
ISiWltalk I
Editors

JohnPughandPaulWhite
(arietonUnAwrsify&TheObjecfPeopls

JIGSPublications Advisory Board
TOMAtvmart#bje(tOesigrr
FranfoisBarrcilhon,01kfhnahqies
GradyBc-xh,tWmra/
GecageBosworth,fJigita/k
JesseMidtaelChonoles,ACCofAfarlrirMarietta
AdeleGoldbeq,PamP/a@$@errrr
R.JordanKriirrdler,AM rhrsrrltingGroup
Tomlove,JPAfargmJ
BerttandMeyerJJE
MeilirPage-Jones,W@and$stemr
CliffReeves,/tlM
BjarneStroumup,AT&TBe//LabJ
OaveThomas,ObjetlTecfmolagyInternational

Ihe Smalltalk Report
klitotlal Board
JimAnderson,Oigitalk
AdeleGrtldberg,ParcP/oceSyNem$
ReedPhilhPs
MikeTaylor,Oigfio/k
OaveThamas,0bjert7echrralogylnternatiorml

:olumnkts
JayAlmamde
KentBeck,firstUossforlwvrre
JuaniaEwing,lJigita/k
GregHertdley,Krmw/edgeJ@rrrs (@.
ilm Howard,F/fProtomLhrc.
AlanKnightTheObjertPeup/e
WilliamKohl,/fathWe//hrternatiorra/
Mati lofen2#aftemsJafiwme,/nc
EricSmith,hawledge$Wemj COrp
RebecmWirh-Bmdr,Oigitak

;IGS Publications Group, Inc
R!!hafdt!Friedman,Founder,President,andCEO
HalAvey,GmupPublkher

:dttorlaWroduction
KrbtinaJookhadar,EditorialOirecttrr
Eli$aVarian,PmductionManager
AndreaCammarata,ArtOirector
ElizabethA.Upp,AssociateManagingEditor
MargaretCmrti,AdvettisingPmduttionhwdirtator

:hculatlon
BruceShttver,Jr.,CirculationOirector
JohnR.Wengler,GrculationMarwger

\dvertlslng/Marketing
GaryPortie,AdverlisingManager,EastCoast/Canada/Europe
JeffSmith,AdvertisirrgManager,CentralU.S.
MichaelW.Pedr,AdvetisingRepresentative
KristineWhnins,htiM5alm Representative

212.242.7447(v),212.242.7574(fj
DnneFuller&Assot”~s,SalesRepreserrtative,WestCoast

408.255.2991(v),40B.255X92 [f)
SarahHamilton,OirectortrfPrtrmotionsandResearch
WendyOinbokowiiz,promotioruManagerfmMagazines
[arenPolner,SenimPmmotiomGraphickigner

idmlnlstration
MargheritaR.Mondr$eneralManager
Oavid[halterpaul,5etriorAomuntingManager
JamesAmenuvor,BrrsirwssManager
MicheleWatkins,Amistantto thePmiderrt

~SIGS
PUBLICATIONS

‘ubJishers of JOURNAL OF OUJECT-ORJEhTErs
‘PROGRAMMING,OBJECJ N4AGAZJNE, C++ REPORT,THE
MALLTALX~P051T, THE X JOUSNSL,REPOWTON
)BJECTANALYSIS& DESIGN, OBJECTSIN EUROPE,and
)BJEKTSPEKXWM [GERMANY)

June 1995

June 1995 Vol 4 NO 8

Features

Segregatingapplicationanddomain 4
7inJHoward
All domain information in an application should reside in “domain objects’’-cohesive objects that
are void of dependents or model behavior—to facilitate the segregation of application and
domain information.

Hostplatformaccessingframework:
Multimedia:an example 10
Yoel Newman
An object-oriented approach to accessingexternal resourcesmakes it possible to incorporate
Functionlibraries into Smalltalk;in this case,a multimedia interface with support for 0S/2.

Columns

❑✎✛✌✞✎✌
❑
❑

The best of comp.lang.smalltalk
Math
Alan Knight
Certain types of calculations require alternatives to floating point numbers.

Getting Real 17
Queries in Smalltalk
Jay Almarode
Smalltalk can serve asa flexible and powerful query language.

Srnalltalk Idioms
Clean code: Pipe dream or state of mind?
Kent Beck
Small objects/methods and clean code go a long way toward avoiding bugs.

Project Practicalities 23
Controlling coupling
Mark Lorenz
Higher reuse and lower development/maintenance costs are the rewards for
avoiding unnecessary coupling.

15

20

Departments
Editors’ Corner

.Managing Objects 25
Managing project documents
Jan Stehnan and Barbara Yates
Principles and guidelines for producing, maintaining, and using
project documentation in Smalltalk.

2
Product Review Cooper8 Peters’edit for VisualSmalltalk 29

reviewedby RonCharm

Recruitment 30
Product Announcements 32
The 5malltalk Report (lSSN# 10S6-7976) is published 9 times a year, monthly except in Mar-Apr,July-Aug and Nov-Oec. PubJishedby
51G5Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010.0 Copyright 1995 by 51G5 Publications. All rights reservd.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited, Material maybe reproduced with expresspermission fmm the publisher, Second ClassPostage
Pending at NY,NY and additional Maifing oMces.Canada Post International Publications Mail Product SalesAgreement No. 290386.

Individual Subscription mtes 1 year (9 issues]:domestic $89; Mexico and Canada $114, Foreign $12% Institution alltibraty rates
domestic $1s9, Canada & Mexico $224 Foreign $239, To submit articles, please send electronic MS cm disk to the Editors at 8B5
Meadowlands Orive #S09,0rrawa,0ntario I(2C 3N2, Canada,or via Internet to st~p*bjtipenplenn.ca, P~femd formats for figures
are hkic m MIS EP5,TfF,orGlF fmmats. Always send a papsr mpy of your manuscript including mmera-ready copiesof your figures (laser
output is Fine).

POSTMASTER %nd domestic address changes and subscription orders tmThe Smalltalk Report, P.O.Bon 5050, Brentwood,TN 37024-
5050, For serviceon current domestic subscriptions call 1.EOO.361.1279 or fax 615.370.4E45.Email: subscriptions@sigs.com.For foreign
subscription orders and Inquiries phone +44(0)1 .958.435302. PRINTED IN THE UNITED 5TATE5.

1

John Pugh Paul White
2

ONE oF THEPOINTSkm .uwfm EhiPmsIzE when we
talk to clients embarking on their first SmalJtalk
project is that the problems theywiJl face willbe as

much cultural as technical. Unfortunately, reference
materials dealingwith the cultural issues are very difficult
to find. There is a real need for informative articles deal-
ing with process, requirements Racing, testing, reward
systems, etc. To help fillthis void, we are very pleased to
welcome our new co-columnists Jan Steinman and
Barbara Yates. Jan and Barbara have been involved in
numerous large Smalhalk projects and have a great deal
of “front line” experience to share with us through their
“ManagingObjects” column.

In what we think is a very positive step for the
Smalltalk industry, 11 of the leading companies have
joined together to form the Smalltalk Industry CounciJ
(STIC); STIC is a non-profit trade association dedicated
to growing the Smalltalk market. The initial members of
STIC are: American Management Systems, Easel
Corporation, IBM Corporation, Knowledge Systems
Corp., Linea Engineering, Objectshme Systems Inc.,
Object Technology International Inc., ParcPlace Systems
Inc., RothWellInternational Inc., SeMo Corporation, and
The Object People, There willundoubtedly be many more
members by the time you read this.

STICwas formed with the followingmandate:
s Establish SmalJtaIkas the object-oriented environ-

ment of choice for corporate developers.
● Create a focal point for the SmaJltalkcommunity.
● Listen and respond to the needs of SmalJtalkusers.
● Encourage the participation of alJ segments of the

SmaJltalkindustry.
● Encourage standards for Smalltalk,

This mandate is very similar to ours as editors of THE

SIWXTALK REPORTand so we enthusiastically endorse
the efforts of STIC and its executive director, Reed
Phillips. If STIC is to be truly representative of the
Smalltalk community, however, it must have strong par-
ticipation from the user community. Users are noticeably
absent from the current list of members (as is at least one
major SmaJltaJk vendor!). STIC can provide a unified
voice for the SmalltaJk community when needed but it
should also be an important focal point for Smalltalk
users to voice their concerns. For membership informa-
tion contact STIC at the address below.

As its first project, STIC commissioned International
Data Corporation (IDC)to study the market perception of
Smalltalk in relation to other procedurrd and object-ori-
ented programming languages. The study, entitled
‘(SmalltalkMarket Accelerates,” concluded that Smalltalk
is more compatible with typical corporate developer skills
than competing object-oriented languages; Smalltalk is
gaining popularity in corporate MIS; and misconceptions
about Smalltalk(in areas such as speed, memory require-
ments, use of gwbage collection, and steep learning curve)
are outdated. Based on a telephone survey of 296 corpo-
rate developerswith typicaJly15 years programming expe-
rience, the study makes excellent reading for anyone
embroiled in a language decision debate or wanting to get
an appreciation of how Smalltalkis being perceived and
used in the corporate world.

The study paints a very rosy picture for the future of
SmalJtalkstating that Smalltalkis the fastest growingO-O
language (vendor revenues are estimated to rise from $56
millionin 1994 to over$250 millionby 1998) and that many
organizations are alreadydevelopinglarge mission-critical
systems with Smalltalk.As documented in the study the
sb-engthsof Smalltalkfor enterprise-wide development are
many and far too numerous to list here. The list of per-
ceived weaknesses is much smrdler.Here are three of the
main ones: (1) the lack of experienced Smalkalkprogram-
mers (2) the need for better deployment options (e.g.,
smaller nmtime images) and better mechanisms (binary
format) for distribution of and use of third-party class
libraries and (3) the need for better interoperabilitywith
networks,GUIS,and databases. No big surprises here!

For STIC membership information or a copy of IDC
report #9818, “SmalltalkMarket Accelerates,” contact the
SmaUtalkIndustry Council at 919/821-0181, info@STIC.
pdial.interpath.net,

We hope you enjoy this issue!

Editors’ Note added in pmoj Just as we were going to
press we heard of the announcement that two major
Smalltalk vendors, ParcPlace and Dig”talk,have signed an
agreement to merge the two companies. The new compa-
ny will be named ParcPlace-Digitalk, Inc. The mergec
expected to be completed before the end ofAugust, is sub-
ject to the approval of the companies’ shareholders.
According to a joint press release the merger is not expect-

ed to effect the delivery of either cornpanyk next product
release, ParcPluce expects to releose the next version of
VisualWorks in the fourth quarter of 1995. Digitalk
expects to deliver a releose of Visual Smalltalk Enterprise
for Windows 95 and Windows NTIServer in the fourth
quurter of 1995. Long-term product pluns are expected to
be announced at the ParcPlace International Users
Conference, July 2GAug2, 1995, in San lose, CA.
The Smalltalk Report

Introducing Argos
The only end-to-end objectdevelopmentand dqkyrnent solution

An integratedobjectmodelingtoolprods nwdd-driven AUobjectrnm-lelsaremanagedin a sharedrepository,

de&prm31t for enk?rprke-wide applicatim I
supportingteamdevdopnwuandt’raceabiliq

I

L Powerfuldraganddrop“-S” make a#@uuim

development intuitive
II

VERSANT ArgosT”
environment (ADE)

Comprehensive set Oj*ts, inckiing business

graphics, multimedia, and others make applidon
&d@nent easyad prw+[

is the only application development control transparently. And only Argos is packaged as.-
that makes it easy to build and deploy completely visualADE built on ParcPlace VisualWorksa.

a

powerful, enterprise-wide object applications. Easy because
~gos features ‘an embedded modeling tool and ‘Smalkalk Leading organizations— in indusrnesfrom telecommunications

code generation that ensure synchronization between your to finance — are using Argos to deliver business-critical

models and applications. Powet-fi.dbecause Argos supports applications. Find out how Argos can help you deliver your

fi.dl traceability and workgroup development through a critical applications in weeks, instead of years.

shared repository.

Argos automaticallygenerates multi-user database applications
that run on the industry-leadingVERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT
~ The Database For Objects TM 1380 Willow Road ● ,Menlo Park, CA 94025 ● (415) 329-7500

01YY4byVmam ObjectTcchnolcgy,VER5ANT,VEKS&tT.ArgIuandTheOaiabaw-Foroljccnamrradcmk.fVrmt ObjcaTcchnolumCorpJmum .V1orhcrcompanynmm and!“BOSm rcginerrdmdcnmkvOKrhcindi,idud cumpmics,

Seflegating application
and domain

Tim Howard
T
HIS IS THESECONDmT1CLEINA SERIESOf three dedi-
cated to the topic of segregating application infor-
mation and domain information in VisualWorks

application development. The first article presented the
case of why it is essential that an application have a strict
segregation between its application information and its
domain information (THE SMA.LLTAUREPORT4[8]). This
second article discusses the implementation of domain
objects, the keepers of the domain information. The third
article will cover the application classes that provide the
user interface for the domain objects.

h the first article, we taJked about the need to bundle
domain information into cohesive objects relevant to the
problem space. A typical example would be an address
object that references four pieces of domain information—
the street, city, state, and zip. More than likely these four
pieces of information would be strings. The fist article
also used the example of an employee object that contains
all kinds of information relevant to an employee of a com-
pany, Such information probably includes various strings,
numbers, and Booleans. Because all employees have an
address, it is quite likely that an employee object also con-
tains an address object. Objects such as employee and
address are referred to as domain objects. A domain object
is a logical container of purely domain information, usual-
ly represents a logical entity in the problem domain space,
and is void of any dependents or model behavior. The
remainder of this article covers the general characteristics
of domain objects and introduces the class DomainObject—
an abstract superclass for all domain objects. Source code
for DomainObject,as well as examples, is available from the
archives at the University of Illinois (st.cs.uiuc.edu).

GENERALCHARA~ERISTICS
The DomtiObject class has been created to provide the
common characteristics of all domain objects. Its super-
class is Object but this could be changed for the benefit of
a particular persistent object store. All domain informa-
tion in an application should reside in objects that are a
kind of DomainObject.

Some may refer to a domain object as a domain model.
This is true to the extent that these objects are modeling
the domain problem space. For example, all the domain
objects making up an airline reservation system maybe
referred to as the “airline reservation domain model.”
However, the term “model,” as used in Smalltalk, strongly
implies an object that has dependents, and, as was point-
4

ed out in the first article, domain objects should not have
dependents. Therefore I prefer the term domain object to
the term domain model.

