
self state
button1Down: aPoint
for: self

The other two SelectionTool input methods delegate to the
current state:

SelectionTool>>button1Move: aPoint
self state
button1Move: aPoint
for: self

SelectionTool>>button1Up: aPoint
self state
button1Up: aPoint
for: self.
self clearState

Handles
Now adding support for Handles is easy. First I add a new
state that delegates to its Figure:

DelegationSelectionState
superclass: Object
instance variables: figure previousPoint

I make sure I create one of these states when the mouse
goes down over a Handle:

SelectionTool>>setSelectionState: aPoint
SelectionTool>>setSelectionState: aPoint
| figure |
figure := self drawingPane figureAt: aPoint.
self state: (figure isNil
ifTrue: [GroupSelectionState new]
ifFalse:
[figure acceptsInput
ifTrue:
[DelegationSelectionState figure: figure]
ifFalse: [SingleSelectionState figure: figure])

The input methods in the DelegationSelectionState dele-
gate to the Figure:

DelegationSelectionState>>
button1Down: aPoint for: aTool
self previousPoint: aPoint.
self figure
button1Down: aPoint
for: aTool

DelegationSelectionState>>
button1Move: aPoint for: aTool
self figure
button1MoveBy: self previousPoint - aPoint
for: aTool.
self previousPoint: aPoint

DelegationSelectionState>>button1Up: aPoint for: aTool
self figure
button1Up: aPoint
for: aTool

CONCLUSION

What can I conclude from all this?

1. Simple code is its own reward. When you're stuck, try
cleaning up first. Chances are you'll get out of your jam
more quickly, and your code will be a better place to
live later.

2. Use simple rules. Cleaning up code is simple. Don'’t try
to change the behavior while you are cleaning up. If
you spot a mistake, wait until a reasonable stopping
spot before fixing it.

3. These new robes are a bit breezy. Don't worry if every-
thing isn't clean all the time. It isn't for me, nor do I
think it should be. Progress implies chaos, at least for a
while. Make sure you clean up afterwards, though.

22

The Smalitalk Report

Controlling coupling

between objects, and then there is unacceptable
and unnecessary coupling. The latter coupling
results in more brittle systems and correspondingly high-
er development and maintenance costs.
So, which is which? The Law of Demeter defines
acceptable coupling as messaging to:
e self or super
* your class
* an object you create
* an object passed to you as a parameter.
Similarly, the law defines unacceptable coupling as mes-
saging to:
e globals
* objects returned from other messages.
Globals are fairly obvious, because they are available to
every object in the system—a change to a global can rip-
ple through the entire system! But why not send messages
to returned objects? Lets take a look at an example Law of
Demeter violation:

THERE IS ACCEPTABLE AND NECESSARY COUPLING

Account
withdraw: anAmount
"subtract anAmount from my balance"

| newBalance |
(anAmount < self balance) "0K—a parameter
passed to me"
ifFalse: ["error handling for negative values"].
super loanPayment: anAmount. "0K—my superclass”
newBalance := self balance—anAmount.
(newBalance > 0.0) "OK~I created newBalance"
ifTrue: [self owner transactions add: anAmount]
"NOT OK! I have assumed an implementation
for my owner's transactions collection”

ifFalse: [self checkOverdraft.]. "OK—my service"

This code lists a method that has an example of bad cou-
pling: the add: method. A better way to design this would
be for the Account class’ owner object to be responsible

Mark Lorenz is Founder and President of Hatteras Software Inc,, a
company specializing in O-O project management, design quali-
ty metrics, rapid modeling, mentoring, and joint development to
help other companies use object technology effectively. He wel-
comes questions and comments via email at mark@hatteras.com
or voice mail at 919.319.3816.

Project Practicalities

Mark Lorenz

for maintaining Transactions, with an addTransactionFor:
method that would accept anAmount as a parameter. This
would keep design decisions more localized and there-
fore easier to maintain.

Lets take a look at an example model (Fig. 1) to see what
coupling results when we use sequences of message sends.

Figure 1 shows a piece of an object model for a retail
Store, with some containership relationships shown. Let’s
say we have the following client code for this model:

(self store customers) do: [:eachCustomer |
(eachCustomer salesTransactions)
do: [:eachTransaction |
(eachTransaction lineltems) do: [:eachLineltem |
(eachLineltem product = aProduct) ifTrue: [
aCollection add: eachCustomer.].
1.
]-
].

This code marches across the object relationships, lever-
aging detailed design choices to access objects across the
business model. So what happens when the design
changes? The client code is at greater risk of breaking with
the coupling that has been designed into the system.

The following code example shows a better design that
has less coupling:

Store Cusktomer

SalesTransactian LireT~em

Product

Figure 1. Example maodel relationships.

June 1995

23

Increase your
productivity with the

manager’s guide for
object technology.

0-0 technology, OBJECT MAGAZINE is the “point

of entry” publication for you. Written for both
the newcomer and experienced software manager,
each issue provides a candid and detailed discussion
of the developmental management issues
surrounding object orientation, as well as "real
world” applications and case studies. Edited by
Marie Lenzi, cofounder of Syrinx Corp. and world-
wide industry lecturer,
OBJECT MAGAZINE is filled
with articles from the
industry leaders themselves
including: Adele Goldberg,
Grady Booch and many more.

