Sthalltalk

[== E ~ ca [==

Editors
John Pugh and Paul White
Carletan University & The Object Paopls

SIGS Puhlications Advisory Board
Tom Atwacd, Object Design
Frangaois Bancilhon, l]z Technologies
Grady Booch, Rational
Gearge Bosworth, Digitalk
Jesse Michael Chonoles, ACC of Martin Marietta
Adele Goldberg, ParcPlace Systems
Tom Love
Bertrand Mayer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjerne Stroustrup, ATGT Bell Labs
Dave Thomas, Object Technology International

Tre SmawTak RepoAt Editorial Board
Jim Anderson, Digitalk
Adale Goldberg, ParcPlace Systems
Reed Phillips
Mike Taylor, Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarade
Kent Beck, First Class Software
Juanita Ewing, Dipitalk
Greg Hendley, Knowledge Systems Corp.
Tim Howard, RothWsll International
Alan Knight, The Object People
William Kohl, RothWell International
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS PUBLICATIONS GROUP, INC.
Richard P. Friedman, President and CED
Hal Avery, Group Publisher

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Production Manager
Brian Sieber, Art Director
Seth J. Bookey, Praduction Editar
Margaret Conti, Advertising Production Coordinator
Dan Olawski, Editorial Production Assistant

Circulation
Bruce Shriver, Jr., Circulation Director
John R. Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst

Advertising/Marketing

Gary Portie, Advertising Manager, East Coast/Canada/Europe

Jeff Smith, Advertising Manager, Central US.

Michael W. Peck, Advertising Representative

Kristing Viksnins, Exhibit Sales Reprassntative
212.242.7447 (v), 212.242.7574 (f)

Diane Fuller & Associates, Sales Representative, West Coast
408.255.2991 (v), 408.255,2992 (f)

Sarah Hamilton, Directar of Promotions and Research

Wendy Dinbokowitz, Promotions Manager for Magazines

Caren Palner, Senior Promations Graphic Dasigner

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Seniar Accounting Manager
James Amenuvor, Business Manager
Michele Watkins, Assistanl to the President

WSIGS

PUBLICATIONS

Publishers of JourNAL oF OsJEcT-ORIENTED
ProcramMmiNg, OnjecT MacazINg, C++ REPORT,
Tue SMaLLTALK REPORT, THE X JouRNnaL, REPORT
oN OB)ecT AnALysis & Design, OBjeCTS IN
Europe, and OsjekT SPEKTRUM (GERMANY)

March-April 1995

Table of Contents

March-April 1995

Vol 4 No 6

Features

Building a Gopher from sockets and widgets 4
Patrick Mueller

With all the interest in the internet lately, its only natural for folks to want to write applications in
Smalltalk to access the vast wealth of information out there. Patrick provides some introductory
information on how to use the TCP/IP sockets to access a Gopher server from IBM Smalltalk.
He also describes how the IBM Smalltalk user interface is programmed through widgets.

VisualWorks dialog development 11
Tim Howard

Developing custom dialogs can often be quite frustrating even for the well seasoned
VisualWorks developer. |deally, it should be as easy and straightforward as that of mode-
less window development.

Cleaning up after yourself 14
Alec Sharp & Dave Farmer

Whenever you reference external resources, such as files, sockets, or UNIX processes, the
garbage collector will not take care of ¢losing or terminating these things.

Suggestions for a successful user interface 18
Amy S. Gause

The major decisions involved in creating a user interface for a network management sys-
tem are described. The system monitors a switched digital video network and is the
access to video services. It was rewritten using Smalltalk (it had all been primarily in C).

Storing objects into files in VisualAge 21
Wayne Beaton

Currently, VisualAge lacks the rich set of parts that will make it an overwhelming success.
With some third party involvement, and some ingenuity, we can solve this problem.

Columns

The best of comp.lang.smalltalk 24
Alan Knight

One of the goals of the object-oriented approach is not to have to
worry about the internal representations of objects. One aspect of this
is that clients should not have to care about initializing the objects they
use, and that newly created objects can be expected to be in a usable
state. There are a number of ways of accomplishing this.

Smalltalk Idioms What? What happened 27
Kent Beck to garbage collection?
Kent temporarily goes on to other topics this month.

Departments
Editors’ Corner 2
Recruitment 30

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a yaer, monthly except in Mar—Apr, July—Aug, and Nov—Dec. Published by SIGS Publications Inc., 71 Wesl
23rd St 3rd Floor, New York, NY 10010. © Copyvight 1395 by SIGS Publications. All righta reserved. Reproduction of this material by electronic tranamission, Xerox or
any ather method will be treated es o willful violation af the US Capyright Lew and is Flaly prohibited. Material may ba reproduced with express permission from the publishee
Second Class Postage Pending al NY, NY and additional Mailing offices. Canada Past Intesnational Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $79; Mexico and Canada $104, Foreign $119; Institutional /Library rates: demestic $119, Canada & Mexico $144,
Foreign $159. To submil articles, please send electranic files on disk to the Editors s 885 Meadowlands Drive #508, Dttawa, Omteria K2C JN2, Canada, or via Internet o
streport@objectpeaple.on.ca. Praferrad formats for figures are Mac or DOS EPS, TIF, or GIF formats. Abways send & paper copy of your manuscripd, including cameraready
copies of your figures (laser oulput is fine).

POSTMASTER: Send address changes and subscription orders to: The Smalhalk Repori, PO. Box 2027, Langhome, PA 19047. For service on cument subscriptions call
215.785.5936, 215.785.6073 (fax), POD976@psilink.com (amail). PRNTED IN THE UNITED STATES.

1

Editors’ Corner

ile attending the OOP ‘95 conference in

Munich, it was impossible not to notice that

the move towards Smalltalk and Smalltalk-

based visual programming environments that
we have experienced in North America is also beginning to
take place in Europe—and most notably in the German-
speaking countries. A “Smalltalk-Abend” (the German equiv-
alent of a birds-of-a-feather session) attracted more than 100
conference attendees. The session was in German, but thanks
to a friendly translator from Daimler-Benz, it was possible to
discern that many groups have significant Smalltalk projects
under way. A number of attendees raised the idea of a
European Smalltalk Solutions in the near future; now that
sounds like a nice idea. How about Paris in the spring?

Richard Helm of “Gamma, Helm, Johnson, and Vlissides™
fame gave a wonderful talk entitled “Using design patterns:
Elements of reusable architectures” at the conference. Patterns
has been one of the hottest OO topics in North America for
the last twelve months or so and it was “standing room” only
in Europe too. As Smalltalk educators, we are very much
attracted to the notion of patterns. In our work, we find it a
real challenge to transfer the knowledge and experience we
have acquired from many years of programming in Smalltalk
to new developers climbing the Smalltalk mountain. Smalltalk
gurus have a sixth sense about which reusable design or micro-
architectures can be used to help solve a particular problem.
They have an arsenal of reusable patterns up their sleeves and
the experience to know when and how to apply them. Patterns
provide a way of codifying and communicating these recurring
design structures to others.

The work of Gamma ez a/. provides us with a vocabulary
for patterns to aid communication and the classification sys-
tem (e.g., creational, structural, behavioral,...). Their intro-
duction gives us a starting point for cataloging patterns in
pattern handbooks and identifying simnilarities between pat-
terns. Smalitalk people may find it a little strange at first to
think of Model-View-Controller in terms of Observer Pattern
or the use of Wrapper classes (as in VisualWorks) to embell-

ish visual components as an instance of the Decorator Pattern.

* Gamma, E, et al, DesiGN PATTERNS: ELEMENTS 0F ReusaLe ORJECT-ORIENTED SOFTWARE,
AddisonWesley, 1995.

1 Lalonde, W. and Pugh, J. Communicating ReusasLe Desiens viA DESIGN PATTERNS, JOURNAL OF
0BJecrORIENTED ProcRaMmMnG, Feb. 1995.

Because a common vocabulary is so vital,
let’s hope that the names selected for the
patterns by Gamma ef 4/.. are universally
accepted. Since most patterns are lan-
guage independent, a common vocabulary
will allow us to communicate with our
brethren who use C++, for example.

We would like to encourage you to
contribute patterns which you have
found useful in your work. Most of the
examples of patterns in the Smalltalk lic-
erature draw their examples from the
Smalltalk system itself.t While these are
interesting, it would be even more valu-
able to see examples of patterns from
domains such as banking, insurance,
power systems, or telecommunications.
Also, much of the discussion to date has dealt with “how to
build something” patterns. As Kent Beck stated at Digitalk’s
DevCon last year, the patterns that will really provide leverage
are the “how to use something” patterns.

There seems to be a fine line between what are called
idioms, patterns and frameworks. Idioms are more often than

PAUL WHITE

not language dependent and tend to be more concrete manifes-
tations of programming techniques in a particular language than
the more abstract higher level design structures we describe as
patterns. Similarly, a fine distinction can be made between
frameworks and design patterns in that frameworks are more
concrete than design patterns. Frameworks represent a reusable
architecture for some domain but, unlike the more abstract
design patterns, they provide a partial implementation of that
architecture. Design patterns, idioms, and frameworks all assist
us in transferring good design and programming practices to a
new generation of developers. We'd like to hear from you
whether you have an idiom, pattern or framework to describe!
Kent’s columns will give you plenty of inspiration.

Lest we all get carried away in the euphoria of patterns,
let’s take note that recognizing brand new patterns is a very
challenging activity and that, even when we are armed with a
catalog of patterns, recognizing situations when a pattern can
be applied is not always easy; particularly for beginners. We
already see designers and programmers trying to “force” pat-
terns onto problems for which they are not suitable.

Enjoy the issue.

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

An integrated object modeling tool provides model-driven
development for enterprise-wide applications

All object models are managed in a shared repository,
supporting team development and traceability

P

W

1@ 1T

L
.
I

k] Projecta || Domeina & é w i
ﬁ = Authorizalio ChangeFool |71}
H ‘ ¥ nToal b
1 I 4 - [T L [—— Rt
. Joom PersonBrowser .14 @
L] i —
h& ! Q ¥ é e Person Browsar | w3 B} fomeron
tock] oo | oew | e artactas Name o B]
mags Phato | aingla 4

292-92-9229
[Engineering

n 8°p. | ssn: alphaNumeric

Pogl, chartad

Produciion

P

Sl e kR
il

J=ifD =i

m] :
salaryHislory: integerDalaSeries: '
1

i

rop:

1234567801011

ik

Powerful drag and drop “enzymes” make application
development intuitive

Comjrrehensive set of widgets, including business
graphics, multimedia, and others make application

development easy and powerful

VERSANT Argos™ is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™

Winov Il Dec IOt [0 8ep s ;
[lJan

2

alphaNume
rOfPsrsons.