It is very important that domain objects avoid model-
type behavior at all cost, They should not deal in any way
with interface issues and they should have no depen-
dents. In general, domain objects should noh

● contain models such as ValueHoldersor SelefionInLists
● have dependents,
● deal with user interface issues
● contain non-domain information
● perform application type functions

Domain objects should know how to do certain things,
however. In general, they should know how to:

●

●

9

9

copy themselves completely and correctly
compare themselves to other domain objects of the
same type
provide testing and other services concerning their
domain information
facilitate other objects that choose to print or display
them

As a developer, you should tiimize the amount of direct
communication you have with a domain object. Such
communication should be restricted to the application
model, and ultimately the user, as much as possible.
Remember, the domain object exists as a way to bundle
certain domain information logically into a single, cohe-
sive object and to model the domain space. Sometimes,
however, it is necessary to directly manipulate the domti
object. In such cases, it is your responsibility as the devel-
oper to ensure that any visual updates are initiated be-
cause there is no dependency mechanism to do it for you!

AGGREGATIONAND ASSOCIATION
When designing domti object classes, it is very impor-
tant to keep track of which references indicate aggregation
and which references indicate association. Often times a
domain object references other domain objects because it
is made up of or composed OJthese other domain objects.
This concept of composition is referred to as an aggrega-
tion. h aggregation is a reference to an object that speci-
fies composition. An employee object, for example, could
be an aggregation of an address object, a work history
object, a name object, and perhaps other objects as well.
That is, an employee object is composed of these other
objects and each instance of Employeehas its own unique
instance of Address,WorkHisto~, etc.
The Smalltalk Report

—————...—..—.—......—..—...—...—.—....—...—.—...- .

A Smalltalk/Relational Database Interface

i“OP1.hk allows Smalltalk applications
to make full use of relational database
facilities in an efficient manner with
a minimal impact on your application.
TOPLink is designed to allow objects
to be mapped to relational databases
using mechanisms which are indepen-
dent of the Smalltalk model designed
by your team, allowing your appli-
cation to take advantage of the power
of Smalltalk and the performance and
robustness of relational databases.

Whd so great >aboutTCWLinkc
Lots of pmpk?sell reMon.ul &k&zsf?
interfk &- Smdkalk...
The difference between’ “’‘ ~~”<~ ‘ and many of the relational
database interfaces available is its ability to store and retrieve
objects, and not just row data. Many interfaces will allow
you to associate a class with a table, and then copy the data
from a row in that table to a new instance of that class.
Unfortunately, that is not sufficient.

To be useful, it should be possible to store and retrieve the rela-
tionships between objects as well as the actual dati that makes
up the object. You should be able to handle data types that the
database does not support (szzh us symbols); objects that
contain references to themselves (either directly or indirectly);
objects that have references to otheq complex objects; and
many other features that are fhlly supported by’ !‘iV’{I :~>L,

‘I(lilink provides a till, object-level
persistence mechanism, that supports
all of these features and more,
including the following:

objects can be stored across
mukiple tables;

mukiple objects can be stored
in a single table (i.e., eack row
inatable amamtain oneor
more objects);

full support of object identity
and caching;

multiple sessions and multiple
database systems;

support for inheritance;

● support for stored procedures; and

● full proxy support for complex object instantiation.
.- .,;.,;;>.<. ‘ i:: is extensible and provides you with the ability to-- --.--—-.—.

tune your application to m&imize tLe performance you
requimm

‘~I‘!;’ ‘L~.is cumently avaikzble fir lBM Snuzlltalk,
v&uIWrks and Visual Smalltulk.

; ? ~~‘!.,~.i supports many dutabase systems, including
Sybase, Orack, DB2/2, Informix, Paradox, dBase, Btrieve,
and others.

‘“-j “y- “)3 : ?
~ .;”??.s,,. .. .

the next genetiation rekztional
database interf~e

The ObjectPeopleInc.
509-885 Meadowlands Dr. 109 Upper Shirley Avenue

Ottawa, Ontario, K2C 3N2 Southampton, England S0155NL

Phone: (613) 225-8812 FAX: (613) 225-5943 Phone: 441703775566 FAX: 441703775525
E-mail: info@objectpeople, on.ca

I SEGREGATING APPLICATION& DOMAIN
There are times, however, when one domain object the standard lite
mainttis a reference to another domain object for the floats, dates, and
purpose of illustrating a relationship. In such cases, the other domain ob
perception is that the first domain object knows about the Such domain obj
second but does not contain it, per se, as part of its aggre- atomic objects th
gation. This is what is referred to as an association. An asso- to maintain the i
ciation is a reference to an object that does not indicate developer’s respon
composition. For example, an employee object may refer- atomic informatio
ence a companyobject as its employer and reference a sec- Mutable object
ond employeeobject as its supervisor. We would never con- object that can b
sider an employee to be composed of a company nor com- domain objects r
posed of other employees, yet it is nec-
essary to maintain these references for The one-to-manypurposes of indicating the supervisor
and employer relationships, When an relationship is a fiction,
employeeobject changes supervisors, it
merely breaks the reference to the howeve~ and you should
employeeobject that is currently associ- recognize it as such.ated as its supervisor and references a
new employeeobject instead,

Unfortunately there is no real distinction between an
aggregation reference and an association reference in
Smalltalk because they are implemented the same way—
that is, with instance variables-and it is only a matter of
perspective that draws the distinction.when one object ref-
erences another, it is not always apparent whether the fist
object is composed of tbe second object or just trying to
illustrate an association with the second object. Therefore,
it is up to the designer of the domain object, and the devel-
oper who uses it, to know when an instance variable is used
to indicate an aggregation relationship or an association
relationship, This distinction will have profound effects on
domain objects with respect to copying, persistent storage,
and initialization, as well as other matters.

DOMAIN OBJECTSTRUCTURE
For convenience, the objects referenced by a domain
object can be divided into four groups: atomic objects,
mutable objects, collections of atomic objects, and collec-
tions of mutable objects. Each of these presents its own
set of unique problems for managing the domain infor-
mation. The fust two groups express a one-to-one rela-
tionship between the domain object and the object it is
referencing. The last two groups express a one-to-many
relationship between the domain object and the elements
in a collection.

In most applications, there are certain types of objects
that should not be edited directly but instead should be
replaced with another object of a similar type. Such
objects are referred to as atomic objects, Atomic objects we
those perceived to be the smallest units of information
from which the problem space can be described, and they
should not be edited but, instead, replaced by another
atomic object, If you look at a domain object as a tree
sh-ucture, then the atomic objects are the leaf nodes of that
tree. Usually counted among the atomic object types are

ized-either in th
in an initialize me

address
“Returnthe

“address isN
We: [a
ifFalse: [a

A domain object
In this way dom
relationship with
most part, are loo
collection are usu
The collection’s ac
lection if necessary
an initialization
domain object tha
vendors instance
might look like th

vendors

“vendors isN
ifTrue: [vend
ifFalse: [ven

Be careful when
designer might sa
course objects. Th
however, and you
that a student obje
erences many cou
a one-to-many re
of indirection imp
rection is in no
account during im
6

ral data types such as strings, integers,
Booleans. Atomic objects can also be

jects that are referenced by association.
ects, as well as strings, are examples of
at can be edited but should not, in order
ntegrity of their atomic nature. It is the
sibility to ensure that a domain object’s

n is never edited, only replaced.
s are objects referenced by the domain
e edited directly. Such objects are other
eferenced as part of the original domain

object’s aggregation. As was illustrated
previously an employee object might
contain a work histoy object, address
object, and name object—each being
another type of domain object and
part of the employee object’s aggrega-
tion. It is necessary to e-nsure that %e
instance variables that reference other
domain objects are properly initial-

e accessor method, as is shown below, or
thod.

employee’s address.”

il
ddress:= Address new]
ddress]

can contain a collection of other objects,
ain objects can express a one-to-many
other objects. These collections, for the

sely typed. That is, dl the elements in the
ally of the same type or a similar type,
cessing method should initialize the col-

(or it should already have been done in
method). Suppose we have a Company
t maintains a collection of vendors in its

variable. The vendors accessing method
e following.

il
ors := OrderedCollection new]

dors]

expressing one-to-many relationships. A
y that one student object references many
is one-to-many relationship is a fiction,
should recognize it as such. The reality is
ct references a collection object that ref-
rse objects. The actual implementation of
lationship in Smalltalk introduces a level
osed by the collection object, This indi-
way trivial and should be taken into
plementation and, if possible, even dur-
The Smalltalk Report

w

Code
Quality

law

Inw
Documentation

H*

Quality

Maximize Reuse
Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused,

Reusable software requires readily available, high
quality documentation.

And the easiest way for Smalltalk developers to get
quality documentation is with Synopsis. Install it
and see immediate results!

Features of Synopsis
. Documents Classes Automatically

. Builds Class or Subsystem Encyclopedias

. Moves Documentation to Word Processors

. Packages Encyclopedias as Help Files

Products

mSynopsis for IBM Smalltalk $295 Team $395 -
Synopsis for Smalltalk/V and Team/V $295
Synopsis for ENVY/Developer for Smalltalk# $395
ing design. Failure to account for this indirection can
adversely impact the success of the implementation.

The elements in the collection can be either atomic or
mutable objects. In the event that the elements are all of an
atomic nature, there are really just two editing operations
that can occur-adding or removing an element. Suppose
the vendor objects in the vendors collection are meant to be
atomic, i.e., they are meant to be added to or removed from
the collection, but not edited directly. In such a case, the
vendor collection element-accessing methods might be:

addVendox aVendor

self vendors add: aVendor
and
removeVendor: aVendor

self vendors remove: aVendor ifAbsent: nil

Such collection element accessing and mutating methods
are very beneficial because they allow the domain object
to know when its collection is being modified.

In the event that the elements in the collection are
other mutable domain objects, then each element is
directly editable. Such a collection and its elements con-
stitute part of the domain object’s aggregation. With these
types of collections, elements can be added to or removed
from the collection as described previously or accessed
and edited directly as is shown below.
June 1995
vendor:= companyvendorWithNarne:‘ACME’.
vendor contact: ‘Franklin Black’

In the code above, a vendor object is accessed from a com-
pany object’s collection of vendor objects. Then this vendor
object is edited by changing its contact.

COPYING DOMAIN OBJECTS
It is very important that domain objects know how to copy
themselves such that the copy and the original do not share
any information they are not meant to share. There is noth-
ing more frustrating than editing what you suppose to be a
copy only to fid out that the original has changed as well!
Copying objects is a very rich topi~ however, within the
constraints of a single article I can only cover the highlights.

All objects know how to copy themselves because the
copy method is defined in Object. The copy method, by
default, only makes a shallow copy. A shallow copy is just a
new object header and a new set of handles to the same
objects referenced by the original object. For domti
objects, a shrdlow copy falls far short of the mark, If we
make a shallow copy of an employee object and edit the
copy’s address, we will also be editing the originrd employ-
ee’s address! Fortunately, the copy method also initiates a
post copy operation. A post copy includes any additional
copying that might need to be conducted beyond the shal-
low copy. It is implemented in the postCopymethod, Each
type of domain object that defines instance variables
should also implement its own postCopymethod to define
7

I SEGREGATING APPLICATION 8 DOMAIN

what its copies am to look like, A postCopymethod should
almost always begin with the statement super postCopy.
This ensures that the any instance variables defined by the
superclasses are also copied appropriately. fln implemen-
tation of postCopyshould result in a fill copy. A full copy
can be edited without adversely impacting the original
object (a full copy is not necessarily a deep copy).

In implementing a domain object’s postCopymethod,
we must be sensitive to the type of reference made by
each of the domain object’s instance variables. For copy-
ing domain objects, the following guidelines apply based
on the type of object referenced by each instance variable.

● Atomic objects need not be copied since they will be
replaced anyway.

_ Mutable objects should be copied.
● Collections of atomic objects should be copied, but

their elements need not be copied.
● Collections of mutable objects should be copied, and

their elements should be copied as well.
For the last guideke above, the DomainObjectclass provides
a private method called copyColletion: that takes an original
collection as an argument and returns a copy of that collec-
tion whose elements are copies of the original’s elements,

COMPARING AND TESTING
Domain objects need to know how to compare themselves
to other domah objects, Mostly this is for the benefit of
certain collection operations such as sorting, detecting,
and tests for uniqueness.

Each domain object should be able to determine if it is
equal to another domain object of the same type, The
exact determination of equality is strictly up to the design
requirements. For instance, in one design, an Employee
class might implement the method = as:

= anEmpbyee

“self fuUName= anEmployee fulllIame

and another design might use

= anEmpkyee

‘self ssn = aEmployee ssn

In the first case, the designers determined that two employ-
ees are the same if their names are the same. In the second
case, the designers feel that two employees are the same if
their social security numbers are a match.

Very often domain objects are presented in a sorted
collection. The default behavior for a SortedCollecdon is to
rank its elements using a less than or equals comparison,
This makes it convenient to implement a <= instance
method in each domain object class. Usually, a<= method
conducts its comparison on the same parameters as the=
method, but not always, For the above, employee objects
might be ranked alphabetically as:

<= anEmployee
8

‘self fullliame <= aEmployee fulllhrne
In the event that you do not want to rank a collection
according to <=, you can also pre-define sort blocks to
determine the ranking. Sort blocks allow the same type of
domain object to have different types of ranking over dif-
ferent SortedCollections. A sort block takes two arguments
representing two consecutive elements in the collection.
The sort block’s implementation describes the relation-
ship that must hold between the two consecutive ele-
ments. The default descending ranking looks like:

[:el :e2 I el <= e2].

An ascending sort block looks like:

[:el :e3 I el >= e2].

A sort block access method for ranking employee objects
by ssn would look like:

descedingSSN

‘[:el :e2 I el ssn <= e2 ssn].

and a sort block access method for ranking by name
would look like:

alphabeticalByName

“[:el :e2 I el fullName<= e2 fulllhme].

In addition to comparing itself to other domain objects, a
domain object can perform several useful tests and func-
tions on its domain information for client objects. Very
common among these tests is a test for type or class. For
example, the DomainObject class can implement isAddress
to always return false and the Address class can imple-
ment it to always return true. This makes the isAddress
message the test to ascertain if a domain object is an
Address or not. There are several other problem-specific
testing methods you may want to include in a domain
object class testing protocol.