I f you're a software professional working with

Now in its 4th year
with over 40,000 readers
in 61 countries!

OBJEC.T

RETURN COUPON TO:
SIGS Publications, PO Box 5050, Brentwood, TN 37024-5050

For faster service, call: 1-800-361-1279, fax: 615-370-4845,
e-mail: subscriptions@sigs.com, or WWW-: hitp:/Awww.sigs.com/

[YES! Send me one year (9 issues) of OBJECT MAGAZINE
for $39. Plus, FREE issues of Cross-Platform Strategies and
Client/Server Developer.

Method of Payment
1 Check Enclosed (payable to $/GS Publications)
0 Charge My: O Visa O Mastercard O Amex

Card No.
Signature

Exp. Date

Name

Company
Address
City/State/Zip
Country/Postal Code
Phone/Fax

Important: Non-U.S. orders must be prepaid. U.S. orders include shipping. Canadian and
Mexican orders please add $25 for air service. Al others add $40. Checks must be paid in U.S.
dollars drawn on a U.S. bank. Please allow 6-8 weeks for delivery of first issue.

| mSIGS

Complete Money-Back Guarantee!

Figure 2. Layers of knowledge surrounding an object.

(self store purchasersOf: aProduct) do: [:each |
self mailSaleFlyerTo: each.
1.
This design requires that the Store support a purchasers0f:
method. Other classes may be required to support addi-
tional public methods as well. The benefits for this addi-
tional cost in development time are:
» this code is far less likely to break if an 1mplementa-
tion is changed
» greater levels of reuse and robustness are possible
for all clients of the business model objects
A design goal should be to keep your objects as self-man-
aging as possible, reducing coupling to other objects.
Figure 2 indicates a boundary that is one layer out from an
object, delimiting the relationships that can most safely be
leveraged to get work done. Certainly, your systems will
not be this cleanly defined in all cases, but this is a goal to
keep in mind while you are developing your O-O-system.

SUMMARY

We have examined good and bad types of coupling in O-
O systems, and the resulting effects of the different ways
we design our systems. In general, we can achieve higher
levels of reuse and robustness while simultaneously
reducing maintenance costs by restricting the coupling in
our systems.

Terminology
* coupling: Knowledge of another object’s model rela-
tionships and/or design choices, usually indicated by
messaging to that object.
* object model: Objects and their relationships required
to represent your business domain and business rules.

References

1. Sakkinen, M. The law of demeter and C++, SIGS PLAN NoTICES
23(12):38, 1988

2. Lorenz, M. RAriD SOFTWARE DEVELOPMENT, SIGS Books, New York,
1995,

24

The Smalltalk Report

Managing Objects

Managing project
documents

the research lab environment into production envi-

ronments involving large teams, with the requisite
procedures, standards, conventions, and bureaucracy.
Through years of introducing Smalltalk into organiza-
tions, we've noticed that cultural and procedural issues
have more impact on success than technical issues.

In this column, we'll be bringing you tools and' tech-
niques we've found useful in the broadest sense of “man-
aging objects.” If you are involved with Smalltalk (or hope
to be involved), and are a manager or technical leader (or
hope to be one!), we hope to be addressing many of your
project-related concerns.

SMALLTALK IS GROWING UP, It's rapidly moving out of

THE DOCUMENTATION PROBLEM

Success at last! It's been tough—you managed to put a
good team together, train them, fight the “why aren’t you
using C++?” kinds of battles, and still get your project
done in record time. It has amazingly few problems for a
new project, and the alpha users love it, so you take it to
your department head, who schedules a meeting for final
release approval.

Waiting at the release meeting is an old political enemy,
who at first opportunity says, “So, the project is docu-
mented in accordance with MegaCorp Standards and
Procedures Manual section 32, subsection C?”

“Well, not really, you see, because it’s, well, new tech-
nology, and things have to be a bit different, and...” The
meeting falls into disarray, you overhear someone whis-
per to your boss, “Right, if I didn’t have to follow the rules,
I could be a hero too!” and the consensus finally emerges
that it wasn't a fair race. Release is delayed; you are sent
back in disgrace to “make things right.”

Despite this setback, you eventually deploy, and senior
management is impressed enough to try again. “This
time, by the book,” you mutter as you start your second
Smalltalk project.

As the weeks go by, you notice that things aren't as

Jan Steinman and Barbara Yates are cofounders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 20
years Smalltalk experience. They can be reached at barbara.byte-
smiths@acm.org or jan.bytesmiths@acm.org.

Barbara Yates

Jan Steinman

smooth as before. Half the team isn't documenting to stan-
dards, and the other half are whining about having to get
out of Smalltalk to run WordBlaster 6.0, or they're doing
massive copy-and-paste documenting that is quickly out-
of-date and never revisited. This time, you meet the cor-
porate standards, but at a heavy toll in productivity.

Over 20 years ago, Donald Knuth had a similar prob-
lem. He noticed that software was not as “obvious” as the
original author thought it was when writing it, even to the
author himself after a few weeks! On the other hand,
switching back and forth between coding and document-
ing was tedious and disruptive. So he invented “literate
programming” in which the documentation is tightly
bound to the code.