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

Conta NT, ext. A15

1_300-\’ER5A

oy via e-mail at
info@versant.com

1380 Willow Road ® Menlo Park, CA 94025 = (415) 329-7500

©1994 by Verane Object Technology. VERSANT, VERSANT Argos and The Database For Objects are trademarks of Versant Object Technology Corporation. All other company names and logos are registered rrademarks of the individual companies.

Building a Gopher from
sockets and widgets

Patrick Mueller

0, THIS ISN'T an article on cyberbiology. I'll be
Ndescribing how to build an Internet Gopher client
within IBM Smalltalk, using the Widgets user inter-
face programming model and the sockets communications pro-
tocol used on the Internet. Plan on learning a couple of things
after reading the article:
* what an Internet Gopher looks like
- how the Gopher protocol works
- an introduction to socket programming in IBM Smalltalk
* an introduction to user interface programming in IBM

Smalltalk.

WHAT IS GOPHER?
First let's talk about Gopher. If you don'’t already know what

Gopher is, the best way to learn is to play with a Gopher client.

Ask your local Internet guru for a test drive. In case you don't
have one locally available, here’s a description.

You start up a gopher client by running the gopher program
and specifying a gopher server to start at. The gopher client
will contact the server and ask for a list of iterns. Those itemns
will be displayed by the gopher client, with some kind of user
interface for you to select items (see Figure 1 for an example of
my Gopher client displaying 2 menu of items). Each item in
the list is typed: common types are:

- another gopher menu

- a text file

* a graphics file
When you select one of the items, the gopher client will send
a command to get the appropriate type of item from the server

File Edit
[Bubject: Westher conditions at {1 PM est on 4 Jan 95 for ralaigh-durham, nc.

'Weather conditions at 11 PM est on 4 Jan 95 (or valeigh-durham, nc.
Tewp(() tumidity{>4) wind{mph) presswrefin) weather

2 2% norhatld 3030 mosty cloudy
Bertie-chatham-curham-adgecowbe-franklim-gates-granville-halifax- :
Hertford-martin-nash-northampton-or ange-per son-vance-wake-warren-wilsor |
Including the cities of .. Chapel Wil Durham. Rodcy memt... :

Raleigh
1005 PM est Wed Jan 4 1995

“Tonight...Mosly clear and quita cold. Low 1510 20. Light
Northwesl wind.

Thursday...Mostly sunny bul cold. High in the mid 30s. Ligimnorh
'Wind.

Figure 1. Example Gopher text window.

4

and return it to the client. In the case of another gopher menu,
another menu will be displayed. In the case of a text file, a text
editor will be displayed with that text (see Figure 2 for an
example of my Gopher client displaying a text file). You get
the picture. It’s a very simple program to use. And there’s lots
of information available. Within IBM, for example, we have
more than 60 well-known gopher servers, servicing more than
8000 different menu items (sorry folks, this is primarily IBM-
only information).

THE GOPHER PROTOCOL

The protocol a gopher client and server use to exchange infor-
mation is one of the simplest used over the Internet. To get a
gopher item from a server, the client needs to know three
pieces of information: the name of the server (TCP/IP host-
name), the TCP/IP port for the server, and a selector string.
Most gopher servers use port 70. The main menu for a gopher
server uses an empty selector string. So, to get the main menu
from a gopher server, you really only need one piece of infor-
mation: the name of the gopher server.

The client creates a2 new TCP/IP socket and connects it to
the server at the port requested. It then writes the selector
string, followed by carriage return and linefeed to the socket.
At this point, it starts reading from the socket, terminating
when the socket is closed by the server. The data returned by
the server is interpreted depending on the type of the item.
After receiving the data, the client closes the socket.

The most common type of gopher item is a menu; that is
the type of item returned for the main gopher server, when
passed an empty selector string. The data returned for a menu

Figure 2. Sample Gopher menu.

The Smalltalk Report

Components for Smalltalk, WA, & PARTS

Tools from Objectshare help you get your applications finished
fast. WidgetKit™ components are available for WindowBuilder
Pro, VisualAge, and the PARTS Editor in Visual Smalltalk.

Charts & Graphs
1 | WidgetKit/Business Graphics
T g | provides a wide variety of charts
mwr § and graphs for your applications.
weme | The basic types include bar, pie, area,
line, tape, high-low-close, and more.

Most types have options such as 2-D and 3-D stacked, exploded,
absolute and %. Capabilities include printing, autoscaling, control
of fonts, colors, label, grids, and more.

= 20 New Controls
Subpanes has 20 must-have
controls. Columnar list box,
hierarchical list box, table pane,
| bitmap pane, 3-D frames, and a
selection of buttons, sliders, and gauges. The table pane and
columnar list box support collections of objects and let you
control headers, justification, fonts, colors, disabling of items,
and more. Date, time, and number editors provide validation and
easy editing.

Cupgar i Putzrn
Graphical Uasr Interarey
Crasuiom

| CUA’91 Controls

') | WidgetKit/Business/CUA’91 has the
| full suite of CUA’91 controls for your
_ applications. It includes notebook,

: slider, spin button, and value set.

;m’mr’r-ah it RS L LTE
n..a.-dm-. ZHPRIWA 4 §3.2200 b

21 w2 a 62142)
2,122.12
J5.454.34

Spreadsheets & More
WidgetKit/Business Profes-
sional provides spreadsheets,
multi-column list boxes, table
— editor, and graphic viewers for
BMP, PCX, and GIF. Also includes input validation (12 types),
flexible graphical/3-D buttons, file system widgets, spreadsheet
printer and more. Spreadsheet power is similar to Excel,
with formulas, drag and drop, load, save, and more. Virtual
spreadsheet too.

[T R
LZDECA8I2 &

= 12-8EP-1954 A sue9s33 3

» auz FY

o

15-FFB-1909

sag340n (3

Build Uls Fast
WindowBuilder™ Pro
is a pair of interactive
tools that lets you
build polished user
interfaces fast.
Versions for VisualAge
& IBM Smalltalk, for
Visual Smalltalk &
PARTS Programmers
that use VA or PARTS w111 generate UIs faster and have more
control in WBPro. Bypass the wires. Generate VA or PARTS
components. Smalltalk programmers will find that WBPro saves
them from building Uls in code.

Select controls from a palette. Place and edit them interactively.
Build composites of controls. Includes autosizing, automatic
alignment, control of fonts, menus, colors, tabbing order,

and more.

PRODUCT AVAILABILITY AND PRICES

Use Dbjectshare Visual Smallitalk and/or
product with... Visual Smalltalk Enterprise Smalltalk/V IBM Smalltalk VisualAge
and the following app. ' “
. building environment... WE Pro/V PARTS Editor | WB Pro/V WindowBuilder Pro VA Composition Editor
on this platform... WINDOWS 0S/2 | WINDOWS 0572 WIN 18 WINDOWS WINDOWS OS2 OS? | WINDOWS WINDOWS | o2 oS
STANDARD TEAM STANDARD TEAM | STANDARD TEAM | STANDARD TEAM
WindowBuilder Pro $495 $495 a a $295 $495 $695 $495 $695 b b b b
WidgetKit/Professional | $395 i $435 i $395 $495 $795 i i $495 §795 i i
(02'95) {02'95) {02'95) {02'95)
WidgetKit/ $495 $495 $495 $495 $495 $495 $795 $495 $795 $495 $795 $495 8795
Business Graphics {Q2'95) (02'95) | (02'95) (02'95)
Subpanes $235 $235 | 83295 $295 $235 i i i i i i i i
{02'95) (02°95)
WidgetKit/CUA'91 i $295 i
(02'95)

a Order WBPro/V for corresponding Visual Smalltalk platform.
b Order WBPro for corresponding IBM Smalltalk platform.
i Planned, inquire about availability and pricing.

SHARE
t

Objectshare Systems, Inc.
5 Town & Country Village
Suite 773

San Jose, CA 95128-2026
Fax 408-970-7282
CompuServe 76436,1063

w)
el
5
=
=2
@

No runtime fees are required for applications developed with these praducts. Free support for the first 90 days. All products include
complete documentation. WidgetKit products for Smalltalk/V Win32 are available, please inquire. Support subscription available.
© Objectshare Systems, Inc. 1935

Call to order today (408) 970-7280

Or call for free info. 9 AM to 5 PM PST, M-F. 30-day money-back guarantee

Building a Gopher

consists of a set of lines, separated by carriage return and line-
feed characters, up to the line that contains nothing but a peri-
od (“.”). For each line, the first character is a type indicator.
The rest of the string is tab delimited. The field after the type
indicator is a string to display in the user interface for the
itemn. The next field is the selector. The next is the server
name, and the last is the port. The selector, server name and
port are all used to get that item. The type indicator (first

The best way to learn is to play
with a Gopher client

character in the line) indicates what type of item this is (e.g.,
menu, text, graphics, etc).

For the text type, the data returned from the server is just
the text to display back to the user. For the graphics type, the
contents of a GIF or TIFF file might be returned.

CLASSES IMPLEMENTED

First a little class hierarchy creation. We're going to implement
a class called GopherItem, with a subclass for each of the gopher
data types. GopherItem is defined with instance variables:

display description of the item to display to the user
selector selector to send to the server

host name of the server

port port number for the server

data data returned by the server

Besides defining accessors for these variables Gopherltem contains:

- the logic to get the data for an item from a server

- the logic to parse a line of menu information returned from
the server

+ the logic to determine what type of data a particular line is

We'll create the following subclasses of GopherItem:

- GopherltemMenu to display menus

- GopherltemSearch to prompt for a search string, and display
a resulting menu (used to search phone books, for instance).

- GopherItemText to display textual information

- GopherltemUnknown to handle Gopher data our client does
not understand.

WEe'll create a class named Gopher to manage the user interface.

USING TCP/IP SOCKETS IN IBM SMALLTALK
Now we’ll actually implement the main processing of the
gopher client: connecting to a server to get the some data.

If you aren’t already familiar with sockets, here’s a brief
overview. Sockets are a lot like file handles. You open them,
read from them, write to them, and close them. Except,
instead of having a disk drive to read from or write to, there’s

6

getData
"Set data instance variable to the data returned for the gopher
menu item."

| abtHost abtPort abtSock dataChunk allData |
self data: ".

self port isNil ifTrue: [self port: 70].
self selector isNil ifTrue: [self selector: "].

abtHost := AbtTCPInetHost getHostByName: self host.
abtHost isCommunicationsError ifTrue: [*nil].

abtPort := AbtTCPPort usingHost: abtHost partNumber: self port.
abtPort isCommunicationsError ifTrue: [*nil].

abtSock := AbtSocket newStreamUsingPort: abtPort.
abtSock isCommunicationsError ifTrue: [*nil].

abtSock bufferLength: 8192.
(abtSock connect) isCommunicatiensError ifTrue: [*nil].