PRINTING AND DISPLAYING
Domain objects should not be responsible for displaying
themselves on a display surface. However, they can make
it easier for other objects that wish to display them,
Domain objects should provide several mechanisms for
representing themselves as strings, text, and even visual
components, There are three categories of printing and
displaying methods: print methods, display methods, and
visual block methods.

The print methods consist of the printshing and the
printOn: methods. Every Smalltalk object lams how to
respond to the message printsb-ingby returning a sting that
describes itself. The default implementation provided in
Object is to just return the object’s type, such as ‘an
ApplicationModel’or ‘a PluggabkAdaptor’,The printShi.ngmes-
sage is used to describe an object in programming tools
such as the Inspector and the Debugger. For the purposes of
debugging and inspecting, it would be nice if the printsh-ing
The Smalltalk Report

Oddly enough, a company with possiblythe largest
and most deployable Smalltalk/00 workforce is

virtuallyunknown - Until Now.

● on-sitesmall- Pro@mmg“ &Menbning ● GUI Front-EndDesi@RW to LegacySystems
● OnSi CuSIDITlid %dkaU@3Traini.w ● Obj@M-Analysk &Design
● OODBMS Rdopmem Obje&ore, Gerrmme &Versant . SrnaUdlVObjectMappingto Sybase,Oracle & DB2

•!liill%
,~. Call (919) 859-7384●

Or e-mail: info~objectint .com
.

Ob]ect/ntek!!nce Corporation ● 6300-138 Creedrnoor Rd. Ste. 196 ● Ralelgh, NC 27612. [91 9)848-0045 Fax
message returned something a little more descriptive than
just the type. For this reason, it is advantageous to cus-
tomize the printSbing behavior for your object types.
However, the printsbing method is not responsible for
building the string. This is done in the ptitOn: astieam
method. It is this method you want to override for your
domain objects. For example, by default a Person object will
return ‘a Person’ as its print string. We might want to over-
ride the printOn aStieam method to return something like:

‘Person-Jones, William Robert’.

To do this, we would implement the printOn: aSheam
method for the Person class as:

printOn: aStream

aStream
nextPutAll: ‘Person—’
nextPutAlk self lastliame;
nextPutAIL’,’;
nextPutAIL seLffirstName;
space;
nextPutAlk seJf middleName

Most domain object classes will want to implement the
displaystring method and perhaps other display methods.
The display methods are similar to the printitring method
in that they return a string or text representing the receiv-
er. The display methods are used primarily by list and
June 1995
table components. ASI object can have severaJ different
display method+of which displaysbing is the default.1

The visual block methods return blocks called visual
blocks. A visual block is a block that describes how an
object should be represented graphically in a list, table, or
notebook tab and it takes two argument-the widget (a
SequenceView, for example) and the index of the element
in the collection. A visual block should evaluate to an
object that understands visual component protocol.

SUMMARY
This article covered domain objects, tbe containers of an
application’s domain information. The abstract superclass
of all domain objects is DomainObjeet Domain objects
should not reference application information nor perform
application type functions. Domain objects should howev-
er: know how to copy themselves correctly, compare them-
selves to other domain objects, facilitate objects which print
or display them, and provide comparing, testing, and other
services concerning their domain information. Source code
for DomainObject and examples, are available from the
archives at the University of Illinois (st.cs.uiuc.edu).

Reference
1. VISUALWORKSLIST COMPONENTS,June 1994.

Tim Howard is the President and Cofounder of FH Protocol, Inc. He
is interested in application development using 00 technologies in
general, and using the language of Smalltalk in particular. He can be
reached at thoward@fhprotocol.com or by phone at 214.931.5319.
9

Host plat$iormaccessing
Pamework
Multimedia: an example

Yoel Newman
T
ms mmcm P~sEms M mpw implementation of
the approach outlined in a previous article “Anobject-
onented approach to accessing external resources.”1

It covers the elements necessary for incorporating external
resources such as communications protocols, database
access, and multimedia services for VkmlWorks 2,0. The
DLL and C Connect (DLL.CC)product is a prerequisite for
this example,

EXAMPLE
h abstract multimedia interface with concrete support
for 0S/2 serves as a medium for illustrating the elements
of the framework. This is only an example, and is not nec-
essarily a full implementation of the multimedia interface
in 0S/2. The example is simple enough to describe in a
small article and robust enough to illustrate the approach
outhned in the previous article.

Specifically the abstract interface does not include sup-
port for asynchronous communications between the API
and VisualWorks. The interface ordy implements blocldng
API calls. This is an abstract interface limitation since
MMPM/2 includes a mechanism for asynchronous muhi-
media support.

The previous article proposed a layered approach for
accessing external resources (Fig. 1). At the lowest fiarne-
work level lies the Extemalhterface subclass, which only

I API I
Figure 1.The framework levels.
10
,>
makes function library calls as defined by the API. The next
level consists of a two-tiered API wrapper layer. There is an
abstract superclass that defines the behavior that each of
the subclasses must implement. There is also a set of con-
crete subclasses that use the low-level Extemallnterface
subclasses in their implementation to support the abstract
interface. Finally there are the high-level implementation
classes that encapsulate aspects of the behavior in the
function library. By programming to the abstract wrapper
classes’ public interface, the high-level layer can use the
concrete wrapper layer subclasses interchangeably

The rest of the article will discuss each layer in greater
detail.

API accesslayer
VisualWorks requires the ExternalInterface subclass,
MMPM2DLL, to support calhg the function library (Fig. 2).
Parsing the file “mcios2.h” creates the definitions needed
to access the multimedia features by making direct API
calls, The API calls needed for this example are
mciSendString and mciGetErrorString. The header file
“os2def.h” is also a requirement because “mcios2 .h”

makes use of the standard redefined 0S/2 types. For
example, the redefinition of unsigned long is ULONGand
the redefinition of unsigned character* is PSZ.

The following code is an example of subclassing the
ExtemaUnterface:

ExtemaUntefice subclass: #MMPM2DLL
includeFiles: ‘os2def.h mcios2.h’
includeDirectories: ‘d:\vw20ga\mmpm2‘
libraryFiles: ‘mdm.dll’
libraryDirectories: ‘e:\mmos2\d11’
generateMethods: “
beVirtual: false
optimizationkve~ #debug
insta.nceVariableNames: “
classVariableNames: “

ExternalInterface

II
API Access

MMPM2DLL Layer
WinMultimediaDLL

.Fiaure 2. API accessIaver,
The Smalltalk Report

Me you maximizingyour Smalitalkclass reuse? Now you can with.,.

Mlm from ARS

ppfled Raaaanlng Systems Cotporatton(ARS) is an Innovative developer of high
‘wlfty Smalltelk davdaprrwnt loda, application fmmarworka, lntall@ant softwars
ystema, and rakrtadaarvfcas Urafpravlda advarroadsofutbns to conrpiaxproblanrs,

Smalltalk Producte ● Consulting ● Educetlon _ Mentorlng

Phone/Fax: (91 9) 781-7997 ● E-mall: lnfo@arscorp.com

1

E
F

pooLDictionties: ‘MMPM2DLLDictionary’
category ‘ExtemaUnterface-OS/2’

The #debug mode should be the initial optimization level.
In #debug mode, function methods contain strict type-
checking wrapper code. This type-checking code helps in
the development and debugging of the interface class at
the expense of performance, In #full mode, a significant
decrease in function calls overhead occurs due to remov-
ing the type checking wrapper from the function meth-
ods,z~P.lg

The generateMethods: keyword message takes a String
as an argument. The Wing argument is a list of pattern-
match strings. These patterns determine which external
entries in the header files become compiled into
Smalltalk methods.z~ PP.17J38

For the multimedia example the string is: ‘mciSendShing
mciGetEmorStig’.

API wrapper layer
The two-tiered API wrapper layer contains an abstract
interface class (Fig. 3) and the concrete subclass imple-

I

zE!!zd
igure 3. API wrapper layer Abstract interface.

l-l
API Wrapper

Layer
June 1995
mentors (Fig. 4), The abstract superclass, Multimedia-
Interface, defines the behavior that each of the subclasses
must implement. The concrete subclass, MMPM21ntefice,
uses the low-level Extemallnterface subclass, MMPM2DLL,in
its implementation to support the abstract interface.

Both IBM and Microsoft use the Media Control
Interface (MCI) as the abstract interface for their function
library implementation. In this example, MCI will also
serve as the abstract interface. This is an appropriate
choice for the 0S/2 and Windows environment. If broader
platform support and code portability are requirements,
then MCI may not be a suitable choice for the abstract
interface. There is no guarantee that ill vendors will use
MCI as their abstract multimedia interface. Therefore, to
cover a broader platform base, using a more generic and
abstract interface whose implementation uses MCI is a
better choice.

To understand the multimedia example, it is important
to be familiar with the Media Control Interface. MCI pro-
vides services to applications for controlling devices in the
multimedia environment. These services are available

h 1

MultimediaInterface API Wrapper
MMPM21nter-face Layer
WinMultimediaInterface

Fiaure 4. API wramer Iaver Cancrete subclass.,,.
11

-.

I MULTIMEDIA: AN EXAMPLE

through an interpretive string interface (mciSendString).
The MCI string interface enables application control of
media devices using textual sting commands. The follow-
ing are example MCI string commands:

To open the file foo.wav = => open foo.wav
To give foo.wavthe alias wave: =.> open foo.wavalias

wave
To wait for the MCI command
to complete before returning
from the API call: = => open foo.wav

alias wave wait
To play the alias wave
from the beginning and
wait for the MCI command
to complete before returning
from the API talk =.> play wave from

Owait
To close alias wave and
release any allocated resources: ==> close wave

The following series would open a fde, play the fde, and
close the file:

open foo.wav alias wave wait
play wave from Owait
close wave

For more information about MCI, refer to either the 0S/2
or Windows multimedia documentation.

The example code provides multimedia support for
0S/2, Implementing support for the Windows environ-
ment requires a WmMultimediaInterface concrete sub-
class (Fig. 4). This subclass has the responsibility of imple-
menting the abstract interface for the Windows environ-
ment.

The concrete subclass, MMPM21nterface,has to handle
the following items in its implementation:

. Memory allocation and deallocation.
● Exception handling.
● Maintain and enforce the state of the API.

Memory allocation and de-allocation. The BlockClosure
message valueNowOrOnUnwindDo:is used to handle the API
call, The method evaluates the handler code whether an
exception occurs or not. The main reason for using the
valueNowOrOnUnwindDo:message is to free the memory
allocated on the external heap. The method for heePointer
is faster than the method for free. However, only non
garbage-collectible pointers should receive the message
freePointe~

I 1

MultimediaObject
WaveAudio
DigitalVideo ll:*:OI

Fiaure 5. Hiah-level implementation Iaver: Abstract interface.
12
n

miSendSting: aSting
“aString is a MCIcommand, The interface calls the
connection to execute aSting.”
I aRc aStringPb I
[“Begin unwind block”
aShingPtr:= aShing cop~oHeap.
aRc:= self

connetion
mciSendStig: aStringM

retumBuffe~ self buffer
retumBufferSize: self bufferSize
caUbackWindowHandle:self handle
userWindowHandleParamete~ self

handleParameter.
“Endunwind block”] valueNowOrOnUnwindDo:

[aStigF’h notllil ifl’rue: [aSttingPh freePointer]].
aRc = self succesfulAPIRET

ifFal-se:
[self rnciGetErrorString: aRc]

The concrete muhrnedia implementation for 0S/2 uses
an instance variable to store a CPointer buffer. The meth-
ods for mciSendStig: and mciGetErrorSting: require a
CPointerbuffer to perform the API call. Wnhout storing the
buffer in an instance variable, the environment would
incur a performance penalty because a CPointer is being
allocated and then deallocated for each API call.
Sometimes there is a fine line between optimization and
technique. Using an instance variable to store the buffer
makes sense from a design standpoint as well. Accessing
the buffer using its get and set selector is preferable to
passing it as a parameter in a keyword message.

ntciGeUrrorString: anErrorCode
“Translates anErrorCodeto a literal string
representation of the error.”
I aRc anErrorStig I
aRc:= self

cormetion
mciGetErrorStig: anEmorCode

retumBuffe~ self buffer
retumBufferSize: self bufferSize.

aRc = self succesful.APIRH
ifl’rue:

[anErrorString := self buffer
copyCStringFromHeap.

self class
muhimediaInterfaceErrorSignal

raiseWith: anErrorString]
iffalse:

[self class connetionExceptionSignal raise]

J I
Figure 6. High-level implementation layer Concrete subclass.
lhe Smalltalk Report

Exception handling. The concrete subclass implement-
ors have a responsibility to handle exceptions when they
occur, The implementation must also implement the
hierarchy of exception handling signals defined in the
abstract interface to resolve any API call failures.

The MultimediaInterface exception hanclhg hierarchy is:

multimediaInterfaceSignal
multiediaInterfaceEmorSignal

conneciionExceptionSignal
syntaxErrorSignal

The method mciGetErrorSbing: wiJl raise the multiedia-
InterfaceErrorSignal for an unsuccessful API call. The textu-
al representation for the error code becomes an exception
parameter when raising the exception, If the function
mciGetErrorSbing fads, the method will raise the exception
conneciionExceptionSignal.

Maintain and enforce the state of the APL There me
many approaches to handling state within the API wrap-
per layer implementation. llvo possible approaches are
1.

2.

Maintain the state of the API using an instance variable.
In this approach, the concrete implementor has the
responsibility for maintaining and enforcing the state.
The drawback to this approach is that it relies heavily
on case-style statements in its implementation.
Use the State pattern by implementing concrete sup-
port using m~tiple subclasses representing the differ-
ent states of the API. The State pattern will “allow an
object to alter its behavior when its internal state
changes. The object will appear to change its class.”3

For this example, concrete support for MMPM/2 would
include the classes:

MultimediaInterface
MMPM21nterface

MMPM2State
MMPM2Reset
MMPM21nitialized
MMPM2Loaded

The MultiediaInterface class declares an abstract multi-
media interface. The MMPM21nterfaceclass maintains a
state object (an instance of a subclass of MMPM2State)and
delegates all state-specific requests to this state object.
Subclasses of MMPM2State implement state-specific
behavior particulm to the specific state of the interface.a

For simplicity this example uses approach l—using an
instance variable to maintain and enforce state.