About the same time, Ted Nelson was dreaming about
“hypertext,” interconnecting all the information in the
world in such a way that simply referring to something
would take you deeper into its meaning.

Aswith many things, Knuth and Nelson were ahead of
their time. The technology for literate programming was
necessarily at a concrete level and batch-oriented, and
hypertextual documents were more easily read than
written.

A bit later, Adele Goldberg and a group of Xerox

- researchers were working on a programming system that,

among other things, would greatly simplify both abstract
expression and programming. The stage is set for hyper-
literate programming!

PROCESS OF CONTINUOUS DOCUMENTATION

In a perfect world, there would be no programs. A comput-

er user would describe a problem and a proposed solution

in natural, but precise language, and feed it to the comput-

er. This is a long way off—natural language is not precise

enough, and computer language is not natural enough!
Keeping as close to that ideal as possible, we can set

down some principles for documenting software “things”;

a description of a thing must:

1. be on the same conceptual level as that thing

2. constantly and accurately describe that thing

3. be accessible; by creators, their peers, reusers, review-
ers, end-user documentors, and the merely curious

June 1995

25

| MANAGING OBJECTS

4. be measurable, both quantitatively and especially
qualitatively.

Principle 1—Conceptual integrity
Driven largely by the limited abstraction available in tradi-
tional languages, most organizations have a limited bevy of
documentation levels. These often follow the physical
organization of the code: a function specification describes
a single function, a module specification describes the
functions in a file or directory, a system specification
describes what you get when you type “make” or the result
of some other build script.

Your documentation has conceptual integrity when it
describes a software component at the same conceptual
level as that component.

grammer accessibility, which makes continuous docu-
mentation practical, but this does little for the non-cod-
ing audience. Also needed is a way to “roll up” the con-
ceptual levels in a hyper-access way that Nelson would
find appealing. Although it should be discouraged, there
will also remain the need to print a serialized version of an
entire portion of the documentation tree.

Principle 4—Measurability

Traditional projects rarely measure project documenta-

tion, or they may only take gross physical line/file counts.

What is needed is a qualitative measure that is significant

in evaluating the overall project. In this sense, document

reviews are much more important than code reviews,
and are aided by compliance with

We specify Smalltalk software Every method must the other three principles.
components at many levels, and add . . Simply having a project tollgate or
new ones as needed. Specifications havea speczﬁcatlon. milestone associated with docu-
we've found necessary are at the Period. mentation quality is not enough,

level of method, class, class exten-
sion, variable, nestable module, and
configuration. (We'll explain each of
these shortly.)

In addition, we've added other
useful documentation components,
such as gating checklists, require-
ments maintenance and tracing, and meeting minutes.

Principle 2—Constant accuracy

In the old days, it was simple. You opened both your “.c”
file and your doc file in emacs or vi, and you worked on
them simultaneously. Unfortunately, this only really
works at a single conceptual level, thus violating Principle
1. Also, the popularity of WYSIWYG editors and special-
ized coding tools has weakened this binding, because
many developers lack the memory and processing
resources needed to have both their coding and docu-
menting environments running at the same time!

We've adopted a simple strategy of which Knuth would
probably approve: the documentation for a thing resides
with the thing it describes. This has always been the case
for methods, but is present in varying degrees for other
components, depending on Smalltalk dialect and addi-
tional tools used.

At a more subtle level, we never “comment” our code, we
“specify” it. A comment sounds optional, while even “cow-
boy coders” can appreciate the need for specifications—
especially when they need them from someone else!

Principle 3—Accessibility
Much of the move to WYSIWYG tools for documentation
has been driven by accessibility. A nicely formatted bit of
paper can reach a much broader audience than can the
programmer-accessible file C:\PROJALPH\INPUTSYS-
\M0D01334.D0C, for example!

Simply adopting the Principle 2 tactic of co-residence
for docs and software components vastly improves pro-

In fact, period at the end,
capital at the beginning,
and grammar throughout.

however. To ensure compliance
with Principle 2, it must be mea-
sured continuously. This does not
mean daily, time-consuming review
meetings; it means developing a
team culture in which developers
continuously refer to each other’s
latest documentation, and work together to correct inac-
curacies on the spot.

Because of various documentation impediments
noted above, the first thing you try when you want to use
something in a traditional C project is often “grep the
source.” By having accurate, accessible documentation at
the appropriate level of abstraction, the new ethic must
be to first look at the documentation, and to immediately
fix things if it is not what you need.

COMPONENT DOCUMENTATION NEEDS

Not surprisingly, different levels of abstraction have dif-
ferent documentation needs. Here's how we handle the
different components.

Method specifications

Every method must have a specification. Period. In fact,
period at the end, capital at the beginning, and grammar
throughout—remember that any method specification
might get “rolled up” into some serialized document that
a VP will read! It only takes a moment—do the right thing.

As mentioned, we prefer the term “specification”
instead of “comment.” What does the method do? How are
its arguments used? What objects are the arguments
expected to be? What are the error conditions? What does
the method answer?