(abtSock sendData: (self selector, Cr asString, Lf asString))
isCommunicationsError ifTrue: [*nil].

allData :=".

[abtSock isConnected] whileTrue: [
dataChunk := abtSock receive.
dataChunk isCommunicationsError ifTrue: ["nil].
allData := allData, dataChunk contents asString
1-

abtSock disconnect.
self data: allData.

Example 1. Gopheritem>>getData method.

another program over the network who is reading what you
are writing, or writing what you are reading. And instead of
specifying a file name, you specify a host name and a port
number to connect to.

The logic to get the data for an item from the Gopher
server is implemented in the instance method
Gopherltem>>getData. Gopherltem supplies instance methods
to return the host, port and selector of the Gopher server we
want data from. Example 1 contains the Smalltalk code for
this method.

Data is first initialized by getData to an empty string, and
defaults its port and selector if not set. It then obtains an
instance of AbtTCPInetHost, AbtTCPPort, and AbtSocket from the
host and port information. AbtTCPInetHost is used to convert
host names into TCP/IP addresses. AbtPort is used to associate
a tcp/ip port with a TCP/IP address. AbtSocket is used to man-
age the actual socket, based on the AbtPort it was created with.

Up to this code, we have defined what we want to connect
the socket to, but haven’t actually connected it. Sending con-
nect to the socket will cause the socket to connect to the server.

The Smalltalk Report

The Exciting WORLD of Object-Oriented Technology

Technical Resource Solutions is a nationwide consulting firm catering to
information intensive clients. TRS provides Object Oriented analysis/design and
implementation, conversion, training, mentoring, project reviews, and support
using Smalltalk and other leading edge tools and methodologies.

Iting services that include:

Contract Staffing & Permanent Place
Software Development & Training
Business Process Re-Engineering

Joint Product Development & Marketing

\ 4 A 44

S has helped many successful Fortune 1000 companies to overcome their systems challe ges.
tants have developed expertise working on large development projects interfacing W1th
management, developers and users alike. TRS can manage all or part of a development project
.. offectively, efficiently & economically.

Our

" TRS has close partnerships with ParcPlace for VisualWorks and Texas Instruments for IEF. Our
strong partnerships allow us to work very closely with these vendors, providing continuous feedback to
improve their tools and product, the building blocks of your systems.

You can examine our services by calling 1-800-801-1TRS and one of our professional representatives
will help you plan new system solutions.

TECHNICAL RESOURCE SOLU _
3900 W. Alameda Ave., Suite 1700 * Burbank « CA 91505 h
818/972-1744 = Fax 818 / 972-1685 « email 74601.3324@compuserve.com - o

Automatic Documentation - Easier Than Ever

Synopsis produces high quality class documentation
automatically. With the combmation of Synopsis and
Smalltalk/V, you cut development time and eliminate the
lag between the production of code and the availability

With Synopsis for Smalltalk/V Development Teams

of documentation.

Synopsis for Smalltalk/V

« Documents Classes Automatically

« Provides Class Summaries and Source Code Listings
« Builds Class or Subsystem Encyclopedias

o Publishes Documentation on Word Processors

« Packages Documentation as Encyclopedia Files or
as Help Files for Distribution

« Supports Personalized Documentation and
Coding Conventions

way you write Smalltalk code!

Working with Synopsis is easy. Install Synopsis and see
immediate results --- without changing a thing about the

Development Time Savings

Coding

Documentation
Without
Synopsis

Start Finsh

With

Synopsis

Products: Synopsis for Smalltalk/V and Team/V
Synopsis for ENVY/Developer

Environments: Windows, Win32, 0S/2
Pricing: Smalltalk/V $295, ENVY $395
Site licenses available.

Synopsis Software
8912 Oxbridge Court, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

Building a Gopher

Once connected, we send the selector, followed by carriage
return and linefeed, then start reading from the server. As long
as the socket is connected, we receive the data from the socket
and append it to the end of a local variable. When the server
finally closes the socket, isConnected will return false. At this
point, we close our end and set the data to the entire string
returned from the server.

That’s the only TCP/IP related code in the entire gopher
client. Each gopher item subclass is responsible for interpreting
the data received by this code.

USING WIDGETS IN IBM SMALLTALK
Widgets are the programming interface used for user interface
programming in IBM Smalltalk The terminology comes from
Motif, upon which the user interface classes are based on. If
you're already familiar with Motif Widgets, I have real good
news for you—you're already familiar with IBM Smalltalk’s
Widgets. If not, don't worry—it’s a simple and elegant model.
Widgets are used to model all the visual building blocks

needed to create a user interface:

- the shell, to contain the frame, system menu, title bar, and
minimize/maximize buttons

- main windows to contain the menu bar

» forms and bulletin boards to contain other widgets

- core widgets like buttons, list boxes, text fields, etc.

Each type of widget is a subclass of CwWidget. There are two
8

primary ways to change the behavior of a widget: through
resources and through callbacks.

Resources control the basic state of a widget, such as color
and font information. Most widgets have a unique set of
resources associated with them, and resources are inherited down
the CwWidget class hierarchy. Resources are set and queried via
instance methods named after the resource. For instance, to
query the width of a widget, send it the message width.

Callbacks are a way to get feedback from the user when they
interact with the system. Like resources, each widget class
implements its own set of callbacks, which are inherited down
the CwWidget class hierarchy. As an example, to be notified
when the user presses a button, the following code may be used.

buttonWidget

addCallback: XmNactivateCallback

receiver: self

selector: #pressed:clientData:callData:

clientData: nil.
Each callback has a name, in this case XmNactivateCallback.
This particular callback is invoked when 2 button is pressed.
When the button is pressed, the message
pressed:clientData: callData: will be sent to the object that exe-
cuted this code (since the receiver was specified as self). The
callback message is passed the widget, the client data specified
when the callback was added (in this case, nil), and an object
containing information specific to this type of callback.

Ok, so those are the basics, let’s dive right into our gopher
client. Our user interface is going to be 2 new window, with a
read-only text field at the top giving a description of the cur-

The Smalitalk Report

listWidget items: (OrderedCollection with: a with: b with: c)

createWindow

"Create the gopher menu window"
| shell main form text list |

shell := CwTopLevelShell
createApplicationShell: 'gopherMenu’
argBlock: [:w| w
title: '‘Gopher Menu';
width: (CgScreen default width) // 2

form := shell
createForm: ‘form'
argBlock: nil.

form manageChild.

text := form
createLabel: ‘label’
argBlock: [:w | w
labelString: '*
1.
text manageChild.

list := form
createScrolledList: list'
argBlock: [:w | w
selectionPolicy: XmSINGLESELECT;
visibleItemCount: 20
1-
list manageChild.

text setValuesBlock: [:w | w
topAttachment: XmATTACHFORM; topOffset: 2;
leftAttachment: XmATTACHFORM; leftOffset: 2;
rightAttachment: XmATTACHFORM; rightOffset: 2

1.

list parent setValuesBlock: [-w | w
topAttachment: XmATTACHWIDGET; topWidget: text;
bottomAttachment: XmATTACHFORM; bottomOffset: 2;
leftAttachment: XmATTACHFORM;leftOffset: 2;
rightAttachment: XmATTACHFORM; rightOffset: 2
]-

list
addCallback: XmNdefaultActonCallback
receiver: self
selector: #selectItem:clientData:callData:
clientData: nil.

shell realizeWidget.
self listWidget: list.
self textWidget: text.

self shellWidget: shell.

self menuStack: OrderedCollection new.

Database Solution for Smalltalk/V

A class library for ODBC Database Access

ODBC 2.0 support for 50+ databases

00 to RDBMS mapping

Native data type support

Online help, source included, no runtime fees

Available for Win16, Win32s, Win-NT, 0S/2 and VST
*.. simple but elegant ..." - Australian Gilt Securities

Client Server Solution for Smalltalk/V
A class library for Windows Sockets Development

su-l
ODBTalk

u UDP and TCP Sockets
- B Synchronous and asynchronous support
%’ ® Ssample code for remote disk browser app
Socktalk B Online help, source included, no runtime fees
Available for Winl6, Win32s, Win-NT
Tel: 416-787-5290
. Fax: 4]16-797-9214
C;‘:"‘"L"’"g Services CompuServe: 73055,123
I e Salidl oty Internet: lucc@tor.hookup.net

Example 2. Gopher>>treateWindow method.

March-April 1995

rent gopher menu item we’re viewing and a list box containing
the items available on this gopher menu. Gopher text items
will be displayed in a separate window (a Workspace), which is
not described here.

The widgets we’ll need are:

- a shell, to contain the frame, systern menu, title bar, etc.
- a form, to contain the text field and list box

- a text field

- a list box

A form is a widget that knows how to resize the widgets con-
tained within it. We're using it to allow the user to resize the
window and have the widgets contained in the form automati-
cally resize themselves.

As mentioned before, we’ll be implementing a class called
Gopher to handle the user interface. Gopher is defined with
the following instance variables:

data to hold the data associated with the menu-
items (ie, the selector, server, and port of
the menu items)

listWidget to hold our list box widget

textWidget to hold our text field widget

shellWidget to hold our shell widget

menusStack to keep track of where we came from, so we
can backtrack through the gopher.

The instance method createWindow is used to create and setup
all the widgets. Example 2 contains the code for this method.

9

Building a Gopher

The first thing we do is create a shell window. This is done
with the message CwTopLevelShell
class>>createApplicationShell:argBlock:. The first parameter is
the name of the widget. All widgets have a name, which is
usually not externally visible to the user. The second parameter
is a block used to set resources when the widget is created. In
this case, we're going to set the title of the shell window, which
will be placed in the frame’s window bar, and the width of the
frame, making it half the size of the screen.

You might be wondering why we use the argBlock parameter
(and the setValuesBlock: later in the code) to set our resources.

The message to create the shell widget could also have been
written as:

shell := CwTopLevelShell

createApplicationShell: 'gopherMenu’

argBlock: nil.

shell

title; ‘Gopher Menu';

width: (CgScreen default width) // 2
In IBM Smalltalk, widget resources are “hot™—that is, when
changed, the user interface is immediately updated. In order to
allow the system to optimize changes to a widget, the argBlock
parameter and setValuesBlock: message are the recommended
ways to set resource values for 2 widget.

Next, we create the form. Most widgets are created using
widget creation convenience methods named
createXXXX:argBlock:, where XXXX is the type of widget to cre-
ate. These messages are sent to the widget that will contain the
widget to be created. In this case, we'll create a form with the
name form, and don’t need to set any resources.