High-level implementation layer

The two-tiered high-level implementation layer defines a
class for handling the high-level abstract multimedia
behavior (Fig. 5) and concrete subclass implementors for
handling the specific multimedia behavior, The abstract
class, MullinediaObject, defines the abstract behavior for
all multimedia objects. The concrete subclasses
June 1995

DigitalVideo and WaveAudio (Fig. 6) provide the specific
behavior for digital video and wave audio.

The MultimediaObject subclasses hold an instance of a
MultimediaInterface subclass in the instance variable,
interface:

play anMCICommand
“playthe device, close the file on error.”
MultiediaInterface muhimediaInterfaceEmorSignal

handle:
[exception I
self interface state == #open

ifhue: [self interface close]]
do:

[self interface
conurtand: anMCICommand;
open;
play
close]

One approach to establishing the correct platform inter-
face is to do so at runtime, The MultiediaObject subclass-

es detect which platform is running and set their interface

14
to the appropriate instance of a MuMrnediaInterface sub-
class. Another approach to establishing the class of the
interface is to use a class initialization method that either
stores or sets the current platform. These types of tech-
niques provide basic elements of platform independence.

defaulthfultimediahtterface
self platform isNil

ifhue: [self initialize].
self plationn = = #os2

ifhue: [“MultimediaInterface 0s2]

This example uses lazy initialization for the platform if
not currently sefi

initialize
“Initialize the platform”
Platform := OSHandle currentOS

The current platform is available using

Externallnterface currentPlatform #(#os2 ‘0s2 0S/2
V2.30’)

OSHandlecurrentOS #os2
OSHandlecurrentF’latfonnID ‘0s2 0S/2 V2.30’

In the current implementation, the classes DigitrdVldeo and
WaveAudio do not contain any significant implementation
differences. The reason the implementations are in sepa-
rate subclasses is that DigitalVldeo supports the display of
video in a user defined window, Support for digital video
display in a user defined wirtdow requires minor modifica-
tions to the DigitalVideo implementation, The WaveAudio
implementation requires minor modification to support
use of non-blocking non-notification, API calls.

SUMMARY
SmaUtalk is a pure object-oriented environment, At first,
it may seem the use of function librruies is incompatible
with accepted Smalltalk idioms. However, using an object
oriented approach to accessing external resources creates
a higher level implementation that extends the develop-
ment environment interface. This article and the preced-
ing article (Fig, 1) have discussed and demonstrated an
object-oriented approach for incorporating function
libraries into Smalltalk.

References
1.

2.

3.

—

Newman, Y. and M. Parvin. An object-oriented approach to
accessing external resources, SMALLTALKREPORT4(7), 1995.
ParcPlace Systems, VISUALWOFIKSDLL ANDC CONNIZHUSER’S
GUIDE, 1994.
Gamma, E, et al. DESIGNPATTHS: ELEMENTSOF REUSABLE
OBIECT-OIU@NTEDSOFIWAFIE,Addison-Wesley Reading, MA, 1994.

Yoel Newman is a Senior Systems Consultant and can be reached
at yoel_newman@aol.cOm.
The Smalltalk Report

Alan KnightMath
L
AST ISSUEWE DISCUSSED some of the problems with
using floating point numbers, particularly in calcula-
tions involving money, Far too many people seem to

be unaware of the difficulties involved and very surprised
to find round-off errors in their calculations. In this install-
ment, we’re going to look at some of the alternatives,

FIXED POINT
A more suitable representation for money is fwed-point
numbers. These support a freed number of places after
the decimal point, and an unlimited number in front of it.
Several Smalhalk implementations already support fwed-
point, and in those that don’t it’s not difficult to imple-
ment them.

There are two obvious implementations for fixed-point
numbers. The first is as integer numbers of some smaller
unit. For example, to represent money, yDu might deter-
mine the smallest unit you need to be accurate to (e.g.,
1/100th of a cent) and do all your computations in this tit.

This representation works for addition and subtrac-
tion, and is quite reasonably fast, but it has problems
multiplying and dividing. It also has problems if you have
fued-point numbers with different degrees of precision,

One way to get around these limitations is to use frac-
tions, as ParcPlace does for their fied-point implementa-
tion. Their explanation, taken from the class comment, is
as follows:

There are two possible ways to express FixedPoint
numbers. One is as a scaled Integer, but the problem
here is that you can lose precision during intermedi-
ate calculations. For example, a property that seems
useful is that the calculation (1.000/7*7) should give
you back the number 1.000.

Fractions are accurate, because they can represent any
rational number, but are very slow compared to scaled
integers.

Coercion

Fixed-point in either of these implementations gives us
accuracy, but it’s a bit of work to ensure that all calcula-
tions are done in fued point. As X Alvarez points out:

FhredPoints are coerced.. ,against Floats or Doubles due
to the higher generality.. .So my FAPoint numbers
aren’t protected against being coerced to higher gener-

Alan Knight is a significant figure at The Object People, 509-885
Meadowlands Dr., Ottawa, Canada, K2C 3N2. He can be reached at
613.225.8812 or by email as knight@acm.org.
June 1995
alities...invalidating the “100.9f - 100.Of’ approach
because I can’t be sure that no float or double sneaks in.

This problem can also arise if you just want to use double
precision. Curt Welch (curtri?to.mobil,com) writes:

,. .we had to hunt down every floating constant in the
code and make it a double... And there’s no easy way
to be sure we found them all.

And don’t make the mistake of thinking that just
because the variables are set up correctly as doubles
that you are safe.. .For example:

a:= 10.Od.
a * 0.1 produces: l.0000000149012d (a loss of 6

places of accuracy).

The loss of accuracy occurs because the single-precision
constant is converted to a double, but it still has the accu-
racy of a single-precision number. The result has much less
accuracy than expected. This is a nasty problem, because
it’s hard to ensure that nobody has forgotten the “d (dou-
ble) or “f” (fixed-point) on the end of a numeric constant.

Changing the default

What we’d really like to do is to change the way the system
treats numbers. For ParcPlace, Douglas Johnson
(doug@h-wi.tom) writes:

In ParcPlaceVW2, change the method readSmaUtalk-
Floatifrorn on the class side of Number.. .There is a
line about 18 lines down that reads “coercionClass:.
Float.” change it to “coercionClass:= Double.”

The same technique can be used to make the default
numeric class Fixed. Similar techniques should work in
other dialects, although it’s possible that in some versions
the relevant source code isn’t available.

I don’t think I’d recommend this technique in general,
as it can still break down in some rather tricky ways.
When you make this change you are effectively changing
the compiler. This will change the default class of num-
bers from now on, but it doesn’t affect code that was com-
piled before the change was made, Any existing methods
(including system methods) that have float constants in
them will still use regular floats. You’ll probably need to
recompiJe any system methods with floats in them. Here’s
a piece of code for ParcPlace that does this automatically.

CompiledMethodallht.antes do: [:eachMethod I
] classfmdselector floatLiteral 1
classAndSelector:= eachMethod who.
15

Help Designer
for VisualWork~

Help Designer is not Just a programmer% tool - now any team
member can create high quality on-line help, This powerful
development tool Is rich in featuree, provides flexible set of tools,
and facilitates the reuse of components within your applications,
Here Is what you get

~ ~

● Help Editor ● Context-sensitive help
Help Viewer ● Inline and outline
* Image Editor # Tag Help
Text Editor ● Hypertext links and
● Help Manager references
* Control Panel ● Popup definitions
ill Help Custom Controls s Keyword eearch

● Hieto~ suppmt

FREE DEMO AVAILABLE I ● Macro definitions
s Access to font, paragraph,

TO ORDER CALL 212-7654982 and color attributes
Embedded objects

FAX REQUEST 212-765+920 # Run-time editing mode
● Platform independent help

filee

Gp GreenPoint, Inc.
77Wear55 Straet, Su/te 110
New York, NY 10019
EMail:75070.3353 @compuserwcom

/iuMIWOrks_h aImdcmnrkofPmPI- System

continued on page 19
floatLiteral:= eachMethod aU.iterals
detect: [:eachLiteral I

eachLiteral class == Float]
illione: [nil].

(classAndSelector nottiil and: [floatLiteral notNil])
if’he: [

classAndSelector fist compilerC1-ass
compileClass: cl-assAndSelectorfirst
selector: (classAndSelector at: 2)]].

Even that isn’t necessarily enough. ENVY stores compiled
code in its database, and any references to floats in that
compiled code need to be changed (and I think the current
version of ENVY introduces a bug in aULiterals),There might
also be global or class variables holding numeric constants
or even blocks compiled before the compiler change.

Furthermore, we’re only changing the default class.
Code that specifies a particular numeric type will still
compile to produce that type. For example, FloaO>pi might
return 3.14159265358979d, which will be a double no mat-
ter what the default numeric class.

Application-specific numbers

As we’ve seen, dealing with numbers can be very tricky.
Fortunately this is Smalltalk, and if none of the built-in
numeric types are satisfactory we can build our own and
integrate them into the system, These could be addition-
al numbers (e.g., complex) but they are more likely to be
application-specific quantities that have additional
16
behavior beyond simple arithmetic. In a sophisticated
application, we are likely to need a Moneyclass that knows
the appropriate behavior for money objects, This may
need to handle a number of complex issues that don’t
apply to standard numbers. These include conversion
between different currencies and existing rules for how
round-off should be handled. Tom Stambaugh (tins@
starnbaugh.tom) writes:

If you or your client is serious about currency and
money manipulation, you need to familiarize yourself
with existing literature and work in the field. This is
not as easy or as obvious as you might think, and has
(not surprisingly) been the subject of much work and
standardization efforts. If your client is an SEC regu-
lated institution, you will also probably have to show
that your work complies with relevant regulations.

Probably, the most straightforward way to accom-
plish all this is to get your hands on an external math
package with the needed support, and wire wrappers
into the Magnitude family. While its certainly possible
to “roll your own? and a number of the suggestions
here are quite reasonable, its also possible to code
youreelfandyour client into some %e~ deep ratholes.

Tony Law (tlawf?cix.compulink.co.uk) adds:

...there are some currencies where the base unit is
small value where local legislation requires integer
calculation (Belgian Franc and Lira for example)BT
here calculates phone bills using fractions of lp in
unit costs, calculates VAT on the lot, then rounds the
answer. This would not be allowed in Italy, I believe
(anyone from Belgium or Italy care to comment)?

A Moneyclass (or classes) is a good way of dealingwitb these
issues. It should not, of course, inherit directly from a con-
crete numeric type (like Integer or Float) but horn an abstract
class higher in the Magnitudehierm-chy Unfortunately money
objects still don’t make everything work automatically under
all circumstances. If I mix money and other numeric types, I
may still lose precision the same way as I would mixing floats
and doubles. For example:

(Money new amount: 1.0) + 0.1

will have to deal with the inherent inaccuracy in 0.1. If that
inaccuracy is less than the precision of the money object
(as it would be in this case) the float could simply be
rounded to the appropriate precision. If not, it either has
to raise an exception or introduce some inaccuracy into
the calculation. The real advantage of money objects is that
I have control over these decisions and can act in a man-
ner appropriate to the application.

There are lots of other extended numeric types that
might be useful in particular applications

s Numbers that automatically keep track of accumulat-
ed inaccuracy, providing ranges instead of exact
results (e.g. 1.53 f 0,24)
The Smalltalk Report

A
T SOME POINT h just about any large application,

there is a need to search over a collection to find
all the objects that match some criteria. With

Smalltalk, users have a computationally complete, exten-
sible language in which to express these queries. Every
collection class provides a means to iterate over its con-
tents, allowing any kind of complex behavior to be exe-
cuted on each element. For example, inside the argument
block of the do: method, an application developer can
send any desired message to each element in the collec-
tion, performing navigation through the network of
objects until some discrtiating message is sent to
determine whether an object should be included in the
result or not. Class Collection provides
a default implementation of three
convenience methods to hel~ in

than the receiver
tinction can be u

The detect: me
about the existen
the collection, Fo
any employees w
10% of their sala

aSetOfEmploy
emp 401kCo

This would retur
that matched the
be used for a loo

composing these query results: The Smalltalk users have
methods select:, reject:, and detech

a complete, extensibleare understood by all collections, and
subclasses may reimplement them to lunguage in which
provide a more optimized imple-
mentation. to express queries.

The semantics of select, rejeti, and
detecL are easily understood by look-
ing at thek default implementation in
class Collecbon. For example, the select method iterates
through the collection (using the do: method, which is
implemented by subclasses), and evaluates the argument
block for each element, If the block evaluates to true, the
element is placed in the result. One thing to notice is the
kind of object that is returned as the result of the query The
seleck and rejeck methods are defined to return an object
similar to the receiver. I say “similar” because the responsi-
bility of determining the appropriate kind of return value
actually belongs to the receiver. In SmalltalkDB, the
speciesForSelect method returns the kind of object that
should be constructed for select: and rejeck queries. In
VisualWorks and Visual Smallti the method that does
this is called “species”.The default implementation of this
method returns the same class as the receiver. Therefore, if
you send a bag the select message, you will get a bag as the
result. Subclasses may override the speaesForSelect method
when it is desirable to answer an object of a different class

Jay Almarode can be reached at almarode(%lc.com.

the size of the res
In SmalltalkDB

tions has been e
called a SelecLBlo
[and], restricts
to be conjoined
allows the use of
instance variable
syntactical desc
Smalltalk progra
after viewing a
example, one cou
whose address i
than their spouse

aSetOfEmploye
(emp.addre

emp.spouse.ag

The use of Select
main advantage
June 1995
. A later example will show how this dis-
seful for certain kinds of queries.
thod is often used when one wants to ask
ce of a condition among the objects in
r example, if you wanted to ask “k-e there
hose 401k contributions are greater than

ry?” you might execute the following

ees detect [:emp I
ntibution > (emp salary* 0.10)].

n the first employee object encountered
condition. The detect: method could also

kup operation when a user believes there
is only one object in the collection
that satisfies the search criteria.
However, this usa~e is ill-advised
because it would s~em to work cor-
rectly even if there was more than one
object that matched, possibly hiding
data inconsistency problems. In this
scenario, it is probably best to use a
hash dictionary or some other collec-
tion that pro~des optimized access
by key. Another alternative is to use
the select: message and explicitly test

ult,
, the mechanism for querying collec-
xtended with a different kind of block,
ck, A SelectBlock, which is delimited with
the kind of statements inside the block
predicates of a certain form. This form
a dot notation to specify a path of named
s to traverse. I will not get into a lengthy
ription of this path notation; most
mmers should find it straightfonvard
few examples. Using this notation, for
ld ask the query “Give me all employees

s at a given zip code and who are older
” by executing the following:

es seleck [:emp I
ss.zipcode = 97223)& (emp.age >
e)]

Blocks has a number of advantages. The
is that the execution of the SelectBlock is
17

I Database Solutibn ~
I~~.=s for SmalltalkfV I
I i?DBTtdk A class library for ODBC I

I Database Access
I

I
■ ODBC 2.0 support for 50 +databases
■ PARTS Workbench visual development components I

I
■ Native ODBC data type support
■ Online help, source included, no runthne fees I

I
■ progmmmmg examples and sample application

I
I “t!mtik?d%sti?~;l=;~~=~u~m 1
.