As soon as you decide to create a method, capture in
writing what you intend the method to do. (Of course,
naming the method properly is vital, as Kent Beck has dis-
cussed in his column.) Developers often pay lip service to
this rule, and in practice may only comment their meth-

26

The Smalltalk Report

ods when some process checkpoint demands that all
methods have comments. It is much more difficult to
comment a method after the fact, sometimes weeks or
months after you wrote it. Or even worse, having to com-
ment a method someone else wrote!

Put yourself in the shoes of a fellow team member who

must take over the enhancement or maintenance of your °

code, or the member of a different teamn that is a client of
your class. What should you tell the enhancer, client, or
maintainer about this method so they can do their job
well? (What should you write to keep clients from misus-
ing your code and reporting “false” bugs against it!)

Tools that automatically generate accessing methods
produce comments of little value. VisualWorks will gener-
ate instance variables and “getter” methods if you ask it to.
The getter method comment simply states that it was
auto-generated.

In general, “getter” and “setter” methods should specify
the variable being gotten or set. What
kind of object should go in here? Is it
lazily initialized, and guaranteed to

An organization needs

For each variable, its acceptable objects are listed, and a
description is provided about how the variable is used.
This is a good place to mention if the value is internally
derived or can be set externally, and whether it is public or
private. If the variable must be non-nil, the time and place
where it is initialized should be spelled out. For example,
if this is state that is provided at instance creation, point
that out in the variable’s comment.

We developed a technique for separating documenta-
tion of variables instead of embedding them in the class
specification. This separates the specification of a class's
state from that of its behavior, thus increasing conceptual
integrity. It also allows superclass state documentation to
be merged when printing or browsing.

Class extensions

Most Smalltalk code management systems distinguish
between defining a class and adding behavior. Behavior is
added in class extensions. Unfortu-
nately, there is no built-in support for
documenting class extensions. If you

never be nil? How does changing it @ guidefor its code and find it necessary to add a suite of meth-

affect the containing object?

We won't go into accessor method
philosophy, except to say that they are
not always appropriate. If you use tools that auto-gener-
ate such methods, realize that the tool cannot specify
the meaning of those methods, and document them
accordingly.

Class specifications

As soon as a developer decides to create a class, he or she
must write a justification for the class. Why does the class
exist; what does it do? Even during rapid prototyping, a
minimum specification for the class is in order—it is a
good work habit to have.

If you cannot yet describe the class at a high level, what
sort of behavior are you about to implement for the class?
The first specification you write for a class can be a rough
draft, but it has to be there.

Throughout your further development of the class, you
return to the class specification and add details, bring it
up to date, and polish it. By the end of the current devel-
opment cycle the specification will be accurate and com-
plete. The spelling and grammar will be correct. As class
owner, you should feel comfortable having your manager
read it. (Or having your manager's manager read it)

Class specifications are not written once and then for-
gotten. In each subsequent development cycle, the devel-
oper will review the specification and update it as
required. The only time the specification is finished is
when the class is no longer being changed.

Variables

Each class specification must have a section that docu-
ments all variables associated with the class: instance,
class, class instance, pool variables, and (ouch!) globals.

documentation.

ods to an existing class to support your
work, shouldn’t that need be explained
somewhere? We find this to be neces-
sary, and added class extension support to ENVY/
Developer. The class extension comment summarizes the
behavior added by the extension. Each method in the
extension also has a complete specification.

Modules

Smalltalk source code management environments such as
Team/V and ENVY/Developer contain software compo-
nents that collect classes and/or class extensions. These
components are called Packages in Team/V, and
Applications or SubApplications in ENVY (which we'll sim-
ply call apps). The ability to support code modules larger
than classes is essential in even moderate-sized projects!
We're more familiar with ENVY, but the following discus-
sion applies equally to Team/V.

We developed “smart” specification templates for apps
that generate much of an app specification at the time the
documentation is viewed or printed. This follows
Principle 1 by letting the developer concentrate on sub-
system documentation; Principle 2 by dynamically show-
ing the state of included code modules as of the time of
access; and Principle 3 by conditionally including class
specifications and other detailed documentation chunks.

The most important part of the app specification is an
abstract that explains its purpose and goals. The next sec-
tion explains its component relationships. These two
specification parts are maintained at this level; all other
information is available via link, and maintained at a
more appropriate place or automatically generated.

An important feature of the smart template approach
is that organization-specific data is readily handled. We
have sections for document control numbers, cost-center

June 1995

27

| MANAGING OBJECTS

information, and other data specifically required by the
company. Paying attention to these things keep the “by-
the-book” crowd happy, or at least tolerant!

Also in the app specification are links to automatically
generated information, which is only feasible in a tightly
integrated documentation system. For example, the app
version and time stamp, prerequisites, class hierarchy,
and system event method specifications are part of the
automatically linked information.

Other information that we have included (via link) in the
app specification are references, glossary, declared external
interfaces, design decisions in the form of meeting min-
utes, requirements, use cases, test cases, and test results.

Linking information dynamically is more important in
app specifications than elsewhere. The developer doesn't
want the clutter of multiple “boilerplate” items that are
not important to him, yet others may want to see every-
thing. Good examples of linked information that is neces-
sary, but should be hidden most of the time, are specifica-
tions of contained subapps and contained classes.