After the widget is created, we send it the message
manageChild. This is a Motif-ism, which you don't need to be
too worried about, but will need to call it after creating your
widgets. Managing and mapping widgets allows some interest-
ing behaviors, such as causing widgets to instantly appear and
disappear as needed.

Contained within the form will be a label widget, created
with createlabel:argBlock:. We'll set the initial text of the label
to a blank string.

Also contained within the form is a list box, created with
createScrolledList:argBlock:. The selectionPolicy resource sets
the type of selection allowed - -single select, multiple select,
etc. The visibleItemCount resource sets the initial size of the list
box, eg. the list box will be sized to contain 20 items.

As mentioned previously, we're using a form so that the wid-
gets inside the form can be automatically resized. In order to
make this happen, we have to attach the widgets to the form.

For each of top, bottom, left and right, there are three basic
types of attachment:

* attach the widget to the edge of the form
- attach the widget to a position in the form (position based
on 100—setting to position 50 attaches the widget to the
middle of the form)
- attach the widget to another widget.
In our case, we attach the label widget to the top, left, and right
sides of the form. We don't need to attach the bottom, since a label

10

field has a default height (the height of the font the text is being
displayed in). The list box is attached to the bottom, left and right
sides of the form, and it’s top is attached to the label widget. Note
also an offset is specified for aesthetic reasons (to keep the user
interface from looking as if it’s all crammed together).

Now when the window is resized, the label and text win-
dows will have their widths changed automatically, since they
are attached to the sides. When the height changes, the label
won't change size but the list box will, since it’s attached to the
label widget at the top and the form on the bottom.

As a further example of attachments, if we change the label
widget to attach the bottom as in:

bottomAttachment: XmATTACHPOSITION;

bottomPosition: 25;
the label widget would take the top 25% of window and the list
box would have take the bottom 75%.

Note that for the listbox, we send setValuesBlock: to the
parent of list, not list itself. This is because a CwScrolledList
widget is a list box with a set of scrollbars around it. It’s the
widget (which we don't see) that contains the list box and
scrollbars that we need to attach to the form.

To be able to execute some code when an item in the list is
selected, we need to use a callback. In the previous code, the
XmNdefaultActionCallback is used on the list widget. This call-
back is invoked when an item is double-clicked in the listbox.
WEe specify sending the message selectItem:clientData:callData:
to self. The actual callback is implemented as follows:

selectItem: widget clientData: clientData callData: callData
"Callback sent when an item is selected. Open a viewer
for the appropriate GopherItem subclass for the item."

| pos menultem |

pos := callData itemPosition.

menultem := (self data) at: pos.

menultem view: self.
callData is an object containing information specific to this call-
back; in this case, sending it itemPosition answers the one based
offset of the item within the menu that was selected. The data
instance variable of Gopher contains an ordered collection of
Gopherltem instances returned from the server. We just get the
appropriate menu item and tell it to view itself.

Finally, we tell the shell to realize itself, which causes it to
be displayed, and set our instance variables.

The contents of the listbox are maintained with the items
resource. The data associated with this resource is an
OrderedCollection of Strings. For instance, to set the contents
of a list box to the items a, b, and ¢, you would use the code in

Example 2.

CONCLUSION

The source for the gopher client is available via anonymous ftp to
st.cs.uiuc.edu, and will work on OS/2 and Windows, with IBM
Smalltalk or VisualAge with the Communications Component. §

Patrick Mueller is a member of the IBM Smalltalk Distributed team at IBM
Cary. He co-authored the HP/IBM submission to OMG for Smalitalk
mappings to CORBA. Patrick can he reached by e-mail at
pmuelir@vnet.ibm.com,

The Smalltalk Report

VisualWorks dialog development

Tim Howard

EVELOPING CUSTOM DIALOGS can often be quite
frustrating even for the well seasoned VisualWorks
developer. Ideally, custom dialog development

should be as easy and straightforward as that of non-

modal window development. In this article I will cover some
issues concerning VisualWorks dialogs. First, the basic role of
dialogs in the application, as well as the current VisualWorks
approach to custom dialog development, will be examined. Then
I will discuss an abstract subclass of SimpleDialog, called
ExtendedSimpleDialog, which makes dialog development much
easier and straight forward. ExtendedSimpleDialog works in con-
Junction with ExtendedApplicationModel.!

Some related enhancements to ExtendedApplicationModel
are also discussed. Full source code and examples are available
from the archives at the University of Illinois (st.cs.uiuc.edu).

Here are some questions pertaining to dialog development
that confront most VisualWorks developers. See if any of these
are familiar to you.

* When should a dialog be used in an application?

* When is it necessary to build a custom dialog instead of
using a stock dialog?

* Should custom dialog classes be subclasses of
ApplicationModel or SimpleDialog?

* Why is it that an application model opened as a dialog can-
not access its components at runtime?

* Why is it that an application model opened as a dialog will
not execute preBuildWith: and postBuildWith: methods?

* Why is it that accept and cancel action methods are never
executed?

* What should a custom dialog return—an edited object, nil,
a boolean?

* Should a dialog ever edit an object directly, or just a copy of
the object?

* How can a dialog be opened at a specific location?

The answers to these questions are provided in the remainder
of this article.

PURPOSE OF DIALOGS

In VisualWorks, a dialog is a modal window. A modal window
receives all user input until such time as it is closed. As long as
a modal window is open, no other windows can receive user
input. Dialogs are used to perform certain functions in the
application and these functions can be placed into four broad
categories.

March-April 1995

1. Notify user of an error or display a simple message.

2. Acquire permission or simple information from user.

3. Allow user to instantiate and edit objects in the application.
4. Perform other application specific services.

The first two categories of functionality listed above are handled
quite nicely by the stock dialogs provided by the Dialog class.
The Dialog class is not meant to be instantiated, it is merely an
access point for the stock dialogs. For the meager price of a sin-
gle line of code, the stock dialogs provide the following func-
tionality: display a message, ask for a yes/no confirmation, solicit
simple information such as a string or a selection in a list, and
provide simple file access. The stock dialogs should be used
whenever possible however, many applications may have slightly
varying requirements for displaying messages and acquiring sim-
ple information. For such cases, the developer can enhance the
Dialog class, subclass the Dialog class, or build customn dialogs.
While custom dialogs are optional when performing such sim-
ple dialog functions, they are absolutely essential when it comes
to performing application specific services and editing objects.

VISUALWORKS CUSTOM DIALOG DEVELOPMENT

In VisualWorks, dialog behavior is implemented in the
SimpleDialog class, a subclass of ApplicationModel. SimpleDialog
differs from its superclass in the following ways.

* The initialize method instantiates three instance variables—
accept, cancel, and close—to be ValueHolders with the ini-
tial value of false.

* The initialize method populates the builder's bindings with three
aspects—#accept, #cancel, and #close, The associated value for
each of these aspects is the corresponding instance variable.

= The window opened by a SimpleDialog is necessarily modal.

* The window constantly polls its model, the SimpleDialog, by
sending it the value message that returns the value of the
close instance variable, which is initially false. As soon as
this value becomes true, the window closes.

» A SimpleDialog is often used to open the interface of anoth-
er application model.

* Changes in accept or cancel instance variables will trigger a
change message that sets the value of the close variable to
true—thus closing the window.

* The statement that opens a dialog suspends the current
thread of execution until the dialog is closed.

* The return value of a SimpleDialog is the value of the accept
variable—true or false.

11

VisualWorks dialog development

Currently, there are two approaches to custom dialog develop-
ment—and both have limitations. The first approach is to sub-
class SimpleDialog. One problem with this approach is that accept
and cancel action methods will not be executed by action buttons
bound to the #accept and #cancel aspects. This is because, the
initialize method binds the #accept and #cancel aspects to their
corresponding instance variables, eliminating the chance of bind-
ing them to corresponding action methods. Also, a subclass of
SimpleDialog cannot open a nonmodal version of its interface—
the window is necessarily modal. Furthermore, a subclass of
SimpleDialog will not inherit functionality from an abstract sub-
class of ApplicationModel such as ExtendedApplicationModel.
Therefore, you must duplicate such behavior in a complimentary
abstract subclass of SimpleDialog or do without.

The second approach to custom dialog development is to
subclass ApplicationModel and open it as a dialog. When such an
application model is opened as a dialog, it does not assume the
responsibility of building the interface with its builder but dele-
gates this to an instance of SimpleDialog. For this discussion, I
will refer to such an application model as the client application
model and the instance of SimpleDialog as the sutrogate applica-
tion model. This approach suffers from the dormant accept and
cancel methods that plagues the aforementioned SimpleDialog
subclass approach. Another drawback of the ApplicationModel
subclass approach is that the client application model’s pre~ and
postbuild methods are never executed. Instead, it is the pre- and
postbuild methods of surrogate application model that are exe-
cuted. While this can be remedied with SimpleDialog’s pre- and
postbuild blocks, such a solution is awkward and cumbersome.
By far the greatest drawback to subclassing ApplicaionModel for
custom dialogs is that the client application model cannot access
its own interface during runtime. The reason for this is that it is
the surrogate application model, and its builder, which builds the
interface (browse ApplicationModel>>openDialogInterface: and
SimpleDialog>>openFor:interface:). The client application
model’s builder instance variable references nil and therefore, the
client application model has no means of accessing the interface.

INTRODUCING ExtendedSimpleDialog

The class ExtendedSimpleDialog has been developed to work in
tandem with ExtendedApplicationModel to enhance
Visual[Works custom dialog development. Custom dialog classes
should be subclasses of ExtendedApplicationModel—do not
bother with either ApplicationModel or SimpleDialog. By design-
ing your dialogs as subclasses of ExtendedApplicationModel, you
gain the following functionality.

* Prebuild and postbuild methods are executed without hav-
ing to define pre- and postbuild blocks.

» All interface components can be accessed via the builder.

* Implementations for accept and cancel action methods can
be bound to corresponding action buttons.

* All functionality in ExtendedApplicationModel is available
for implementing the behavior of the dialog.

* The application model can open either a modal or non-
modal version of its interface.