I Versions Available for Win16, Win32s,
Windows-NT, 0S/2 and V

v
Smalltalk

1“simplebut elegant ... w*& ian Gilt Securities

I Also available: je

I
Sockmlk-c“ $9 er Solution for Smallh21k/V

+*
ws SocketsClass Library

I Tel: 416-787-5290

■

I
I
I
I
I

— .

L ---- ---- -—- 1
handled by a subsystem that can utiize indexes and stan-
dard query transformation techniques to execute queries
faster. For large collections, iterating through the entire
contents may be prohibitively slow. In SmalltalkDB, sub-
classes of AbstractBag can have indexes created along any
number of paths to speed up queries. ArI index is used to
avoid brute force iteration by utilizing auxiliary structures
(B-trees and hash dictionaries) to perform fast searches.
Another advantage of using SelectBlocks is the concise-
ness of specifying queries using the dot notation. When
specifying a path traversal using the dot notation, the pro-
grammer does not have to worry about paths that cannot
be traversed (ie, a nil value is reached before the end of

aSetOtEmployea=Iecc[:01efildrm.*,aw= lB]

I Inlknown

Figure 1. Find all employees with some child eighteen years or older.
(mSclOfEmplOyrcsselect [:. lerhildmn,*.age. 1S])

[fictOtEirmlov= Wlcct I :. I echildrcn.*.am> lB I)

I unknown I

Figure 2. Find all employees with no child eighteen years or older.
10
the path). Objects that cannot be traversed the entire
length of the path are not considered when constructing
the query result. This can save writing some tedious code
that checks whether the value of an instance variable is nil
before proceeding along the path. If you write production
code that does not perform this kind of checking, you risk
getting a “Message not understood error when the appli-
cation is running,

With the latest release of GemStone, the dot notation
for SelectBlocks has been extended to allow paths that tra-
verse through instance variables whose value is a kind of
bag (including sets). This means that the value of an
instance variable along the path may be any kind of bag,
and the remainder of the path is traversed for all elements
contained in the bag. An instance variable whose value is
a bag is indicated by using an asterisk as one of the terms
in the path expression. For example, to pose the query
“Give me all employees with children who are 18 years or
older” one could execute the following:

a%t(lfhployees selech [:emp I emp.children.”.age >= 18).

In this example, aSetOffiployees contains instances of class
Employee with a named instance variable children whose
value is a set. Each set of children may contti instances of
Person (the superclass of Employee), which has a named
instance variable age whose value is an Integer, When eval-
uating the query the asterisk in the path expression indi-
cates that the next object along the path is a bag and the
path traversal is continued for all elements in the collection.

As mentioned earlier, the result of a seleck or reject
query is an object similar to the receiver, depending upon
the receiver’s implementation of speciesForSelect. This dis-
tinction can be useful if the query result is a bag, which
allows more than one occurrence of the same instance,
rather than a set, which only allows one occurrence. If the
query result is a kind of bag, then a particular object’s num-
ber of occurrences in the result is equal to the number of
times the object satisfies the query. In the previous exam-
ple, if the result of the query contains three occurrences of
the same employee, then that particular employee has

(aSetOf3n@yEs SCM. [:. IdIM-FJI,*,agc>= IB]) -

(aSelofEmtll.yecsMrct [:. I Alild,-cn,..age < lB])

Unkncwl

Figure 3. Find all employees with all children eighteen years or older.

&tOtEmPloyccsrejcd [:,1 ed)ildm.-,n&> IB]

Figure 4. Find all employees with no child eighteen years or older (using
reject).
The Smalltalk Report

-he 405 El CaminoReal,#106
Menlo Park CA 94025, U.S.A.

titore
Jm:1-415-854-2557

BBS: 1-415-854-5581
email: info@srnalltalk.com

CompuServe: 75046,3160

The Smalltalk Store carries over 75
SmaUtalk-related items: compilers, class
libraries, books, and development tools. Give
us a call or send us an email - we’ll put you
on the mailing list and send you a copy of
our combination newsletter-catalog. It’s

informative and entwtaining.
When you get the

chance, check out our new
dialect-neutral Smalltalk

v

(
II

bulletin board system at ‘y,,;]

415-854-5581, 8N1.

Send For Our Free Catalog!

June 1995
:OMP.LANG.SMALLTALKcontinuedfiom page 16
● Numbers with associated units of measurement

($27.50, 300,000 kIdS, 6.2 MWh)
. Numbers whose degree of precision can adapt to a

particular calculation. I might define a number as the
square root of two. If involved in a calculation, it could
attempt to determine the accuracy of the other num-
ber(s) involved and compute a finite-precision repre-
sentation of itself to as many digits as required.

imalltalk’s ability to define new numeric classes that can
nteract transparently with the basic numbers opens up
m enormous range of possibilities. I’ve only scratched the
;urface of this very interesting area.

‘Ioats for money
Ultimately what you need from numeric classes is deter-
mined by the particular needs of your application.
:eneral principles are often wrong when applied to
exceptional circumstances. A good example comes from
;urt Welch (curt@to.mobil.tom), who writes:

I’m working on a financial system in Smalkdk and all
our money values are floats and doubles. I wouldn’t
think of using some type of integer. The difference is
that our system is not an accounting system. It’s a risk
analysis system. We aren’t calculating account bal-
ances, we are estimating the value of a portfolio (and
how that value may change over time.)

‘he ordyreally consistent rule is that you need to be careful.
ssurning that numeric types in a computer work the same
ny as basic mathematics is dangerous in any language.
three children who are 18 years or older. In building appli-
cations, if the receiver is a kind of set, but you desire the
query result to be a kind of bag, then you can create a sub-
class of Set, override the speciesForSelect method to return a
bag and use the new subclass to hold your employees.

In SmalltdkJ3B, a query through a path that includes a
bag is defined such that an object satisfies the query cri-
teria if any subobject in the traversed bag satisfies the
query. In the previous query, an employee is contained in
the query result if he or she has any chdd 18 years or
older. Given these semantics, it is fairly easy to pose other
kinds of common queries. One way to characterize these
common queries is according to whether some, none, or
all of the subobjects in the traversed bag must satisfy the
selection criteria. The Venn diagrams in Figures 1–3 iUus-
trate tbe partitioning of objects for each kind of query.
The diagrams divide the universe of employees into four
groups: (1) those employees with no children who are 18
years or older, (2) those employees with some cl-dldren
younger than 18and some children lElyears or older, (3)
those employees with all children 18 years or older, and
(4) those employees for which we do not know because
the path cannot be traversed to the end.

Now let’s see how we can express each kind of query
using the semantics described above for queryhg through
a path cent.ahing a nested bag. Figure 1 illustrates the
query asking for all employees with some cbdd l13years or
older, indicated by the shaded region. In this case, the
semantics of querying through a path with an asterisk
gives the desired answer, Figure 2 illushates the query ask-
ing for all employees with no children that are 18 years or
older. This is achieved by taking all employees with any
child younger than 18 and using the difference operator to
subtract out all employees with any child 18 years or older.
FinaJly Figure 3 illuslmtes the query asking for all employ-
ees with all children 18 years or older. This is similar to the
second query except that we sta-t with all employees with
any child 18 years or older and subtract out those employ-
ees with any child younger than 18 years.

In the previous examples, it might seem that reject
could be used for the second and third queries. However,
for Select810cks, rejeck is defined as answering the differ-
ence between the receiver and the result of select: with the
same query block. In other words, aBag reject: aSelectBlock
is equivalent to aBag - (aBag seleck aSelectBlock). This
means that using reject will include objects that could not
be tiversed entirely along the query path, because those
objects are excluded when select: is used. Figure 4 dlus-
trates the difference when rejeck is used for the second
query above. If your application ensures that all objects
can be traversed along the entire path, then using reject: is
equivalent to the second query above.

Hopefully this column has enlightened you to the flex-
ibility and power of using Smalltalk as a query language.
My next column will discuss the use of indexes to speed
up queries and how indexes can be extended for user-
defined classes.
19

Cleancode:
Pipedreamor stateofmind?

Kent Beck
I
s m m IWGINAmON, or are these columns getting
harder to write? I think I know exactly what I want to
say, but I’ve started writing three different times with-

out getting anywhere. Maybe this third time will work.
Simply put, here’s what I want to say—the best pro-

gramming style for Smalltalk is to have lots of little meth-
ods, and lots of little objects.

That’s a pretty broad statement, broad enough that it
can’t possibly be true in all cases. What are the trade-offs,
the issues that affect programming style?

Why do I care? Why not just let a thousand different
styles blossom? Here’s what I’ve done over and over. I’ll be
asked by a client to help them figure out what’s going
wrong with apiece of code. The first thing I’ll do is reformat
the code in question so I can follow the flow of control.
Then I’ll start breaking big methods into smaller pieces,
asking the client to name the new methods I create.

At some point in this process the problem becomes
obvious. The proposed name doesn’t match what the
method is doing. A computation that should happen once
is happering twice. A computation that should be hap-
pening on only one side of a conditional happens on both,

I never get over feeling that a problem like this, where
the solution is merely to clean up, didn’t need to happen
in the first place. It’s not like what I do is profound-I
don’t have to go away and think hard. I mechanically
apply a few simple patterns. The answer appears. I’m not
there to give deep advice. I just provide permission,

Here are the important patterns for this kind of
debugging

8

9

●

Composed Method. Give each method one simple
job. Keep all the operations in the method at the same
level of abstraction. This naturally results in many
methods, most of them a few lines long,
Explaining Temporaty Variable. Communicate the
sense of a complex expression by pulling a subexpres -
sion out and assigning its value to a variable named
for the metig of the subexpression.
Indented Control Flow. For messages with two or
more parameters, put each keyword and its argument

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226,
408.338.4649 (voice), 408,338.3666 (fax), or by email at
70761,1216 (CompuServe).
20
●

on its own line, indented one tab. This makes multi-
keyword messages easy to spot and to read.
Rectangular Block. Start blocks with two or more
lines o; a fresh line, indented one tab. This makes the
shape of the control structures easy to scan.

Why don’t these clients keep their code clean themselves?
Why do I have to step in for them to do what is obviously
(to me) the right thing to do?

Here are some reasons I’ve heard
●

●

●

●

“I don’t have time.” Folks will spend half a day work-
ing on a bug, n-ying various fwes without success.
Often, 15 minutes of cleanup makes the problem
obvious and improves the code for the future at the
same time, Even if you don’t find the bug right away,
you’ll be in a much better position to fix it when you
do find it if the code is clean.
“I don’t know how.” It might take a while to get accus-
tomed to the patterns above, but a few hours invest-
ment will pay off for years. If you don’t agree with the
details of the patterns, if you indent code differently
that’s fine, but do it some way. Life is too short to con-
tinually make detailed coding decisions.
“It’s not important.” The cost of a piece of code over
its many-year life is dominated by how well it com-
municates to others, If it is easy to understand, it will
cost your company less while bringing the same ben-
efits.
“It’s the wrong thing to do.” Some people claim that
many small methods and many small objects are
harder to understand than fewer bigger objects and
methods. Software engineering is all about mapping
intention to implementation, moving from what to

how. Every method name, every class name is an
opportunity for you to communicate what is happen-
ing. Every method body and the code in every class is
the means by which you specify how it is to happen.
Big methods and big objects mean you are focused on
how, not what.

I finally realize why this has been so hard for me to write.
I’m frustrated. I keep explaining the principles of quality
code over and over, and I keep getting the same argu-
ments. I’m sure this reflects more on me than on anyone
else, but I’m still frustrated.

TRUE CONFESSIONS
Confession being good for the soul, and all moralizing
aside, do I really always keep my own code squeaky
The Smalltalk Report

clean? I like to think so, and for the most part it’s true, but
every so often reality comes up and smacks me in the face
(thanks, Reality, I needed that). Here’s a nasty incident
from my recent past that illustrates the value of clean
code and how I sometimes resist it.

Original code

I’ve been working on a new-from-scratch version of
HotDraw, the graphic editor framework I wrote with Ward
Cunningham at Tektronix 10 these long and many. Anyway,
here is the code that gets invoked when the mouse button
goes down and the editor is in selection mode.

SelectionToo~> buttondown: aPoint
self onginallointi aPoint,
self previousPoint: aPoint.
self figure: (self drawingPane figureAt: aPoint).
self figure isNil

ifhue: [self drawMarquee]
ifFaLse:

[(self selectedFigures includes: self figure)
ifTrue: [Aselfl,

self resetSelections.
self selectfigure]

There rue two cases-if the mouse is over a Figure when
the button goes down, the Figure should be selected.
Otherwise, this should start group selection. This method
is only eight lines long, it reads okay so what’s the prob-
lem? Well, it certainly violates the rule that a method
should do one job. I wasn’t satisfied, but it worked okay so
I left it alone.

Here’s the code for when the mouse moves while the
button is down:

SelecbonTool>> buttonlMove: aPoint
I delta I
self previousPoink aPoint.
self figure isNil

ifh-ue: [self moveMarquee]
ifFalse:

[delta:= aPoint - self previousPoint.
self selectedFigures do: [:each I

each moveBy delta]]

If we are selecting a group, track the mouse, If we are mov-
ing a Figure (or actually all the selected Figures), move
them. Now I begin to get glimmerings of what is wrong.
The conditional code “self figure isNil ...” is repeated. Let’s
look at the “button up” code,

SelefionTool>>buttonlUp: aPoint
self figure notttil ifhue: [Aselfj.
self drawMarquee.
self selectflll: self selectedFigures

Here the same conditional appears, but in a different guise.
I worked with this code for about a month never realizing
how hard it was to manipulate until I added Handles.
Handlesare like Figures because they live in the Drawing,but
June 1995
they are like Tools because they interpret input. When the
selected Figure is a Handle, the Tool doesn’t do anything
itself, it just passes the input along to the Handle.