Configurations

ENVY and Team/V have ways of collecting modules into
“load builds” of some kind. In ENVY, they are called con-
figuration maps, or just maps. The specification for a
map provides an overview of what it will load, and any
other maps that should already be loaded. If for some
reason the map is not unloadable, or is compatible with
only certain versions of prerequisite maps, it needs to be
documented.

An overview of what is different in one version of a map
from the previous version is a good idea, but a better con-
vention is generating and editing release notes at the end
of each development cycle.

Release notes

ENVY and Team/V each have facilities for finding differ-
ences between two versions of components. We extended
ENVY’s facility to produce a smart template that captures
all the changes in a textual form. Of course, ENVY isn't
smart enough to say why something changed, but having
a template to complete jogs the developer's memory, and
guarantees coverage of all changes. We place these in the
ENVY “notes” field of each changed application.

Diagrams
Documents without drawings are as unacceptable as
mono-spaced, 80 column computer displays. Luckily, the
publicly available HotDraw drawing framework is avail-
able. What it lacks in sophistication, it more than makes up
for by being easily adapted to arbitrary object structures.
For example, the HotDraw diagramming inspector is
suitable “out of the box” for documenting complex
instance relationships that would be difficult to explain in
words. Using it as an example, you can easily craft your
own boxes-and-lines documenting aids.
We added a simple facility to ENVY for associating hot-

drawings with arbitrary software components, linking
those drawings with appropriate browsers, and embed-
ding those drawings in hard copy at the appropriate place.

Style guide

Just as a magazine needs a consistent (or at least non-
conflicting) style, an organization needs a guide for its
code and documentation. Most Smalltalk projects start by
searching for published style guides, adopting them, and
modifying them as their needs evolve. We've found less
attention is given to the style guide after the early stages of
the project—typically, new hires are given the style guide
to read. Hopefully, the developers have internalized the
style guide, because they don't use it as a reference. It
might come out of the bookcase again at code inspection
time, or when the company is being audited for certifica-
tion of the software development process.

Regardless of frequency of use, it is important to have
one. There should be some agreement on what must be
documented, and how it should be documented. Typically,
style guides cover many areas in addition to documenta-
tion. Novice Smalltalkers should refer to the style guide,
but, hopefully, they are also seeing good examples of docu-
mentation by fellow tearn members.

The need for the style guide is less important when there
are good templates and tool support for documentation.

Documentation measuring

Beyond conformance to style and periodic peer review, the
quality of documentation is difficult to measure. We've
implemented existence checks, but they can't tell the dif-
ference between random characters and a line from
Shakespeare. The best guarantor of quality is a group cul-
ture that encourages use.

Beyond mere existence checks, we've found a few tools
that helped ensure quality documentation. Meeting min-
utes are linked into documentation to link important
design decisions with the components impacted by those
decisions, and smart checklists enable a developer to
quickly assess their state of “doneness” for a given devel-
opment cycle. Finally, we added a document-centered
browser, so one could browse component specifications
without being distracted by code.

CONCLUSION

“Well, that all sounds great, but what do I do now?”
Everything we've discussed here can be implemented
fairly easily, depending on what is available for reuse in
your environment. Although your schedule and resources
may be such that “the cobbler’s children have no shoes,”
it is also fairly easy to justify spending time building tool
support for a continuous documentation regime. We've
found it not only increased the quality of project docu-
mentation, but also resulted in a savings of about 8% of
total project time, which means a team of seven people
can justify a half-time toolsmith. In the next issue, we’'ll
present some concrete examples and source code.

28

The Smallitalk Report

Product Review

Cooper & Peters’

edIt for Visual Smalltalk 3.0

Ron Charron

F ONE WERE TO ASK A PROGRAMMER what kind of tool he
uses the most, he would possibly answer “Oh, I'd say XYZ
Smalltalk version X.Y." I guess we just take editors for
granted. But take away a programmer’s favorite editor,
remove accelerator keys, or change it's behavior, and you
had better stand well clear of the blast zone as he recog-
nizes that someone messed up his image. Because
Smalltalk development environments all come fully
equipped with syntax-checking editors, Smalltalk pro-

=§:]EIIe Edit

Elle Edi Smg italk erugger lnspel:l Gn Q_p Smalltal/V for w,
aybaardinterrupt>»defaultAction S =l Team/V with Tools
eyboardinterrupi(Exceptiony> >activateHa ol [Team/V API

eyboardinterrupi(Exception)>>handle
yboardinterrupl(Exception)>>signal
boardinterrupl class{Exception class)>:

Team/V Develop
H TeamyV with To

rocess class{Object)>>perform:
omeConlext{Object)>>vminterrupt:
nputEvent>>nullEventWin
olificalionM
Bssage>>)
essage>>

=Ellie Edit Smalitalk Qlaéé y_arlab:Ie.