2

‘When a subclass of ExtendedApplicationModel (or an instance of
such a class) is told to open its interface as a dialog, it instantiates
an ExtendedSimpleDialog. The ExtendedSimpleDialog class re-
implements the allButOpenFrom: aSpec method shown below:
allButOpenFrom: aSpec
"Make sure the client references the builder and send pre and post
build messages to the client.”

self builder source isNil

ifTrue: [builder source: self]

ifFalse: [builder source builder: builder].
preBuildBlock == nil

ifTrue: [self builder source preBuildWith: builder]

ifFalse: [preBuildBlock value: self value: builder].

builder add: aSpec window.
builder add: aSpec component.

self preOpen.

postBuildBlock == nil
ifTrue: [self builder source postBuildWith: builder]
ifFalse: [postBuildBlock value: self value: builder]

This implementation does two things. First it makes sure that
the client application model references the surrogate application
model’s builder. This gives the client application model access to
the interface during runtime. Second, this method sends the pre-
and postbuild messages to the client application model instead of
the surrogate application model (provided the pre- and postbuild
blocks are not defined). This implementation uses the knowledge
that the builder’s source is the client application model. The
ExtendedSimpleDialog class also redefines the #accept and #can-
cel aspects in its own initialize method shown below.
initialize
"Initialize such that the source can implement accept and cancel which are
triggered whenever that button is pressed but prior to the actual closing."

super initialze.
self builder

aspectAt: #accept

put: [self builder source accept. self accept value: true].
self builder

aspectAt: #cancel

put: [self builder source cancel. self cancel value: true]

This implementation allows the client application to define
accept and cancel action methods that can be bound to action
buttons. When the button is pressed, the action methad is
exccuted first, and then the corresponding ValueHolder is set to
true that results in the closing of the window.

DIALOGS AS OBJECT EDITORS

Many custom dialogs are used to instantiate or edit an object of
some type. I refer to such a dialog as an object editor. Object
editors allow the user to edit an object and accept the changes
or cancel to roll back to the previous state of the object. Since
the object editors are dialogs, the user must conclude the object
editing session one way or the other before moving on to any-
thing else. This gives you the developer a great deal of control
over the user’s navigation of the application. A good way to
approach object editing is the following three step process.

The Smalltalk Report

1. Copy the object to be edited.

2. Open a dialog object editor on the copy.

3. If the dialog returns nil, do nothing. If the dialog returns
the copy, then replace original with copy.

Step 3 has our dialog returning either nil or the edited object
and it was stated previously that dialogs always return a
boolean (the value of the accept instance variable). Is this a
contradiction? No, not really. It is the instance of our dialog
that returns the boolean but we send the interface opening
message to the class. As an example, lets consider a dialog that
edits a ColorValue object. A ColorValue object has three attrib-
utes—red, green, and blue— one for each of the RGB values
required to define a color. To edit a ColorValue object, we
might create a class called ColorValueEditor as a subclass of
ExtendedApplicationModel. On the class side, we would have
an interface opening method such as this one:

edit: aColorValue
"Open a dialog on aColorValue and return the edited

ColorValue or nil."

| colorValueEditor |

~(colorValueEditor := self new color: aColorValue) openAsDialog
ifTrue: [inst color]
ifFalse: [mndl]

In this implementation, we first create an instance of our
application model, colorValueEditor, and pass it the argument
aColorValue. Then we open the application model as a dia-
log—allowing the user to edit the ColorValue object—and wait
for its return value that is a boolean. If the dialog returns true,
then the method returns the edited ColorValue object. If the
dialog returns false, then the method returns nil. As an exam-
ple of how this might be used, suppose we would like to allow
a user to edit the background color of a window. To do this
using ColorValueEditor, we might do write like the following.

insideColor := aWindow insideColor.
reply := ColorValueEditor edit: insideColor copy.
reply notNil ifTrue: [aWindow insideColor: reply]

In the code above, we first access the window’s inside (or back-
ground) color that is a ColorValue object. Then we open a
ColorValueEditor on a copy of this object. Remember, an object
editor operates on a copy and not the orignal object. The reply
variable will be either nil in which case we do nothing, or the
edited ColorValue, in which case we replace the original.

INTERFACE OPENING PROTOCOL

ExtendedApplicationModel has been enhanced to provide more
flexibility, functionality, and consistency in the interface open-
ing protocol. This protocol is implemented on both the class
and instance side and accounts for the following variations.

* Opening a specific interface.

» A reference to a parent application model.

* Opening at specific locations—both absolute and relative.
* Opening as a modal dialog.

March-April 1995

* Guaranteeing that no more than one instance will ever be
opened.

To account for all the permutations of interface opening meth-
ods, the following message naming convention has been adopted.

open{Interface: aSymbol} {From: aParentApp}] {At: aLocation}

The bracketed elements are optional. The From: and At:
options sometimes appear as key words in which cases they are
not capitalized as follows:

openInterface: aSymbol at: aLocation

And sometimes they are just part of a key word and therefore
appear capitalized as is shown here:

openAt: aLocation

The argument aLocation is used to determine where on the
screen the window should be placed. If aLocation is a Point,
then it indicates the intended opening origin of the window. If
aLocation is a Rectangle, it specifies the origin and dimensions
of the window. If aLocation is a Symbol, then it can be one of
several values— #centerOfParent, #centered0fScreen, or
#centeredAroundCursor, for example. Each of these opens the
window in the manner described by the Symbol.

A dialog is opened with an opening method of the form:

openAsDialog (Interface: aSymbol} {From: aParentApp] {At: aLocation}.

The single instance behavior is a guarantee that only one
instance of an application model will ever be open at one time.
For example, if the application model class SessionParameters
is a subclass of ExtendedApplicationModel, then the following
interface opening message will guarantee that only one such
application will ever be open at any given time:

SessionParameters openSingleInstance

If the window is already open, then it is brought to the front
of all windows and made the current active window. If the
window is collapsed, then it is expanded. If the window is not
currently open, then a new one is created and opened. A single
instance is opened with an opening method of the form

opensSingleInstance (Interface: aSymbol} {From: aParentApp) { At:
alocation}.

Unlike the opening protocol discussed earlier, single instance
opening protocol only applies to the class and does not apply
to instances.

The following are just a few of the many permutations of
interface opening protocol provided by
ExtendedApplicationModel:

openAt: aLocation

openlInterface: aSymbol from: aParentApp
openSingleInstancelnterface: aSymbol

openAsDialogAt: aLocation

openAsDialogInterface: aSymbol

openAsDialogInterface: aSymbol from: aParentApp at: aLocation

continued an page 32

13

Cleaning up after yourself

Alec Sharp & Dave Farmer

HAT DO WE MEAN by cleaning up after your-
self? Whenever you reference external resources,
such as files, sockets, or UNIX processes, the
garbage collector will not take care of closing or ter-
minating these things. For example, you may have an object that
opens a file. You can certainly close the file yourself when you are
finished with it, but what happens if you simply stop referencing
the object that opened the file? The garbage collector will clean
up the object, but the operating system still has the file open.
Don't believe us? Do the following experiment:
count := 1.
[file := 'foobar' asFilename writeStream.
Transcript cr; show: count printString.
count := count + 1.
ObjectMemory garbageCollect] repeat.

When we ran this on 2 Windows system, we got an exception
after opening 15 files (the number depends on what other files
you have open and on the files setting in config.sys). If you are
on a UNIX system, you'll get a lot more files open. On a UNIX
system you can look at the files open by doing the UNIX com-
mand crash. Once in crash, type p then look for the 0e20
process (st80 if you are using VisualWorks 1.0) and find its
number. Then do u <number>, for example u 49. In Smalltalk
you can see the open files (as long as you opened them in a
standard way, such as sending the #writeStream message) by
doing an inspect of ExternalStream classPool at: #openStreams.
Then you can close individual files by inspecting the element of
this collection and doing a self close.

Okay, but what does all this really mean? Shouldn't you
dose files after using them? Well, here’s how our product
works, and why we need to clean up after ourselves.

The Smalltalk part of our product consists of several Smalltalk
processes, each one sitting in an infinite loop, waiting for input
from either a socket or a shared queue. We have at least one sock-
et permanently open. When we are developing and debugging,
we keep a debug file permanently open. On top of that, some of
the processes talk to robot tape libraries. Unfortunately, our device
drivers block waiting for a response from the libraries, so we can't
talk to them directly from Smalltalk because of performance
issues. Instead, some of our Smalltalk processes fork and exec
UNIX processes which they communicate with via pipes.

At this point, we have sockets and files permanently open, and
UNIX processes sitting out there waiting to talk via pipes. We also

* Note: This arficle is based on work we have done at StorageTek using VisualWorks 2.0
from ParcPlace Systems.

14

MyClass
CleanUp
key
executor openFiles
forkedProcesses
#key _
#executor #finalize
|
Figure 1.

have several Smalltalk processes waiting for things to do. As we are
busy developing and debugging the code, perhaps we get a notifier
window because something went wrong. After stepping through
some of the code, we are at a point where we can't continue, so we
terminate the operation. Alternatively, something might have got
stuck in a loop, so we press ctrl-C to get control back.

If we didn't have some way to clean up after ourselves, we
would now have stray UNIX processes, open files and sockets,
and stray Smalltalk processes. In fact, this is exactly what we
did have at first, to our frustration, so we had to come up with
a way to prevent it.

FIRST WAY

The first scheme we came up with was to have an

OrderedCollection called ThingsToCleanUp in our Pool Dictionary.

Whenever we opened a file, created a process, etc., we recorded

this event in ThingsToCleanUp. Here are a couple of examples

(with code removed to show only the relevant portions):
startInputOutput

ThingsToCleanUp add:
'terminate LM Input' ->
([(LMInput newWithSocket: socket
andQueue: self inputQueue) start]
forkAt: StkConstants forkedProcessPriority).

initialize: aDeviceName
0SErrorHolder errorSignal
handle: [:ex | ex restartDo: [*nil]]
do: [writeDevice := aDeviceName asFilename readWriteStream.
ThingsToCleanUp add:
‘close writeDevice: ', aDeviceName -> writeDevice].
The items we add to ThingsToCleanUp are associations. The key

The Smalltalk Report

is a string that both specifies the operation which closes or ter-
minates the thing, and gives us debug information we can log.
The value is the forked process or opened file, ete. We thought
this was pretty slick when we created it! To give a better idea of
what is going on, here's the code that does the cleanup.
cleanUp
ThingsToCleanUp do:
[:thing | thing value notNil
ifTrue:
[Log debug: thing key.
thing value perform:
(thing key copyUpTo: Character space) asSymbol]].
ThingsToCleanUp := nil.

If the key is the string “close debug file,” thing key copyUpTo:
Character space gives the string “close.” If the value is the file
itself, we get file perform: "close" asSymbol, which sends the
#close message to the file.
Now, suppose we open a file and add it to ThingsToCleanUp
and then later on want to close the file. We do something like:
close
file notNil ifTrue:
[ThingsToCleanUp removeAllSuchThat:
[:element | element value = file].
file close.
file := nil].
All right, now we have in place a structure that allows us to
record and perform cleanup operations. What triggers off the
cleanup operations? The following method is how we start our
Smalltalk product, and you'll see we've wrapped the entire
product operation inside a valueNowOrOnUnwindDo block. This
allows us to specify an operation that will take place when this
method is being unwound, such as when we terminate a debug
window or use ctrl-C and close the notifier window.
start

[self startInputOutput. [nextRequest := self inputQueue next.
nextRequest queueYourselfUsing: self channelManager.
] repeat

] valueNowOrOnUnwindDo: [self cleanUp]

SECOND WAY

What is wrong with this technique? Well, there is one thing
that can definitely cause problems, and another that has the
potential to do so. First, ThingsToCleanUp is not threadsafe. If
two processes were to do simultaneous operations, there is the
possibility of problems (in fact we'd probably be okay because
the Smalltalk processor is non-preemptive). Second, there is
the possibility (although unlikely) that there are order depen-
dencies. For example, if we closed a file before terminating a
process that read the file, we might run into a problem.