I started to extend the code above to implement the
case where the mouse is over a Handle. It wasn’t going well
so I finally took a step back and asked myself “why?”

One simple change I could make is adding an
“isSelecbngGroup” method:

SelecbonTool>>isS eledngGroup
‘self figure isNil

I could replace the tests in the three input methods above
so they read better. Then I could add a “shouldDelegateInput”
method so I could tell if the Tool should delegate input

SelectionTool>>shouldDelegateInput
‘self figure acceptsInput

However, this doesn’t solve the deeper problem, which is
the repeated conditional code. All good programming
style codes down to this: say everything once and only
once. Having the same conditional code in three methods
violates this rule.

State Object
State Object is the pattern for eliminating repeated condi-
tional code and adding flexibility at the cost of additional
objects and messages. Here’s how I did it, First I created
SingleSelectionState and GroupSelectionState:

Class: SingleSelectionState
superclass: Object
instance variables: figure previousPoint

(lass: GroupSelectionState
superclass: Object
instance variables: originalPoint previousPoint

Then I gave them each their portion of each of the three
input methods. The instance variables figure and
previousPointmoved from the Toolto the SingleSelectionState.
The variables originalpointand previousPointmoved from the
Tool to the GroupSeleciionState. The messages Tool>>select
Figure and Tool>>drawMarqueehave to take an additional
parameter because the Toolno longer stores these variables
directly

The way I added these methods was to mechanically
copy each of the SelectionTool input methods to each state,
delete tbe parts that didn’t apply to that state, and then
change messages to “self’ into messages to “aTool”where
necessary

SingleSeletionState>>buttonlDowm aPoint for: aTool
self previousPoint: aPoint.
(aTool selectedFigures includes: self figure)

ifl’rue: [Aselfj.
aTool resetSelections.
aTool selectFigure: self figure
21

I SMALLTALK IDIOMS

GroupSelectionState>>buttonlDown: aPoint fon aTool
self originalpoink aPoint.
self previousPoink aPoint.
aTool drawMarquee:seLfmarqueeRectangle

SingleSelectionState>>buttonlMove: aPoint for aTool
I delta I
delta:= aPoint - self previousPoint.
seLfpreviousPoink aPoint.
aTool selectedFigures do: [:each I each moveBy delta]]

GroupSelectionState>>buttonlMove: aPoint for: aTool
aTool drawMarquee: self marqueeRectangle.
self previousPoint: apoint.
aTool drawMarquee: seLfmerqueeRectangle

SingleSelecdonState>>buttonlUp: aPoint fo~ aTool
“Donothhg”

GroupSelectionState>>buttonlUp: aPoint for: aTool
aTool drawMarquee: self marqueeRectangle.
aTool selectFiguresIntersecdng: self marqueeRectangle

Invoking the state
Now I had to set up the right state in the first place:

SelectionToo~>setSelectionState: aPoint
I figure I
figure:= self drawingPane figurwlk aPoint.
self state: (figure isNil

ifhue: [GroupSelefionState new]
ifFalse: [SingleSeletionState figure: figure])

SelectionTool>>buttonlDown: aPoint
self setSelectionState: apoint.
self state

buttondown: aPoint
for: self

The other two SelectionTool input methods delegate to the
current state:

SelefionTool>>buttonlMove: aPoint
self state

buttonlMove: aPoint
for: self

SeletionTool>>buttonlUp: aPoint
self state

buttonlUp: aPoint
foc self.

self clearState

Handles

Now adding support for Handles is easy. First I add a new
state that delegates to its Figure:
22
DelegationSeleclionState
superclass: Object
instance variables: figure previousPoint

I make sure I create one of these states when the mouse
goes down over a Handle:

SelectionTool>>setSelecdonState: aPoint
SelecdonTool>>setSelectionState: aPoint
I figure I
figure:= self drawingPanefigureAt: aPoint.
self state: (figure isNil

ifl’rue: [GroupSelectionState new]
iff alse:

[figure acceptsInput
ifhue:

[DelegationSeletionState figure: figure]
ifFalse: [SingleSelectionState figure: figure])

The input methods in the DelegationSeleclionState dele-
gate to the Figure:

DelegationSelectionState>>
buttondown: aPoint for: aTool

self previousPoint: aPoint.
self figure

buttondown: aPoint
foc aTool

DelegationSelectionState>>
buttonlMove: aPoint fo~ aTool

self figure
buttonlMoveBy self previousPoint - apoint
for: aTooL

self previousPoint: aPoint

DelegationSeleclionState>>buttonlUp: aPoint for: aTool
self figure

buttonlUp: aPoint
for aTool

CONCLUSION
What can I conclude from all this?
1.

2.

3.

Simple code is its own reward. When you’re stuck, try
cleaning up first. Chances are you’ll get out of your jam
more quicldy, and your code will be a better place to
live later.
Use simple rules, Cleaning up code is simple. Don’t try
to change the behavior while you are cleaning up. If
you spot a mistake, wait until a reasonable stopping
spot before fing it,
These new robes are a bit breezy. Don’t worry if every-
thing isn’t clean all the time. It isn’t for me, nor do I
think it should be. Progress implies chaos, at least for a
while. Make sure you clean up afterwards, though.
The Smalltalk Repofi

T
HERE IS ACCEPTABLE AND NECESSARYCOUPLING
between objects, and then there is unacceptable
and unnecessary coupling, The latter coupling

results in more brittle systems and correspondingly high-
er development and maintenance costs,

So, which is which? The Law of Demeter defines
acceptable coupling as messaging to:

● self or super
● your class
● an object you create
● an object passed to you as a parameter,

Similarly the law defines unacceptable coupling as mes-
saging to:

● globals
● objects returned from other messages.

Globals are fairly obvious, because they are available to
every object in the system—a change to a global can rip-
ple through the entire system! But why not send messages
to returned objects? Lets take a look at an example Law of
Demeter violation

Account
withdraw amhnount

“subtract aruhnount from my balance”

I newBalance I
(anAmount < self balance) “OK-a parameter

passed to me”
ifFalse: [“error handling for negative values”].

super loanPaymenti amlmount. “OK-my superclass”
newBalance:= self balance—antunount.
(newBal.ante >0.0) “OK-I created newBalance”

ifh-ue: [self owner transactions add: anAmount]
“NOTOK!I have assumed an implementation

for my owner’shansactions collection”
ifFalse: [self checld)verdraft.]. “OK-my service”

This code lists a method that has an example of bad cou-
pling the add method, Abetter way to design this would
be for the Account class’ owner object to be responsible

Mark Lorenz is Founder and President of Hatteras Software Inc., a
company specializing in O-O project management, design quali-
ty metrics, rapid modeling, mentoring, and joint development to
help other companies use object technology effectively. He wel-
comes questions and comments via email at mark@ hatteras,com
or voice mail at 919.319.3816.
June 1995
for maintaining l’ransaclions, with an addTransacdonFor:
method that would accept anAmount as a parameter. This
would keep design decisions more localized and there-
fore easier to maintain,

Lets take a look at an example model (Fig. 1) to see what
coupling results when we use sequences of message sends.

Figure 1 shows a piece of an object model for a retail
Store, with some containership relationships shown. Let’s
say we have the following client code for this model:

(self store customers) do: [:eachCustomer I
(eachCustomer salesl’ransactions)

do: [:eachTransaction I
(eachTransaction LineItems) do: [:eachLineItem I

(eachLineItem product = aProduct) ifh-ue: [
aColletion add: eachCustomer.].

1.

1. ‘-
. . .

This code marches across the object relationships, lever-
aging detailed design choices to access objects across the
business model. So what happens when the design
changes? The client code is at greater risk of breaking with
the coupling that has been designed into the system.

The following code example shows abetter design that
has less coupling

%

?aksmarmctian Lir.el,.

Figure 1. Example model relationships.
23

If you’re a software professional working with
O-O technology, OBJECT MAGAZINE is the “point
of entry” publication for you. Written for both

the newcomer and experienced software manager,
each issue provides a candid and detailed discussion
of the developmental management issues
surrounding object orientation, as well as “real
world” applications and case studies. Edited by
Marie Lenzi, cofounder of Syrinx Corp. and world-
wide industry lecturer,
OBJECT MAGAZINE is filled

with articles from the

industry leaders themselves

including: Adele Goldberg,

Grady Booth and many more.

Now in its 4th year
with over 40,000 readers
in 61 countries!

RETUttNCOUPONTO:
SIGS Publications, PO Box 5050, Brerrtwood, TN 37024-5050

Forfeeter service, cak l-6LKl-361-1279,fax 615-3704845,
e-meil: subscriptions@igs, corn, or W. httpJAruww.sigs.corn/

------- ------- ------- ------- ------- -------

D YES! Send me one yeer (9 issues) of OBJECT MAGA21NE
for $39. Plus, FREE issues of Cross-Platform Strategies end
ClienijServer Developec

Method of Pqmerrt
2 Check Enclosed(payable to S/GS Publications)

2 Charge MY B Visa Q Mastercard Q Amex

Card No. Exp, Data

Signature

Nama

Company

Addrass

City/State/Zip

Country/Postal Code

Phone/Fax

Important: Non- US. ordcn mustb prepaid.U.S.ordersinckde shipping. Canadian md

Mexican orders pl.xm add$25@ air.ervict-.AU others add s40. Check murt be paid inu.S.
dollarsdrawn on a LIS. bank, Pleare allow H weeksfor delivery offirsrissu..

■sJ,Gs Complete Mone~-Back Guarantee!

24
B“-

Figure 2. Layers of knowledge surrounding an object.

(self store purchasersOf aFroduct) do: [:each I
self mail.SaleFlyeflo: each.

1.
This design requires that the Store support a purchasersOfi
method. Other classes may be required to support addi-
tional public methods as well. The benefits for this addi-
tional cost in development time are:

● this code is far less likely to break if an implementa-
tion is changed

● greater levels of reuse and robustness are possible
for all clients of the business model objects

A design goal should be to keep your objects as self-man-
aging as possible, reducing coupling to other objects.
Figure 2 indicates a boundary that is one layer out from an
object, delimiting the relationships that can most safely be
leveraged to get work done. Certainly your systems will
not be this cleanly defined in all cases, but this is a goal to
keep in mind while you are developing your O-O-system.

SUMMARY
We have examined good and bad types of coupling in O-
0 systems, and the resulting effects of the different ways
we design our systems. In general, we can achieve higher
levels of reuse and robustness while simultaneously
reducing maintenance costs by restricting the coupling in
our systems.

Terminology

● coupling. Knowledge of another object’s model rela-
tionships and/or design choices, usually indicated by
messaging to that object.

s object model Objects and their relationships required
to represent your business domain and business rules.

References
1. Salddnen,M. The law of demeter and C++, SIGS PLAN NOTICES

23(l2):3I3, 1988
2. Lorenz, M. RAPIDSOFTWAREDSVHDPMENT,SIGS Books, NewYork,

1995.
The Smalltalk Report

Managingproject
documents

Jan Steinman BarbaraYates
sMALLTALX IS GROWINGUP. It’s rapidly moving out of
the research lab environment into production envi-
ronments involving large teams, with the requisite

procedures, standards, conventions, and bureaucracy
Through years of introducing Smalltalk into organiza-
tions, we’ve noticed that cultural and procedural issues
have more impact on success than technical issues.

In this column, we’ll be bringing you tools and tech-
niques we’ve found useful in the broadest sense of “man-
aging objects.” If you are involved with Smalltalk (or hope
to be involved), and are a manager or technical leader (or
hope to be one!), we hope to be addressing many of your
project-related concerns.

THE DOCUMENTATION PROBLEM
Success at last! It’s been tough-you managed to put a
good team together, train them, fight the “why aren’t you
using C++?” kinds of battles, and still get your project
done in record time. It has amazingly few problems for a
new project, and the alpha users love it, so you take it to
your department head, who schedules a meeting for final
release approval,

Waiting at the release meeting is an old political enemy,
who at first opporhmity says, “So, the project is docu-
mented in accordance with MegaCorp Standards and
Procedures Manual section 32, subsection C?”

“Well, not really you see, because it’s, well, new tech-
nology, and things have to be a bit different, and... ” The
meeting falls into disarray, you overhear someone whis-
per to your boss, “Right, if I didn’t have to follow the rules,
I could be a hero too!” and the consensus finally emerges
that it wasn’t a fair race. Release is delayed; you are sent
back in disgrace to “make things right.”

Despite this setback, you eventually deploy, and senior
management is impressed enough to try again. “This
time, by the book,” you mutter as you start your second
Smalltalk project.

As the weeks go by you notice that things wen’t as

Jan Steinman and Barbara Yates are cofounders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987, Between them, they have over 20
years Smalltalk experience.They can be reached at barbara.byte-
smiths@acm.org or jan.bytesmiths@ acm.org.
June 1995
smooth as before. Half the team isn’t documenting to stan-
dards, and the other half are whining about having to get
out of Smalltalk to run WordBlaster 6.0, or they’re doing
massive copy-and-paste documenting that is quickly out-
of-date and never revisited. This time, you meet the cor-
porate standards, but at a heavy toll in productivity.

Over 20 years ago, Donald Knuth had a similar prob-
lem. He noticed that software was not as “obvious” as the
original author thought it was when writing it, even to the
author himself after a few weeks! On the other hand,
switching back and forth between coding and document-
ing was tedious and disruptive. So he invented “literate
programming” in which the documentation is tightly
bound to the code.

About the same time, Ted Nelson was dreaming about
“hypertext,” interconnecting all the information in the
world in such a way that simply referring to something
would take you deeper into its meaning.

As with many things, Knuth and Nelson were ahead of
their time. The technology for literate programming was
necessarily at a concrete level and batch-oriented, and
hypertextual documents were more easily read than
written.

A bit later, Adele Goldberg and a group of Xerox
researchers were working on a programming system that,
among other things, would greatly simplify both abstract
expression and programming. The stage is set for hyper-
literate programming!