[o PARTSIconPane @® instance
ook PARTSSequencePan O class
ontrolBr e Clouphans amEditor
. n
selr PARTSClientAreaPandgl v ane | o
Reyb PARTSMenuPaneWingll "~ = o o acorl,
PARTSNotsbookClienfl =ALF" &
PARTSNotebookPagef
- SubPane --
TeamGroupPane
utFont

addAcceasorsForSelectedVariable
"Add methods to the selected class access
If the variable is a class or class inst
2s class aethods. If zo variable is unde

| variableName classForDeclaration lisc |

variableName := self wordAtCursor.
classForDeclaration := self editedClass.

clasaForDeclaration isNil iITruae: [*self

[H Team/V Base Exi

lhandleUndec laredVariablesInCompile

"Popup the undeclared variables dialeog, and
each unknown variable.
lookup PoolDictionary constants, etc.
dand recompile class 4s necessary."”

“File Edit Smalhalk

MformatCooperAndPeters

grammers seldom (if ever) resort to an external editor. If
moving to Smalltalk from another language, you'll proba-
bly complain for a while, then lose your complaints as you
discover a nicely integrated environment provided by your
Smalltalk. So, what if you are finally offered the option to
use a better editor for your Smalltalk environment? If you're
like me, youd probably say “why bother?” But, after some
10 years or so using Smalltalk, I do believe that Cooper &
Peter’s edlt is the first commercially available add-on editor

Sm;llmlk Module glohal Method Variable Options Help
ﬁqu‘!ﬁ':ﬂmw H® Instance CPBaseEdll
istode Class olp
A i 9
n'a_yCon.m goUpPage
unclassified ** ridiCeliXForVisus,
inaryArglist ideMoveSelecti
inaryiessageh implementors
fockNode i
tockVariablel

CPBaseEdH

*spell check'
Provide suggestions for misspelliags,
Automatically declare

Class Yariable Method Options Help

"This xethod describes the Ca&P formatting policy. To

make your own policy, copy 3 es
ds you see fit, put ar entr
CPForaattingInfor>formatting Fill Commem

%o then select it ir the Forma

Indent Selection
Cut Unindemt Selection
| policy | gopy
_ Paste Comment Selection
policy := Q Undo Uncomment Selection
Bedo Complete Glossary Word
fess===== p S@VE Complete Symbol
Searching Complete Var Name
{policy for]
vwhenTo Code Execution
(policy for] Editor Config *boy

About Edit...

edIt for Visual Smalltalk 3.0

June 1995

29

We'd like to hear from you...

if you'd like to play a significant role in a large object-ori-
ented development project to deploy business information
systems throughout an enterprise. OOCL's IRIS-2 project
takes a strong software architecture approach to building
an integrated information infrastructure. By creating an
extensible architecture, we are better positioned to accom-
modate future changes in the business. VisualWorks/
Smalltalk is the development platform.

The IRIS-2 development team is based in Santa Clara,

CA. OQOCL, an industry leader in the containerized shipping
business with over 140 offices around the world and
2000 employees, offers reliable transportation services
to its customers via a global network of ocean and
intermodal routes.

Project Manager

Reporting to IRIS-2 senior management, you will manage
a group of Software Developers and be responsible for
iterative and incremental development and delivery. Your
5+ years of management experience must reflect strong
leadership and people skills, team building, working with
changing priorities, and a track record of managing pro-
jects to on time, on budget delivery. Technical hands-on
experlence with 00 and Smalltalk development is desirable.

Smalltalk Developers

We are looking for experienced VisualWorks/Smalltalk
developers with strong interest in domain modeling, user
interface design, and persistence and distribution tech-
nologies. You will have the opportunity to work with a
highly skilled, highly motivated Smalltalk development
team in an environment which emphaslizes technical excel-
lence, teamwork and professional growth. If you are 00
fluent and eager to join the league of the very best in
Smalltalk development, we'd like to talk to you.

Productivity Tools and Release Engineer

We are building a team to provide the 0O tools and infra-
structure for software delivery. If you have experience in
configuration management, release engineering, and tools
and utilities development, you can play a role in helping us
build quality into our development process.

OOCL offers competitive compensation packages and the
technical and analytical challenges you expect in a state-of-the-
art environment. Apply by sending your resume to Lori Motko via
e-mail, indicating the position of interest, at motkolo @ oocl.com,
or mail to OOCL, 2860 San Tomas Expwy, Santa Clara, CA
95051, or fax to (408) 654-8196.

o ¢y o=

Dedicated to Quality Service

Recruitment Center

SMALLTALK POSITIONS
DIGITAILK is seeking experienced Smalltalk instructors and

consultants for our world-class Professional Services team.
At DIGITALK you will work with one of the world’s lead-
ing development teams, use state-of-the-art products and
assist companies on the forefront of adopting object tech-
nology in client-server applications.

Requirements for Senior Consultants are: solid experience
with Smalltalk (3-5 years) and/or PARTS Workbench
experience. OOA/D experience and GUI design skills.
Mainframe database experience is a big plus. Requirements
for instructors are: previous training experience in a relat-
ed field (2-4 years), understanding of OO concepts and
Smalltalk.

Positions are available in various sites throughout the U.S.
Compensation includes competitive salary, bonuses, equity
participation, 401(k) and family medical coverage. All posi-
tions require travel. DIGITALK is an equal opportunity
employer.
Please forward your resume to:
Director of Enterprise Services
Digitalk, Inc.
7585 S.W. Mohawk Drive
Tualatin, OR 97062
faxs (503) 691-2742
internet: holly@digitalk.com

DIGITALK

@bjectSooce

Object Technology Professionals

ObjectSpace, Inc. is a cutting-edge leader in the
object-oriented arena with awesome technological capability
and extraordinarily talented people dedicated to the creation

and deployment of advanced technologies.