So, phase two was to make ThingsToCleanUp threadsafe and
to guarantee a certain amount of ordering of cleanup opera-
tions. To do this, we created a new class called CleanUp, which
has several instance variables. It has 2 mutual exclusion sema-
phore and OrderedCollections for things such as files, sockets,
UNIX processes, and Smalltalk processes. Our example here
shows just files and Smalltalk processes.

The mutual exclusion semaphore lets us make access thread-

March-April 1995

safe, and the separate instance variables for the different objects we
want to close, terminate, etc, allow us to make decisions about
what order to do things. Here are examples of the new code show-
ing how the object is initialized, and how you can add and remove
files from the collections of objects that will need to be cleaned up.
initialize

processes := OrderedCollection new.

files := OrderedCollection new.

accessProtect := Semaphore forMutualExclusion.

addFile: anAssociation
~accessProtect critical: [files add: anAssociation]

removeFile: aFile
~accessProtect critical:
[files removeAllSuchThat:
[:association | association value = aFile]]
And here is the clean-up code. Our mutual exclusion sema-
phore protects everything, and within the protection, we termi-
nate processes before closing files. As before, cleanup would be
invoked in the valueNowOrOnUnwindDo: block.
cleanUp
accessProtect critical:
[processes da:
[:association | Log debug: 'Terminating process ',
association key.
association value terminate.
processes := nil].

files do:
[:association | Log debug: 'Closing file ',
association key.
association value close.
files := nil]
]

HANDLEREGISTRY WAY

One advantage of the way that we handle cleanup is that it
happens quickly. A disadvantage is that we rely on a globally
accessible object rather than handling things locally.

Another way we could have handled the problem, without
the use of our global ThingsToCleanUp object, is to use the
HandleRegistry class. A HandleRegistty is a very interesting
object that allows us to set up a special relationship between
our work object and a clean-up object. When our work object
is garbage collected, the garbage collector informs the clean-up
object about the garbage collection, and allows the clean-up
object to do whatever cleanup we have coded (see Fig. 1).

Let’s create two classes: MyClass and CleanUp. MyClass is where
we open files and fork pracesses. CleanUp is where we close the
files and terminate the processes when the MyClass object is
garbage collected. In these examples we write to the Transcript so
that you can try the examples yourself. In a real system we would
not do that because the Transcript is not threadsafe. Try the code
that follows—it’s an interesting exercise in magic!

Here are the definition and the class initialization methad for
MyClass. Since class initialization happens at FileIn, we need to
explicitly initialize MyClass. After you have typed in the class ini-

15

Cleaning up after yourself

tialization method, select the self initialize text and exccute it.
We'll explain all the variables after the code:
Object subclass: #MyClass
instanceVariableNames: 'key executor '
classVariableNames: 'LastKey Registry AccessProtect’
poolDictionaries: "
category: 'Examples'

initialize
"self initialize" AccessProtect := Semaphore forMutualExclusion.
Registry := HandleRegistry new.
LastKey := 0.

We have to register our MyClass object in a HandleRegistry
object, so the first question is where to put the HandleRegistry.
To avoid keeping a global object or using a pool dictionary, we
put the HandleRegistry in a class variable in MyClass. When a
MyClass object is created, during object initialization it registers
itself in the HandleRegistry:

initialize

key := self class newKey.

executor := CleanUp new.

self class register: self.
Each object that registers with the HandleRegistry has to be reg-
istered with a unique key, usually a SmallInteger. We don't pass in
the key when we register an object; instead, the HandleRegistry
asks the object for its key, so our MyClass object must return the
key when sent the #key message. To generate unique keys for the
specific HandleRegistry, we’ll have the class keep track of the last
key used. And because we may create MyClass objects from dif-
ferent processes, we'll create a mutual exclusion semaphore to
make sure that access to the class methods is threadsafe.

Now we need some class methods to return the unique key,
and to register our object in the HandleRegistry. The first one,
#newKey, simply increments the key and returns the new
value. The #register: method registers the object in the
HandleRegistry and logs a message to the Transcript:

newKey

AccessProtect critical:
[LastKey := LastKey + 1.
~LastKey]

register: anObject
AccessProtect critical:
[Transcript cr; cr; show: Registering: ', anObject printString , '
with key: ', anOhject key printString.
Reqistry register: anObject]
Now we need some instance methods for MyClass. We've
already seen the initialize method, which gets a unique key for
the object, stores a CleanUp object in the executor instance vari-
able, then registers itself with the HandleRegistry. We also
define accessors for the key and executor instance variables.
executor
~executor

key
I\key

16

HandleRegistry |

WeakDictionary |
WeakArray Array
objectl object1 executor
object2 object2 executor
object?2 object2 executor
#finalizeElements
#register

Figure 2.

Finally, we create a method called start, which adds files and
processes to the CleanUp object. We'll take a very simple
approach here and just add strings; in a production system we
would open a file and add the actual file, not a string. Similarly,
we would fork a process and add the actual process, not a string.
What we have here is just to make the example a little simpler:
start
self executor addFile: 'file1".
self executor addProcess: 'processi'.
self executor addFile: 'file2'.
self executor addProcess: 'process2'.
WEell, that’s about it for the main application class. Now we
need to define our CleanUp class and its methods:
Object subclass: #CleanUp
instanceVariableNames: 'openFiles forkedProcesses ’
classVariableNames: "
poolDictionaries:
category: 'Examples’

new
~super new initialize.

initialize
openFiles := OrderedCollection new,
forkedProcesses := OrderedCollection new.

addFile: aFile
Transcript cr; show: 'Executor: adding file ', aFile printString.
openFiles add: aFile.

addProcess: aProcess
Transcript c1; show: ‘Executor: adding process ',
aProcess printString.
forkedProcesses add: aProcess
To see all this work, simply type in MyClass new start.

To understand how the clean-up work is done, we need to
take a look at three classes: HandleRegistry, WeakDicHonary, and
WeakArray. A HandleRegistry is a subclass of WeakDictionary
which understands the #register: message. Most of the work
done by a HandleRegistry is actually inherited, so most of the
HandleRegistry methods we will talk about are implemented in
WeakDictionary (see Fig. 2).

The Smalltalk Report

Are you maximizing your Smalltalk class reuse?

MI - Multiple Inheritance for Smalltalk

MI™ from ARS

» adds multiple inheritance to VisualWorks™ Smalltalk!

» provides seamless integration that requires no new syntax

* installs into existing images with a simple file-in
« is written completely in Smalltalk

Leading methodologies (OMT, CRC, Booch, OOSE)
advocale multiple inheritance to facilitate reuse. Smalltalk’s
lack of multiple inheritance support impedes the direct
application of these methodologies and limits class reuse.
M is a valuable tool which enables developers to apply
advanced design techniques that maximize reuse.

Introductory Price: $195

To order MI or for more information on ARS's family of products and
services, please call 1-800-260-2772 or e-mail Info@arscorp.com.

Applied Reasoning Systems Corporalion (ARS) Is an innovative developer of high

quality Smalltalk development tools, application frameworks, intelligent software [N ddMI=1DNa = S e I e A A3 1V S

systems, and related services that provide advanced solutions to complex problems.

Smalitalk Products » Consulting » Education « Mentoring

. Yimplsmentations in VisualAge™ and Smailtalk/'V™ are forthcomi

A HandleRegistry inherits two particularly interesting instance
variables: valueArray (a WeakArray) and executors (an Array). When
we register an object in the HandleRegistry, the HandleRegistry
computes an atray index from the object’s key. It puts the registered
object in valueArray and the object’s executor in executors.

This is the reason we implemented the executor method in
MyClass—so that the HandleRegistry can ask the object for its
executor. The default executor method is implemented in
Object and returns a shallow copy of self, so even if you don’t
implement the executor method, the HandleRegistry still gets
something to put in the executors array.

Where things get interesting is in the WeakArray. Objects ref-
erenced by a WeakArray are referenced weakly. This means that
they can be garbage collected if the WeakArray is the only thing
that references them. (Actually, they can be referenced by multiple
WeakArrays and still be garbage collected.) This is in contrast to
normal references between objects, which are strong references.
For example, an object in an OrderedCollection will not be garbage
collected until the OrderedCollection no longer references it.

Furthermore, when the garbage collector collects an object
that is referenced by a WeakArray, it sends the WeakAnay a
#changed message. The WeakArray informs all its dependents
by sending them an #update:with:from: message.

When our HandleRegistry creates the WeakArray in the
valueArray instance variable, it immediately registers itself as a
dependent of the WeakArray. When the HandleRegistry
receives the #update:with:from: message from its WeakArray, it
sends itself a #finalizeElements message.

The finalizeElements method finds all the objects in valueArray
which have expired and sends a #finalize message to the executor

March-April 1995

of each one. The default finalize method, implemented by Object,
does nothing. However, since we want to close files and terminate
processes, we override the finalize method in our CleanUp class.
finalize
forkedProcesses do: [:process |
Transcript cr; show: 'Executor: terminating process ',
process printString]
openFiles do: [:file |
Transcript cr; show: 'Executor: closing file ',
file printString].
In our example, we first terminate (or pretend to) the forked
processes, then we close (or pretend to) the open files. We do it
in this order just to make sure that no processes try to access
closed files (although they shouldn't because we only get here if
the object that opened the files is being garbage collected).

CONCLUSION

In conclusion, external resources usually need special processing to
make sure they are released. We have presented some different
techniques to do this, from the simple approach using a Pool
Dictionary object which tracks the external resources, to the more
interesting and magical approach of using a HandleRegistry. @

Alec Sharp is an Advisory Software Engineer at StorageTek. He is the
author of SorrwaRe Quaury aNp ProbucTiviy, published by Van Nostrand
Reinhold. He can be reached at alec_sharp@stortsk.com. Dave Farmer is a
Senior Software Engineer at StorageTek. He can be reached at
david_farmer@stortek.com. They both work on the UNIX Storage Server
software, which manages connections to networked hosts and drives the
StorageTek family of robotic tape libraries.