PROCESSOF CONTINUOUS DOCUMENTATION
In a perfect world, there would be no programs. A comput-
er user would describe a problem and a proposed solution
in natural, but precise language, and feed it to the comput-
er. This is a long way off-natural language is not precise
enough, and computer language is not natural enough!

Keeping as close to that ideal as possible, we can set
down some principles for documenting software “things”;
a description of a thing musti
1. be on the same conceptual level as that thing
2. constantly and accurately describe that thing
3. be accessible; by creators, their peers, reusers, review-

ers, end-user documenters, and the merely curious
25

I MANAGING OBJECTS

4. be measurable, both quantitatively and especially

qualitatively.

Principle l—Conceptual integrity

Driven largely by the limited abstraction available in tradi-
tional languages, most organizations have a limited bevy of
documentation levels. These often follow the physical
organization of the code: a function specification describes
a single function, a module specification describes the
functions in a file or directo~, a system specification
describes what you get when you type “make” or the result
of some other build script.

Your documentation has conceptual integrity when it
describes a software component at the same conceptual
level as that component.

We specify Smalltalk software
components at many levels, and add
new ones as needed, Specifications
we’ve found necessary are at the
level of method, class, class exten-
sion, variable, nestable module, and
configuration. (We’ll explain each of
these shortly.)

In addition, we’ve added other
useful documentation components,
such as gating checklists, require-

Every meth

have a spec

Perio

In fact, period

capital at the

and grammar

ments maintenance and tracing, and meeting minutes.

Principle 2—Constant accuracy

In the old days, it was simple. You opened both your “.c”
fde and your doc fde in emacs or vi, and you worked on
them simultaneously, Unfortunately, this only really
works at a single conceptual level, thus violating Principle
1. Also, the popularity of WYSIWYG editors and special-
ized coding tools has weakened this binding, because
many developers lack the memory and processing
resources needed to have both their coding and docu-
menting environments running at the same time!

We’ve adopted a simple strategy of which IQmth would
probably approve: the documentation for a thing resides
with the thing it describes. This has always been the case
for methods, but is present in varying degrees for other
components, depending on Smalltalk dialect and addi-
tional tools used.

At a more subtle level, we never “comment” our code, we
“specify” it. A comment sounds optional, whale even “cow-
boy coders” can appreciate the need for specifications—
especially when they need them from someone else!

Principle 3—Accessibility

Much of the move to WYSIWYG tools for documentation
has been driven by accessibility. A nicely formatted bit of
paper can reach a much broader audience than can the
programmer-accessible file C:\PROJALPH\INPUTSYS-
\M0Do1334.DOC,for example!

Simply adopting the Principle 2 tactic of co-residence
for dots and software components vastly improves pro-
26
grammer accessibility, which makes continuous docu-
mentation practical, but this does little for the non-cod-
ing audience. Also needed is a way to “roll up” the con-
ceptual levels in a hyper-access way that Nelson would
fmd appealing. Although it should be discouraged, there
will also remain the need to print a serialized version of an
entire portion of the documentation tree.

Principle 4—Measurability

Traditional projects rarely measure project documenta-
tion, or they may only take gross physical line/file counts.
What is needed is a qualitative measure that is significant
in evaluating the overall project. In this sense, document
reviews are much more important than code reviews,

od must

ification.

d.

at the end,

beginning,

throughout.

and are aided by compliance with
the other three principles.
Simply having a project tollgate or
milestone associated with docu-
mentation quality is not enough,
however. To ensure compliance
with Principle 2, it must be mea-
sured continuously, This does not
mean daily, time-consuming review
meetings; it means developing a
team culture in which developers
continuously refer to each other’s

latest documentation, and work together to correct inac-
curacies on the spot.

Because of various documentation impediments
noted above, the first thing you try when you want to use
something in a traditional C project is often “grep the
source.” By having accurate, accessible documentation at
the appropriate level of abstraction, the new ethic must
be to first look at the documentation, and to immediately
fix things if it is not what you need.

COMPONENT DOCUMENTATION NEEDS
Not surprisingly different levels of absmaction have dif-
ferent documentation needs. Here’s how we handle the
different components.

Method specifications

Every method must have a specification. Period. In fact,
period at the end, capital at the beginning, and grammar
throughout-remember that any method specification
might get “rolled up” into some serialized document that
aVP will read! It only takes a moment-do the right thing.

As mentioned, we prefer the term “specification”
instead of “comment.” What does the method do? How are
its arguments used? What objects are the arguments
expected to be? What are the error conditions? What does
the method answer?

AS soon as you decide to create a method, capture in
writing what you intend the method to do. (Of course,
naming the method properly is vital, as Kent Beck has dis-
cussed in his column.) Developers often pay lip service to
this rule, and in practice may only comment their meth-
The Smalltalk Report

ods when some process checkpoint demands that all
methods have comments. It is much more difficult to

comment a method after the fact, sometimes weeks or
months after you wrote it. Or even worse, having to com-
ment a method someone else wrote!

Put yourself in tie shoes of a fellow team member who
must take over the enhancement or maintenance of your
code, or the member of a different team that is a client of
youI class. What should you tell the enhancer, client, or
maintainer about this method so they can do their job
well? (What should you write to keep clients from misus-
ing your code and reporting “false” bugs against it!)

Tools that automatically generate accessing methods
produce comments of little value, VisualWorks will gener-
ate instance variables and “getter” methods if you ask it to,

The getter method comment simply states that it was
auto-generated.

In general, “getter” and “setter” methods should specify
the variable being gotten or set. What

For each variable,
description is pro
This is a good pla
derived or can be
private, If the varia
where it is initiali
if this is state that
that out in the var

We developed
tion of variables i
specification. Thi
state from that of
integrity It also al
be merged when

Classextensions

Most Smalltalk c
between defining

a
lcind of object shofid go in here? IS it An orgami~tionlzet?dn
lazily initialized, and guaranteed to d
never be nil? How does changing it a gU~~e-~Or i~S CO&? and f
affect the containing object?

documentation.
o

We won’t go into accessor method w
philosophy except to say that they are
not always appropriate. If you use tools that auto-gener-
ate such methods, realize that the tool cannot specify
the meaning of those methods, and document them
accordingly.

Classspecifications
As soon as a developer decides to create a class, he or she
must write a justification for the class, Why does the class
exisu what does it do? Even during rapid prototyping, a
minimum specification for the class is in order—it is a
good work habit to have.

If you cannot yet describe the class at a high level, what
sort of behavior are you about to implement for the class?
The first specification you write for a class can be a rough
draft, but it has to be there.

Throughout your further development of the class, you
return to the class specification and add details, bring it
up to date, and polish it. By the end of the current devel-
opment cycle the spectilcation will be accurate and com-
plete. The spelling and grammar wiJl be correct. As class
owner, you should feel comfortable having your manager
read it. (Or having your manager’s manager read it!)

Class specifications are not written once and then for-
gotten, In each subsequent development cycle, the devel-
oper will review the specification and update it as
required. The only time the specification is finished is
when the class is no longer being changed,

Variables
Each class specification must have a section that docu-
ments all variables associated with the class: instance,
class, class instance, pool variables, and (ouch!) globals,

s
sary, and added
Developer. The cla
behavior added b
extension also has

Modules
Smalltalk source c
Team/V and ENV
nents that collect
components are
Applications or Su
ply call apps). The
than classes is ess
We’re more familia
sion applies equall

We developed “
that generate muc
documentation
Principle 1 by lett
system documenta
ing the state of in
access; and Princi
specifications and

The most impo
abstract that expla
tion explains its
specification parts
information is av
more appropriate

An important f
is that organization
have sections for d
June 1995
its acceptable objects are listed, and a
vided about how the variable is used.
ce to mention if the value is internally
set externally, and whether it is public or
ble must be non-nil, the time and place

zed should be spelled out. For example,
is provided at instance creation, point

iable’s comment.
a technique for separating documenta-
nstead of embedding them in the class
s separates the specification of a class’s
its behavior, thus increasing conceptual
lows superclass state documentation to
printing or browsing.

ode management systems distinguish
a class and adding behavior. Behavior is
dded in class extensions. Unfortu-sately, there is no built-in support for
ocumenting class extensions. If you

ind it necessary to add a suite of meth-
ds to an existing class to support your
ork, shouldn’t that need be explained

omewhere? We find this to be neces-
class extension support to ENVYI

ss extension comment summarizes the
y the extension. Each method in the
a complete specification,

ode management environments such as
Y/Developer contain software compo-
classes and/or class extensions. These

called Packages in Team/V, and
bApplications in ENVY (which we’ll sim-

ability to support code modules larger
ential in even moderate-sized projects!
r with ENVY, but the following discus-
y to Team/V!
smart” specification templates for apps

h of an app specification at the time the
is viewed or printed. This follows
ing the developer concentrate on sub-
tion; Principle 2 by dynamically show-
cluded code modules as of the time of
ple 3 by conditionally including class
other detailed documentation chunks.

rtant part of the app specification is an
ins its purpose and goals. The next sec-
component relationships. These two

are maintained at this levek all other
ailable via link, and maintained at a
place or automatically generated.
eature of the smart template approach
-specific data is readily handled. We
ocument control numbers, cost-center
27

I MANAGING OBJECTS

information, and other data specifically required by the
company, Paying attention to these things keep the “by-
the-book” crowd happy or at least tolerant!

Also in the app specification are links to automatically
generated information, which is only feasible in a tightly
integrated documentation system. For example, the app
version and time stamp, prerequisites, class hierarchy,
and system event method specifications are part of the
automatically linked information.

Other information that we have included (via link) in the
app specification are references, glossary declared external
interfaces, design decisions in the form of meeting min-
utes, requirements, use cases, test cases, and test results.

Linking information dynamically is more important in
app specifications than elsewhere. The developer doesn’t
want the clutter of multiple “boilerplate” items that are
not important to him, yet others may want to see every-
thing. Good examples of linked information that is neces-
sary but should be hidden most of the time, are specifica-
tions of contained subapps and contained classes.

Configurations
ENVY and Team/V have ways of collecting modules into
“load builds” of some kind. In ENVY they are called con-
figuration maps, or just maps. The specification for a
map provides an overview of what it will load, and any
other maps that should already be loaded. If for some
reason the map is not unloadable, or is compatible with
only certain versions of prerequisite maps, it needs to be
documented.

An overview of what is different in one version of a map
from the previous version is a good idea, but a better con-
vention is generating and editing release notes at the end
of each development cycle.

Release notes
ENVY and Team/V each have facilities for finding differ-
ences between two versions of components. We extended
ENVY’s facility to produce a smart template that captures
all the changes in a textual form, Of course, ENVY isn’t
smart enough to say why something changed, but having
a template to complete jogs the developer’s memory, and
guarantees coverage of all changes. We place these in the
ENVY “notes” field of each changed application.

Diagrams

Documents without drawings are as unacceptable as
mono-spaced, 80 column computer displays. Lucidly, the
publicly avrilable HotDraw drawing framework is avail-
able. What it lacks in sophistication, it more than makes up
for by being easily adapted to arbitrary object structures.

For example, the HotDraw diagraming inspector is
suitable “out of the box” for documenting complex
instance relationships that would be difficult to explain in
words, Using it as an example, you can easily craft your
own boxes-and-lines documenting aids.

We added a simple facility to ENVY for associating hot-
28
drawings with arbitrary software components, linking
those drawings with appropriate browsers, and embed-
ding those drawings in hard copy at the appropriate place.

Style guide

Just as a magazine needs a consistent (or at least non-
cordlicting) style, an organization needs a guide for its
code and documentation. Most Smalltalk projects start by
searching for published style guides, adopting them, and
modifying them as their needs evolve. We’ve found less
attention is given to the style guide after the early stages of
the project—typically new hires are given the style guide
to read. Hopefully the developers have internalized the
style guide, because they don’t use it as a reference. It
might come out of the bookcase again at code inspection
time, or when the company is being audited for certifica-
tion of the software development process.

Regardless of frequency of use, it is important to have
one, There should be some agreement on what must be
documented, and how it should be documented. Typically
style guides cover many areas in addition to documenta-
tion. Novice Smalltalkers should refer to the style guide,
but, hopefully they are also seeing good examples of docu-
mentation by fellow team members.

The need for the style guide is less important when there
are good templates and tool support for documentation.

Documentation measuring
Beyond conformance to style and periodic peer review the
quality of documentation is diflicuh to measure. We’ve
implemented existence checks, but they can’t tell the dif-
ference between random characters and a line from
Shakespeare. The best guarantor of quality is a group cd-
ture that encourages use.

Beyond mere existence checks, we’ve found a few tools
that helped ensure quality documentation. Meeting min-
utes are linked into documentation to link important
design decisions with the components impacted by those
decisions, and smart checklists enable a developer to
quickly assess their state of “doneness” for a given devel-
opment cycle. Finally, we added a document-centered
browser, so one could browse component specifications
without being distracted by code.

CONCLUSION
“Well, that all sounds great, but what do I do now?”
Everythng we’ve discussed here can be implemented
fairly easily depending on what is available for reuse in
your environment. Although your schedule and resources
may be such that “the cobbler’s children have no shoes,”
it is also fairly easy to justify spending time building tool
support for a continuous documentation regime. We’ve
found it not only increased the quality of project docu-
mentation, but also resulted in a savings of about 87. of
total project time, which means a team of seven people
can justi~ a half-time toolsmith. In the next issue, we’ll
present some concrete examples and source code.
me Smalltalk Report

Cooper&Peters’
edttforVisualSmalltalk3.0

Ron Charron
I
F ONE mm m ASK A PROGFIAMMEFIwhat kind of tool he

uses the most, he would possibly answer “Oh, I’d sayXYZ

Smalltalk version Xl?’ I guess we @st take editors for

granted, But take away a programmer’s favorite editor,

remove accelerator keys, or change it’s behavior, and you

had better stand well clear of the blast zone as he recog-

nizes that someone messed up his image. Because

Smalhalk development environments all come fully

equipped with syntax-checking editors, Smalltalk pro-

g
m
b
d
S
u
l

P

—

June 1995
rammers seldom (if ever) resort to an external editor. If
oving to Smalltalk from another language, you’ll proba-

ly complain for awhile, then lose your complaints as you
iscover a nicely integrated environment provided by your
malltalk. So, what if you are finally offered the option to
se abetter editor for your Smalltalk environment? If you’re

ike me, you’d probably say “why bother?” But, after some
10 years or so using Smalltalk, I do believe that Cooper&

eter’s edIt is the first commercially available add-on editor
Elle ~dil Smalltalk Debugger
:kvbnardlraterruot>>defaul!ktim

lnsped
Iw Teen#!/ with Too/s~h&bsstft#a” “a==

Jgwp ..- liwl

e ~dil Sm~lltalk Module Qlobal Melho~ ~ariable Qptlons Help

Adr#te@indingD
Go Q@

CPBaaeEdll .’