Progressive growth has created immediate career opportunities

for Object Technolggists who are highly technical and are

committed to excellence.

We have requirements for Object Technologists who have
strong object-oriented backgrounds and two years of
experience in one or more of the following;

Smalltalk Distributed Smalltalk
C++ VisualWorks
Fusion VisualAge
Rumbaugh Booch

We offer competitive compensation, performance-based and
travel bonuses and a complete benefits package.
For consideration, send a resume to:

ObjectSpace, Inc.
14881 Quorum Drive, Suite 400
Dallas, Texas 75240
1-800-OBJECT1
Fax: (214) 663-3959
jobs@objectspace.com

30

The Smalitalk Report

Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS

This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.

(CHECK OUT OUR
™ NEW WEB PAGE!)
http://www.rwi.com/

BOX 270566 Houston TX 77277
(713) 660-8080;Fax (713) 661-1156
(800) 256-9712; landrew@rwi.com
malltalk RothWell Smalltalk RothWell

Intemztional

RothWell Smalltalk RothWell Smalltalk RothWell
AeewiS [PAAYIOY MEBUWLS [PAAYICH Yelewms

172

To place an ad in this section, call Michael Peck at 212.242.7447

redefining systems

SOLUTIONS

HBO & Company (HBOC) is a nationally recognized powerhouss in
the development and support of highly advanced health care soft-
ware solutlons. A member of the NASDAQ 100, we've been ranked
by Kiplingers Financial Magazine as one of the top 15 companies
poised for continued success in the year 2000 and beyond. If you
would like to put your expertise to work for a company that's grow-
ing in excess of 25% a year, consider the following opportunities:

INFORMATION TECHNOLOGY PROFESSIONALS

Atlanla, GA » Amherst, MA » Minneapolis, MN
Eugene, OR « Salt Lake City, UT » Orlando, FL

We have challenging opportunities for innovatlve software pro-
fessionals to analyze, design, develop and implement our highly
progressive health care information systems. Requlres experi-
enca in one of the following:

SmalliTalk » C++ » Visual Basic
SQL Windows » C/UNIX » Sybass » MUMPS

Your expertise will be rewarded with an exceptional

A compensatlon and benefits package. For consider-
ation, forward your resume to: Corporale
A Hacrultlnu. LHP/ST/0695, HBO & Company,
‘ ‘ 301 Perimeter Cenler Norlh Atlanta, GA

-- 30346. FAX: (404) 393- 5063 E- Mall
lisa.phlllips@hboc.com
HBO&Company phone calls, please. EOF M/F/D/V.

for Digitalk Smalltalk. And because Cooper & Peters were
the team that originally introduced such helpful tools as
WindowBuilder, their editor was certainly worth giving a try.

WHAT IS IT?

EdIt is a replacement for VisualSmalltalk’s base editor. All
basic functionality is still there, but you will find many im-
provements. In addition to the options you would regularly
find in the base editor, you will find “Searching” and “Smart
Editing” options off the editor’s pop-up menu. Many options
are also available through a configurable editor toolbar.

Syntax highlighting

Being in the Smalltalk training business, I am constantly
needing to highlight a Smalltalk student’s mistakes and
help correct them. Because edlt’s syntax highlighting helps
better distinguish the various elements in the code, anyone
making his first steps in Smalltalk would probably find this
feature useful. Constants, comments, and keywords are
highlighted through the use of colors, italics, and bolding.
EdIt easily allows you to reconfigure highlighting to suit
your individual preferences.

Assisted variable declaration
When saving a method in a class browser, people using

ParcPlace’s VisualWorks have long been used to having a
menu pop up when the method contains unknown refer-
ences to instance variables or globals. They are offered a
choice of declaring the unknown identifier as an instance
variable or a global, etc. EdIt finally brings this feature to
the Digitalk world. I must admit that I have often found
that feature annoying while coding in VisualWorks. I find
myself saying “yeah I know, I know, I'm going to declare
them (instance variables) all at once a bit later—Stop nag-
ging” But on some occasions, I must also admit that I've
found the feature useful. In a way; this feature can lead you
to get a little lazy, by getting used to not declaring instance
variables as a formal coding step. Use what you want while
coding a method, and then when you save edIt will figure
it out for you, and present you with variable declaration
options. You will be offered the choice to declare your vari-
ables as temporary, instance, global, class, class instance,
or, in some cases, to have edIt set up a pool dictionary con-
taining a reference to a known global. If edIt can recognize
enough of your misspelled identifier, it will offer a replace-
ment suggestions list, just like a spell checker utility.

Variable and text completion
EdIt provides a user-maintainable glossary used for text
expansions. Type in a few characters, invoke an expansion

June 1995

31

| PRODUCT REVIEW

command, and edlt will expand the word to the closest
match in the glossary. You can also expand from instance
variable names and globals. Although by default you need
to pop up 2 menu to invoke the expand commands, you
would either want to assign a keystroke to invoke them, or
customize the toolbar to make this truly useful.