17

Suggestions for a

successful user interface

Amy S. Gause

HE MAJOR DECISIONS in creating a user interface
for a network management system that monitors a
switched digital video network and is the access to
video services is exarnined here. The complete system
was rewritten using Smalltalk (it had all been primarily in C).
Several problems that were encountered are addressed and their
solutions are offered. The design is based on the Model View
Controller (MVC) paradigm, where the model is the data holder
and notifies dependents of data changes, the view is the screen dis-
play and the controller controls the view and accesses the model.

ANALYSIS AND DESIGN PHASE
The first step taken in creating a user interface for this project was
initially prototyping the basic screens and investigating how they
would work together. After completing three different prototypes,
it became clear what would work and what would not. The first
prototype just ported the screens from the previous user interface
(Asci1 based), just to get familiar with VisualWorks. The second
prototype did not include any of the screens in the first prototype.
These screens were completely new; again, just to see what
VisualWorks could do and how our reorganization of the screens
would mesh. New ideas were tried to see if they were doable. A
third prototype was done to investigate a completely different idea
of presenting data. These prototypes helped give us a basic foun-
dation to make more informed analysis and design decisions.
Second, analysis began with itemizing the information and
functions to provide for the user. By grouping these items, deci-
sions were reached on what types of screens to implement.
Several methodologies were examined, but none seemed to
address the special needs of user interfaces. Booch had this to
say about user interface A 8 D: “The design of an effective
user interface is still much more of an art than a science. For
this domain, the application of prototyping is absolutely essen-
tial. Feedback must be gathered early and often from end
users... The generation of scenarios is highly effective in driving
the analysis of the user interface.” It is true that feedback from
users is extremely important, but something must be
designed/implemented for which the users can give feedback.
The third step taken was using the CRC technique to fur-
ther the analysis phase, but augmented to suit the specific needs
of a user interface. For example, CRC cards are normally used
for listing Class/Responsibility/ Collaborator; this was changed
to Window (which also tumed out to be the class), Navigation
(where could the user go from this screen), Actions (what the
user can do on this screen) and Data (what data is displayed on
this screen). Each card represented a screen.*

18

It became clear how to derive the superclasses of these win-
dows(classes) after several cards were done and commonalities
could be seen. The superclass names were added to the cards as
more of a reminder to factor out the common functionality.
Cards were also made for the controller classes (controllers for
the windows) and windows not implemented in the prototypes.
These cards more closely followed the CRC methodology by
listing the responsibilities and collaborators.

The cards also helped to make the logical groupings of the
windows more apparent. Laying the cards on a table and orga-
nizing them in different arrangements helped to decide how to
group the windows and how the navigational hierarchy could
be set. ENVY/Developer also made these groupings easier by
allowing the windows to be grouped into SubApplications
according to behavior and inheritance.

Another round of prototyping the screens then began. Using
the augmented CRC cards, screens were implemented going by
their data, navigation and actions listed. After some initial
screens were created, they were “hooked” together navigational-
ly. This prototype (called a mock-up) helped determine how
the screens could logically work together.

SCENARIOS

Thirty (an arbitrary number) typical functions that this Ul
should provide served as the basis of these scenarios. These
functions were attained from the user requirements documenta-
tion. The prototyped screens were used to follow the scenarios
to see how these functions would be accomplished by the user.
When deficiencies were noticed, they were fixed in the proto-
type. The prototype was being iterated upon and eventually
grew into the completed UL One of the problems encountered
was once the prototype was stable and provided on-the-surface
functionality, an approach on handling demos should have been

considered (see the following).

USER FEEDBACK

After a good collection of navigational screens (one view being
able to launch another view, and so on) was attained, user feedback
was requested. The users worked with the screens (although they
had no real functionality at this point) and noted what they liked
and disliked. We watched and noted the users confusion, prob-
lems, and comments for about two days. By doing this we gained
valuable information from our users, and the users were pleased
because we were interested in providing them with a tool they

* The three protatypes were done before the cards (see Fig. 1).

The Smalltalk Report

wanted and liked. We enhanced the prototype with the users sug-
gestions; in most cases we found alternate ways to provide them
with the functionality they desired. It must be understood that
they may not know the ramifications of their suggestions. It is the
Ul designers responsibility to provide the user with the functional-
ity they want without deteriorating the interface or the design.

DEVELOPMENT PHASE

The next step was to provide the screens with a mechanism of
obtaining “real” data. All that these screens contained until this
point were labels, fields, buttons, empty tables, empty lists, etc.
An initial data model was stubbed-up to provide data to the
views. The data model is a logical view of the network and exists
to provide the user interface with a view of the network, but
from a users perspective. It has connections that do not exist in
the network, but provided navigation among screens. It provides
the views with the data. The views each had their own data
“controller” to convert the data from the data model to exactly
the way it was to be displayed (format). For example, some data
may be displayed as a string on one screen and as an integer on
another depending on the widget. At this point, more enhanced
functionality was provided, such as: disabling and enabling cer-
tain areas of the screens depending on which items were select-
ed and providing different types of menus depending on which
navigational path the user happened to choose, ete.

PROBLEMS AND SOLUTIONS

(Using ParcPlace Smalltalk with VisualWorks) During the
development of this user interface, many problems were
encountered. The significant ones along with the solutions
implemented are listed below.

Context Menus
The yellow and blue button menus (on all the screens) provided
by the development environment still were available to the user
at runtime—which could be potentially dangerous to the run-
ning image if the user happened to get curious. For the yellow
button, an extension was made to the ApplicationModel that
provided a class method that returned nothing but an empty
PopUpMenu. On each screen that contains fields, this method
answered the menu of that field. For the blue button, a subclass
of ApplicationStandardSystemContyoller was created to override
controlActivity as follows:

controlActvity

~self controlToNextLevel

Extending the Application Model
Some screens had large amounts of data, meaning many of
components (labels and fields). When the control layer (the
data controller and the view controller) was put in, there was a
lot of *not very readable’ code when it comes to
disabling/enabling components, grabbing the value of a Label
off the view, etc. When disabling/enabling components, the
following code was implemented:

aBuilder := self builder.

(aBuilder componentAt: #name) disable.

(aBuilder componentAt: #socialSecurityNumber) disable.

(aBuilder compenentAt: #salary) disable.

March-April 1995

The article “Extending the Application Model"! addresses a
solution to this problem by extending the ApplicationModel
with a method called “disable” that could look something like:
disable: anArray0fComponents
anArrayOfComponents do: [:each |
(self builder componentAt: each) disable].
The same could be done for enable. A method could be added for
returning the value of a Label. Our initial try at this looked like:
labelFor: aSymbol
((self builder componentAt: aSymbol) component component label
text string) asNumber.
Even in Smalltalk, GUI code can look complicated. Many exten-
sions could be made to the ApplicationModel depending on what
is necessary. If they are diversified, each type of screen might have
an ApplicationModel of its own. Extensions can be developed for
such behavior as invisibility, taking keyboard focus, or any other

view functionality that is implemented across several screens.

Updating Tables
Tables are not as easy to develop as the examples in the
VisuatWorks User’s GUIDE, especially if dynamic updates
are necessary. The tables on our Ul were to be read-only with
dynamic updates. When a window with a table on it is installed
and methods for this window are defined using the default ini-
tialization, a method is created on the instance side of the class
under the aspects protocol. The example provided in the user’s
guide uses a TwoDList. TwoDLists will not let dynamic updates
happen to the table. The solution was to edit the method that
was created in the aspects protocol to use laissez-faire initial-
ization and return a TableInterface whose selection InTable is
set to a TableAdaptor on a List. So it looked something like:
exampleTable
~exampleTable == nil
ifTrue: [exampleTable := TableInterface new
selectionInTable: (SelectionInTable with: TableAdaptor on: List new
adaptors: (RowAdaptor adaptForIndexes: #(1 2))));
columnWidths: #(100 100);
columnLabelsArray: #(“Name' ~Address');
yourself.
"For dynamic updates add self as a dependent of the
selectionIndexHolder"]
ifFalse: [exampleTable].
For dynamic updates, in the update: method it is necessary to
provide a way to re-read the data into the table—a call to the
same method that read the data into the table in the first place
would do.

Closs nane/ Window name (Supexr Class naune)
Nenigation Adions
Data

Figure 1.

19

A Successfull User Intexface

Row Labels for Tables

Row label widths did not dynamically resize according to the
longest label and were sometimes chopped on the left for long
labels. Several screens displayed tables that had row labels. If
the row label width was set to 100 (pixel width) then 2 long
string as a row label would get chopped on the left side. If all
the row labels were short strings then the space at the left was
too large. By dynamically calculating the pixelwidth of the
longest row label and setting the row label size to that value,
the table resizes automatically and no row labels get chopped.
This seemed a simple enough solution, but the hard part was
how to calculate that pixelwidth. If the graphicsContext of the
table is gotten, its font appears to be #fixed (we were using the
#default font). This throws off the pixelwidth calculations if
the widthOfString: method is used. As of present, changing the
font of the row labels to #fixed is the implemented solution.
Another solution is to convert the row labels to Composed Text
and use the width to recalculate the row labels width.

Demonstrations

Marketing and Documentation departments requested
demonstrations for the current state of the system during all
phases of the project. Demonstrations should be considered
during the design phase. One of our problems was that we
were not thinking about providing demos, so when a demo
was needed, the process was not an easy one and the demo had
functions in it that would throw walkbacks. Depending on
how classes are set up in a system there will be different
approaches on how to handle this problem. Our system is
arranged in such a way that utilizing subclasses could be help-
ful. For example, there is a class for a data entry window. A
subclass of this class, DemoDataEntryWindow, could have the
same windowSpec, same functionality, but override the neces-
sary behavior that would not be appropriate for a demo.
Replace functionality with descriptive Dialogs.

Displaying Data

Every window opening should default with the most important
data for the user using as little screen real estate as possible, but
other data needed to be on the window too. Several suggestions on

Imporiant dala:
Imporiant datat
Important data:
[Chock box

Bucton

-Deher data e e
: H Leas important data:

i Less important data:
| Less important data:

Less important data:

Bucton |

Figure 2.

20

how to handle this were given: have two windows, but if the par-
ent window closes so should the child; have one window with a
toggle switch to expand the window if set and shrink the window
if not set. The latter was implemented. The window was created
with important data on top and less important data on bottom. A
check box was added for expanding and shrinking the window.

The minimum size of the window was set such that the bot-
tom data could not be seen. This is done by choosing the win-
dow->bounds->fixed size options on the <operate> menu when
editing the canvas. When the window is expanded, it was
desired that some buttons should stay with the bottom of the
window. Instead of moving a component to another part of the
window, the invisibility property was used.

When the check box in Figure 2 was checked then the top
divider and button were made invisible and the screen was expand-
ed to its complete size. When the check box was not checked the
top divider and button were made visible and the screen returned
to the minimum size. The method that handled the expanding
and shrinking is dependent on the value of the check box. T

initialize

self toggle value: false.

self toggle onChangeSend: #1esizeView to: self.

resizeView

self showDetails value

ifTrue: [(aBuilder componentAt: #topButton) beInvisible.