I ridCelLXForWsue ,,

id~ove%laeii

I
[variableNm clasnForDeclarat lon list [

verisbleNarre := self wordAcCursor.
clasrsForDeclaration :- salf editedClass.

I

~,rhis Xethoa describes the C6P forma tting policy. TO

aa.ke your mumpolicy, copy es

as you see fit, put m entr

CPFomsd t tiwIr.afo>>form ttin —
thaa select it in the Form

l~denl Selectkonc@
I policy I copy

Unindent Selection

Paate commeral Seleetion
policy := C

Undo (hr~mment Seleclton

Hedo Complete Glossary Word
m.-=.==. ~ S~ve Complete Symbol

Searshlnaa Comtdete Var Name

(policy for

edit for Visual Smalltalk 3.o
29

We’d like to hear from you...

if you’d like to play a significant role in a large objectai-
ented development project to deploy business information
systems throughout an enterprise. OOCL’S IRIS-2 project
takes a strong software architecture approach to building
an integrated information infrastructure. By creating an
extensible architecture, we are better positioned to accom-
modate future changes in the business. VisualWorks/
Smalltalk is the development platform.

The IRIS-2 development team is based in Santa Clara,
CA. 00 CL, an industry leader in the containerized shipping
business with over 140 offices around the world and
2000 employees, offers reliable transportation services
to its customers via a global network of ocean and
intermodal routes.

ProJectManager

Reporting to IRI%2 senior management, you will manage
a group of Software Developers and be responsible for
iterative and incremental development and delivery. Your
5+ years of management experience must reflect strong
leadership and people skills, team building, working with
changing priorities, and a track record of managing prc
jects to on time, on budget delivery. Technical hands-on
experience with 00 and Smalltelk development is desirable.

Smalltalk Developers

We are looking for experienced VisualWorks/Smalltalk
developers with strong interest in domain modeling, user
interface design, and persistence and disUibution tech-
nologies. You will have the opportunity to work with a
highly skilled, highly motivated Smalltalk development
team in an environment which emphasizes technical excal-
Ience, teamwork and professional growth. If you are 00
fluent and eager to join the Ieagua of the very best in
Smalltalk development, we’d like to talk to you.

Productivity Tools and Release Engineer

We are building a team to provide the 00 tools and infr~
structure for software delivery. If you have experience in
configuration management, release engineering, and tools
and utilities development, you can play a role in helping us
build quality into our development process.

00CL offers competitive compensation packagea and the
technical and analytical challenges you expect in a state-of-the-
art environment. Apply by sending your resume to Lorl Motko via
e-mail, indicating the position of interest, at motkolo @oocl.tom,
or mail to 00CL, 2B60 San Tomas Expwy, Sante Clara, CA
95051, or fax to (40r3) 654-8196.

-

Dadicatad to Quality Sewica

SMA.LLTALK POSITIONS

DIGITALK is seeking experienced Smalltafk instructors and
consultants for our world-class Professional Services team.

At DIGITALK you will work with one of the world’s lead-
ing development teams, use state-of-the-art products and
assist companies on the forefront of adopting object tech-
nology in client-server applications.

Requirements for Senior Consultants me: solid experience
with Smalltalk (3-5 years) and/or PARTS Workbench
experience. 00ND experience and GUI design skills.

Maimframe database experience is a big plus. Requirements
for instructors are: previous training experience in a relat-
ed field (2-4 years), understanding of 00 concepts and
Smalltalk.

Positions are available in various sites throughout the U.S.
Compensation includes competitive salary, bonuses, equity
participation, 401(k) and family medical coverage, All posi-
tione require travel. DIGITALK is an equal opportunity
employer.

Pleme forward your resumeto:
Director of Enterprise %rvicca

Digitdlq Inc.
7565 S.W. Mohawk Drive

Tualat@ OR 97062
fax, (503) 691-2742

internetl holly@igitnlk.com

●QedSpace

Object Technology Professionals

ObjectSpace, Inc. is a cutting-edge leader in the
object-oriented arena with awesome technological capability
and extraordinarily talented people dcdicatcd to the creation

and deployment of advanced technologies.

Progressive growth has created immediate career opportunities
for Obicct Tcchnoloti~ who are highly technical and arc

committed to excellence.

We have requirements for Object Technologists who have
strong object-oriented backgrounds and two years of

experience in one or more of the following:

Srnalltalk DistributedSmalltalk
c++ l&ualWorks

Fusion WmaL4ge
Rumbaugh Booth

We offer competitive compensation,performance-basedand
travelbonusesanda completebenefitspackage.

For consideration,senda resume to:

ObjectSpace, Inc.
14881Quorum Drive, Suite 400

Drdlas,Texas 75240
1-800-OBJECT1

Fax: (214) 663-3959
jobs @objectspace,com

30 TheSmalltalk Report

Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS
This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad,

Excellent compensation and
immediate participation in the
Employee Stock Plan..-

(CHECK OUT OUR
‘M NEW WEB PAGE!)

http:llwww.rwi,cornt

BOX 270566 Houston TX 77277
(713) 660-8080;Fax (71S) 661-1156
(800) 256-9712: landrew@hwi.com

Smalltalk RothWell SmalItalk RothWell

P
rede~ning systems

SOllJTIO
HBO & Company (HBOC) Is a nationallyrecognlred powerhousein
Me development and support of highly advanced health care soft-
ware solutlons,A member of the NASDAtl 100, we’ve been ranked
by KlpllngersFinancialMagazine es one of the top 15 companies
poised for continued success In the year 2000 and beyond. If you
would liketo put your expertiseto work for a company that’sgrow-
ing in excess of 25% a year, considerthe followingopportunities

INFORMATION TECHNOLOGYFROFESSIONMS

Atlanla, GA ● Amharat, MA ● Mlnnaapolla, MN
Eugana, Ofl ● Salt Laka City, UT ● Orlando, FL

We have challenging opportunities for innovatlvs softwars pro-
fessionals to analyze, design, develop and implement our hl~hly
progressive health care information systems. Requires experi-
enw in one of the following:

SmallTalk ● C++ ● Vlaual Baalc
S91 Wlndowa. C/UNIX ● Sytsaaa ● MUMPS

Your expertise will be rewarded with an exceptional
A compensation and benefits package, For consider-

● ation, forward your resume to: Corporala
A A ~aCrUIW,LHP/STM5g5,HDO& company,

a~- 3;:#:’m:; ::;~;;!#a;%;;
~- llaa.phllllps@hboc.com- “ - :
‘~- No phone calls, please. EOE M/FIDW.
for Digitalk Smallta.llc And because Cooper & Peters were
the team that originally introduced such helpful tools as
WmdowBuilder, their editor was certainly worth giving a try.

WHAT IS IT?

Edit is a replacement for WsualSmaUtalk’s base editor. All
basic functionality is still there, but you will find many im-
provements. In addition to the options you would regularly
find in the base editor, you will 6nd “Searching” and “Smart
Editing” options off the editor’s pop-up menu, Many options
are also available through a configurable editor toolbar.

Syntax highlighting

Being in the Smalltalk training business, I am constantly
needing to highlight a SmalltaJk student’s mistakes and
help correct them. Because edIt’s syntax highlighting helps
better distinguish the various elements in the code, anyone
making his fust steps in Smalltalk would probably find this
feature useful, Constants, comments, and keywords are
highlighted through the use of colors, italics, and holding.
EdIt easily allows you to reconfigure highlighting to suit
your individual preferences.

Assisted variable declaration

When saving a method in a class browser, people using
June 1995
ParcPlace’s VisualWorks have long been used to having a
menu pop up when the method contains unknown refer-
ences to instance variables or globals. They are offered a
choice of declaring the unknown identifier as an instance
variable or a global, etc. EdIt finally brings this feature to
the Digitalk world. I must admit that I have often found
that feature annoying while coding in VisualWorks. I find
myself saying “yeah I know, I know, I’m going to declare
them (instance variables) all at once a bit later-Stop nag-
ging” But on some occasions, I must also admit that I’ve
found the feature useful In a way this feature can lead you
to get a little lazy by getting used to not declaring instance
variables as a formal coding step. Use what you want while
coding a method, and then when you save edit will figure
it out for you, and present you with variable declaration
options. You will be offered the choice to declare your vari-
ables as temporary, instance, global, class, class instance,
or, in some cases, to have edit setup a pool dictionary con-
taining a reference to a known global. If edIt can recognize
enough of your misspelled identifier, it will offer a replace-
ment suggestions list, just like a spell checker utility.

Variable and text completion

EdIt provides a user-maintainable glossary used for text
expansions. me in a few characters, invoke an expansion
31

I PRODUCT REVIEW

command, and edIt will expand the word to the closest
match in the glossay. You can also expand from instance
variable names and globals. Although by default you need
to pop up a menu to invoke the expand commands, you
would either want to assign a keystroke to invoke them, or
customize the toolbar to make this truly useful.

Searching facilities

Edit offers a bounty of searching options, some that can
be invoked very conveniently. For example, in a method
editor, position the text cursor on a method selector for
any message send and call up the “smart-editing menu”;
you can easily browse the implementors or the senders.
EdIt also offers “qualified senders and implementors
options that allow you to specify the scope of the search
(whole image, or some level within the inheritance hier-
archy for your class). Regular expression searching is sup-
ported. A scoped search and replace facility is also includ-
ed and can also go across modules if you’re using the
module manager.

Other nice features
EdIt provides a “bottomless” undo and a redo feature for
those days when you find yourself uttering “oops” a little
too often, Also, edIt’s key binding facility will delight peo-
ple who find that a mouse just gets in the way of getting
things done. Any editor function can be bound to key-
strokes. C & P have even given edIt the capability to bind
keystrokes to your own methods and save your key bind-
ings in key sets. Some of you maybe delighted to hear that
Epsilon and Brief key bindings are included with edit.

CONCLUSION
C & P have put some effort into making edIt extensible.
Source code is included, and the help facility is very good
(it’s nice to see that help screens have finally made their
way into the Smallta3k industry). If you’re like me, and like
snooping around under the hood, you will find a few hid-
den goodies in the supporting C & P class library There is
a change set manager lurking in there, but I didn’t try
adapting it for general use.

EdIt is available now for Visual Smalltalk 3.0 Win32,
and the 0S/2 version should be available in late June,
1995. The list price is $195 (Win 32), and a fully function-
al demo is available upon request (call 303.546.6828).

I’ve been using C & P’s edIt for a few months now, so
I’ve had a chance to let the “newness” aspect dissolve a
bit. EdIt is a tool that can grow on you. Use it for a while
and then try to take away its fean.ues, and you will find
yourself looking for them. But then, I had made that point
about editors at the beginning of the review, didn’t I?

Ron Charron is Director of Corporate Services at The Object People
Inc., Ottawa, ON, Canada. He spends most of his time “immersing”
corporate developers worldwide into the primordial Smalltalk soup.
He can be reached by email at ron@objectPeople.on.ca or, for longer
periods of time, through an Immersion Program,v:61 3.225.8812.
32
ProductAnnouncementsare not reviews.Theyare abstractedfrom pressreleases
provided by vendors,and no endorsement is implied.

Vendorsinterested in being includedin this feature shouldsendpressreleasesto
THE5MAUTALKRwom,PmductAnnouncementsDept.,885 MeadowlandsDrive#509,
Ottawa,ON I(2C3N2, Canada,613.225.8812 (v),613.225.5943 (f).

VISUALWORKS SUPPORTS POWER MACINTOSH
ParcPlace Systems Inc. announced the availability of its
VisualWorks client and server application development
tool for Apple’s RISC-based family of Power Macintosh
computers. VisualWorks for the Power Mac is a native
application optimized to take advantage of the comput-
er’s power. Applications written in VisualWorks are
instantly portable across all major client/server plat-
forms, including: Windows, Windows NT, 0S/2,
Macintosh, Power Macintosh, and major UNIX-based
systems. Through VisualWorks’ dynamic compilation,
which compiles source code to the computer’s native
instruction set when needed, developers need only
develop their code once. The finished application can be
deployed across all platforms without any recompiling or
reprogramming effort. In addition, VisualWorks’ cross-
platform portability ensures that capabilities usually
available on one system, such as a notebook or combo
box, can be extended to all supported platforms. This
allows developers to concentrate on building applica-
tions rather than learning different windowing systems.
ParcPlace Systems Inc., 408.720.7514.

DOCUMENTATION AND REUSE TOOL FOR
IBM SMALLTALK
Synopsis Software, a provider of object-oriented develop-
ment tools, released Synopsis for Smalltalk for IBM
SmaUtalk. The automatic documentation of classes is an
important factor in producing reusable components in
SmaUtalk. Synopsis is an automatic class documentation
tool for development teams using IBM Smalltalk.
Synopsis also allows developers to print their class docu-
mentation with popular word processors, eliminating the
time-consuming task of converting plain text from the
Smalltalk environment into word processor documents.

Synopsis produces documentation summaries of
individual classes; builds class encyclopedias, in which
many class summaries are gathered together in the form
of an interactive class reference manual; exports docu-
mentation summaries to popular word processors;
packages documentation as encyclopedia or Help fdes;
produces source code listings for classes; and supports
personalized documentation and coding conventions.
Synopsis is available for both the Team and Standard
versions of IBM SmaUtalk. Windows and 0S/2 platforms
are supported.
Synopsis Software, 919.847.2221
The Smalltalk Report

	By ArticleTitle
	Clean code: Pipe dream or state of mind?
	Controlling coupling
	Cooper & Peters' edit for Visual Smalltalk 3.0
	Host platform accessing framework
	Managing project documents
	Math
	Queries in Smalltalk
	Segregating application and domain

	By Author Name
	Almarode, Jay
	Beck, Kent
	Charron, Ron
	Howard, Tim
	Knight, Alan
	Lorenz, Mark
	Newman, Yoel
	Steinman, Jan
	Yates, Barbara

	By Topic
	comp.lang.smalltalk
	Getting Real
	Managing Objects
	Product Review
	Project Practicalities
	Smalltalk Idioms