Searching facilities

EdIt offers a bounty of searching options, some that can
be invoked very conveniently. For example, in a method
editor, position the text cursor on a method selector for
any message send and call up the “smart-editing menu”;
you can easily browse the implementors or the senders.
EdIt also offers “qualified” senders and implementors
options that allow you to specify the scope of the search
(whole image, or some level within the inheritance hier-
archy for your class). Regular expression searching is sup-
ported. A scoped search and replace facility is also includ-
ed and can also go across modules if you're using the
module manager.

Other nice features

EdIt provides a “bottomless” undo and a redo feature for
those days when you find yourself uttering “oops” a little
too often, Also, edIt’s key binding facility will delight peo-
ple who find that a mouse just gets in the way of getting
things done. Any editor function can be bound to key-
strokes. C & P have even given edlIt the capability to bind
keystrokes to your own methods and save your key bind-
ings in key sets. Some of you may be delighted to hear that
Epsilon and Brief key bindings are included with edIt.

CONCLUSION

C & P have put some effort into making edIt extensible.
Source code is included, and the help facility is very good
(it’s nice to see that help screens have finally made their
way into the Smalltalk industry). If you're like me, and like
snooping around under the hood, you will find a few hid-
den goodies in the supporting C & P class library. There is
a change set manager lurking in there, but I didn't try
adapting it for general use.

EdIt is available now for Visual Smalltalk 3.0 Win32,
and the OS/2 version should be available in late June,
1995. The list price is $195 (Win 32), and a fully function-
al demo is available upon request (call 303.546.6828).

I've been using C & P's edIt for a few months now, so
I've had a chance to let the “newness” aspect dissolve a
bit. EdIt is a tool that can grow on you. Use it for a while
and then try to take away its features, and you will find
yourself looking for them. But then, I had made that point
about editors at the beginning of the review, didn't I?

Ron Charron is Director of Corporate Services at The Object People
Inc.,, Ottawa, ON, Canada. He spends most of his time “immersing”
corporate developers worldwide into the primordial Smalltalk soup.
He can be reached by email at ron@objectPeople.on.ca or,for longer
periods of time, through an Immersion Program,v:613.225.8812.

Product Announcements

Product Announcements are not reviews. They are abstracted from press releases
provided by vendors, and no endorsement is implied.

Vendors interested in being included in this feature should send press releases to
T SmaLLTALK Repoar, Product Announcements Dept., 885 Meadowlands Drive #509,
Ottawa, ON K2 3N2, Canada, 613.225.8812 (v), 613.225.5943 (f).

VISUALWORKS SUPPORTS POWER MACINTOSH
ParcPlace Systems Inc. announced the availability of its
VisualWorks client and server application development
tool for Apple’s RISC-based family of Power Macintosh
computers. VisualWorks for the Power Mac is a native
application optimized to take advantage of the comput-
er's power. Applications written in VisualWorks are
instantly portable across all major client/server plat-
forms, including: Windows, Windows NT, 0S/2,
Macintosh, Power Macintosh, and major UNIX-based
systems. Through VisualWorks' dynamic compilation,
which compiles source code to the computer’s native
instruction set when needed, developers need only
develop their code once. The finished application can be
deployed across all platforms without any recompiling or
reprogramming effort. In addition, VisualWorks’ cross-
platform portability ensures that capabilities usually
available on one system, such as a notebook or combo
box, can be extended to all supported platforms. This
allows developers to concentrate on building applica-
tions rather than learning different windowing systems.
ParcPlace Systems Inc.,408.720.7514.

DOCUMENTATION AND REUSE TOOL FOR
IBM SMALLTALK
Synopsis Software, a provider of object-oriented develop-
ment tools, released Synopsis for Smalltalk for IBM
Smalltalk. The automatic documentation of classes is an
important factor in producing reusable components in
Smalltalk. Synopsis is an automatic class documentation
tool for development teams using IBM Smalltalk.
Synopsis also allows developers to print their class docu-
mentation with popular word processors, eliminating the
time-consuming task of converting plain text from the
Smalltalk environment into word processor documents.
Synapsis produces documentation summaries of
individual classes; builds class encyclopedias, in which
many class summaries are gathered together in the form
of an interactive class reference manual; exports docu-
mentation summaries to popular word processors;
packages documentation as encyclopedia or Help files;
produces source code listings for classes; and supports
personalized documentation and coding conventions.
Synopsis is available for both the Team and Standard
versions of IBM Smalltalk. Windows and OS/2 platforms
are supported.
Synopsis Software, 919.847,2221

32

The Smalltalk Report

	By ArticleTitle
	Clean code: Pipe dream or state of mind?
	Controlling coupling
	Cooper & Peters' edit for Visual Smalltalk 3.0
	Host platform accessing framework
	Managing project documents
	Math
	Queries in Smalltalk
	Segregating application and domain

	By Author Name
	Almarode, Jay
	Beck, Kent
	Charron, Ron
	Howard, Tim
	Knight, Alan
	Lorenz, Mark
	Newman, Yoel
	Steinman, Jan
	Yates, Barbara

	By Topic
	comp.lang.smalltalk
	Getting Real
	Managing Objects
	Product Review
	Project Practicalities
	Smalltalk Idioms