(aBuilder componentAt: #topDivider) belnvisible.

winRectangle := aBuilder window displayBox.

(aBuilder window) moveTo: (currentRectangle origin)

1esize: ((winRectangle extent) + (0@400))]

ifFalse: [(aBuilder componentAt: #topButton) beVisible.

(aBuilder componentAt: #topDivider) beVisible.

winRectangle := aBuilder window displayBox.

(2Builder window) moveTo: (currentRectangle origin)

resize: ((winRectangle extent) - (0@400))]
The 400 depends on how much expansion is necessary to reveal
the lower data. Since this is a hardcoded number, whoever edits
the canvas and changes the length of the window will have to
be aware that this value may very well need changing, too. A
better way would be to derive the value instead of hardcoding
it. Consideration of the window manager is necessary when
dealing resizing capabilities.

CONCLUSION

Prototypes are extremely important, especially if the developers
are new to Smalltalk. Prototypes help developers gain a basis
for making important design decisions. Scenarios help develop-
ers relate to users. They should be understandable for both
developers and users. Scenarios are an excellent test of the user
interface and help to locate potential usage problems early. ¢

Reference
1. Howard, T, and B. Kohl, Extending the application model, SMALLTALK
REPORT, 3(7):1-7, May 1994

Amy S. Gauss is a software engineer at BroadBand Technologies, Inc. and
has been working with ParcPlace Smalltalk and VisualWorks 1.0 for a year.
She can be reached at asg@bht.com.

1 Code enhancements as described earlier are directly applicable here.

The Smalltalk Report

Storing objects

into files in VisualAge

Wayne Beaton

tatement that certain players in the computer industry
hope to make come true. VisualAge offers a step in this
direction. Currently, VisualAge lacks the rich set of parts that will
make it an overwhelming success. With some third party involve-
ment, and some ingenuity, we can solve this problem by providing
VisualAge parts to visually solve any problem. Okay, not 4y prob-
lem, but we can come very close.

Before I go too far, let me get this out into the open. I like
VisualAge. It helps me to do my job faster and easier. VisualAge
just lacks some features that I would like to have. When it is
decided that a new part is required, a decision must be made on
how to implement it in a way that makes it the most useful. I've
heard it said that “in general, general solutions don't work.” I
believe that this means if you try to anticipate what the next guy
wants your part to do, you're likely to be wrong.

The first part that I thought that I might like to have that was
missing, was a part that could provide file access. All I really want
to do is write a single object to a file and then read it back. From
this was bomn the ObjectLoaderAndDumper.

V\SUAL PROGRAMMING IS the way of the future! A bold
§

THE OBJECT SWAPPER CLASSES
1BM Smalltalk comes with two classes that provide file access. The
class ObjectDumper can be used to write objects to a file; the class
ObjectLoader will read objects from a file. The interfaces for these
classes are pretty straight forward. To write a single object to a file,
the following code can be used:
ObjectDumper new
unload: anObject
intoFile: * c:\junk.dat'
Retrieving the object back from the file is another simple matter.
anObject := ObjectLoader new
loadFromFile: ° ¢:\junk.dat'
Using these classes, we can easily build a reusable nonvisual part to

Attributes

fileName

—_———— e

Figure 1. The Public Interface of the Object Loader And Dumper

March-April 1995

use in VisualAge. How would such a part work? The
ObjectLoaderAndDumper has two attributes, fileName and object.
Further, it has two actions, load and dump (see Fig. 1).

To load an object from a file, the fileName attribute is set to the
full name and path of the file to load, and the action load is
invoked. The result of the l0ad action puts the contents of the file
into the object attribute. To dump an object to a file, the fileName
attribute is set to the name of the file, and the object attribute is set
to any object. The action dump is invoked, and the contents of the
object attribute is written into the file.

BUILDING THE OBJECTLOADERANDDUMPER
The ObjectLoaderAndDumper was created as a nonvisual part. Both
attributes use the default attribute settings, with the fileName
attribute of type String and the object attribute of type Object. The
load action invokes the script load and the dump action invokes
the script dump. The generated scripts for the attributes will not be
included here, the scripts for load and dump are as follows.
ObjectLoaderAndDumper instance methods:
load
"Sets the receiver's " object' attribute to
the contents of the file named by the
receiver's ~ fileName' attribute."
self object:
(ObjectLoader new
loadFromFile: self fileName)

dump
"Writes the contents of the receiver's * object'
attribute to the file named by the receiver's
" fileName' atiribute."
ObjectDumper new
unload: self object
intoFile: self fileName
This code alone makes the ObjectLoaderAndDumper easy to use
visually. However, a nice extension might be to provide file
prompters to allow the user to select a file name. Again, it would
be nice to do this all visually.

FILE SELECTION

The class CwFileSelectionPrompter provides a connection to an
operating system specific file browser. We can use this class to get
file information from the user. Actually, there’s a better class to use,
one that itself employs the CwFileSelectionPrompter. The class
EtFileNamePrompter provides a little more behavior for file brows-
ing. This class has two class methods. Using the class method
#ipromptForfileName: default: shouldExist: at: we can provide a

21

Storing Objects

message to the user, suggest a default, stipulate whether or not the
file specified by the user should exist, and suggest the location (in
screen coordinates) where to open the file browser.

The message to the user is the message that is displayed at the
top of the file browser. The default is the name of a file, which can
include wild-card characters, to initially provide to the user.

I like VisualAge. It helps me
to do my job faster and easier.

Stipulation of whether or not the file exists allows us to force the
user to select a file that already exists. This can be particularly use-
ful for specifying a file to load. If the user specifies a file name that
does not exist, they are informed and motivated to provide a dif-
ferent name. The last parameter, the screen coordinate to open the
file browser at, does not seem to have any affect in the code.
This message will answer the name of the file specified by the
user including the full path, or nil if the Cancel button is clicked.
| fleName |
fileName := EtFileNamePrompter
promptForFileName: " Select a file to open:'
default- * *.dat'
shouldExist: true
at: 0@0.
fileName isNil ifTrue: ["the user cancelled"]
Using this new knowledge, the ObjectLoaderAndDumper can be
extended to include actions called promptForFileNameAndLoad and
promptForFileNameAndDump. The corresponding methods follow:
ObjectloaderAndDumper instance methods:
promptForfleNamaAndload
"Prompts the user for the name of the file
to load and then loads it."
| newFileName |
newFileName := EtFileNamePrompter
promptForFileName: ~Load from fle:'
default- self defaultFileName
shouldExist: true
at: 0@0.
newFileName isNil ifTrue: [*self].
self
fileName: newFileName;
load
pEumptForFlleNameAndDump
"Prompts the user for the name of the file
to save and then saves the contents of the
receiver's " object’ atiribute to that file "
| newFileName |
newFileName := EtFileNamePrompter
promptForFileName: * Save to file:'
default: self defaultFileName

22

shouldExist: false

at: 0@0.
newFileName isNil ifTrue; [“self].
self

flleName: newFileName;

durmp

ObjectLoaderAndDumper private methods:
defmliPlleName

"Private - Answers the name to use by
default when prompting the user."
~self fileName isNil

ifTrue: [* *.*']

ifFalse; [self fileName]

READ-ONLY ATTRIBUTES
Read-only attributes were added to provide the ability to disable
buttons or menu items when loading or dumping are not possible.
Read-only attributes, when created in the public interface editor,
have only the get selector, changed event symbol and type fields
specified. Further, instance variables need not be created for read-
only attributes.
The read-only attributes isLoadEnabled and isDumpEnabled
both have the type Boalean.
ObjectLoaderAndDumper instance methods:
isLoadEnabled
"Answers whether or not it is possible to
load. The receiver can load only if the
* fileName' attribute is specified."
~self fileName isString
iaDumpEnabled
"Answers whether or not it is possible to
dump. The receiver can dump only if the
* fileName' attribute is specified and the
" object’ attribute is not nil."
~self fileName isString
and: [self object notNil]
To make these read-only attributes work as expected, we must sig-
nal when they change. Clearly, isLoadEnabled changes when the
fileName attribute changes; isDumpEnabled changes when either
the fileName attribute or the object attribute changes. Extensions
can be made to the set methods for these attributes.
ObjectloaderAndDumper instance methods:
fileName- aString
"Sets the " fileName' attribute to aString."
fileName := aString.
self
signalEvent: #fileName with: aString;
signalEvent: #isLoadEnabled
with: self isLoadEnabled;
signalEvent; #isDumpEnabled
with: self isDumpEnabled
abject: anObject
"Sets the " object' athribute to anObject.”
object := anObject.
self
signalEvent- #object with: anObject;
signalEvent: #isDumpEnabled
with: self isDumpEnabled

The Smalitalk Report

P

Lo

-

snsvo il esaue

Object Loader And Dumper

Figura 2. The object loader and dumper in the composition editor.

PRETTY ICONS
By default, new parts created by developers represent themselves in
the Composition Editor as simple puzzle pieces. It might be better
to use a different icon to distinguish the ObjectLoaderAndDumper
from other parts. To do this, we can specify a class method
#abtInstanceGraphicsDescriptor.
ObjectLoaderAndDumper class methods:
abtinstanceGraphicsDeacriptor

"Answers the descriptor for the icon to

display in the Composition Editor."

~AbtlconDescriptor new

moduleName: " ABTICONS';
id: 288

This method answers an instance of the class AbtIconDescriptor,
which requires the name of a module and an id within that mod-
ule. In the OS/2 world, modules are DLLs containing icons.
Fortunately, VisualAge comes with a DLL filled with icons that we
can use (an appendix in the USER’S GUIDE lists them all). Icon id
288 holds a picture of two disk drives stacked on one-another (see
Fig. 2). I thought this icon was appropriate enough.

A SIMPLE TEXT EDITOR
With the ObjectLoaderAndDumper specified it is an easy matter to
create a simple text editor without scripting,

The required parts were assernbled using the Composition
Editor. A multiple line text was added to a window with appropri-
ate sizing information. Several menus were also added, along with
an Object Loader And Dumper. Figure 3 shows the entire assembly,
including all required connections.

The connection labeled “1” in Figure 3 connects the fileName

Object Loader And Dumper

Object Loader And Dumper

Figure 3. The simple text editor.

March-April 1995

Figure 4. Connections between the menu and the Object

attribute of the Object Loader And Dumper by a one-way attribute-
to-attribute connection to the “title” attribute of the window. This
has the effect of changing the title of the window to the name of
the file specified by the user in any open, or save operation. The
connection labeled “2” connects the object attribute of the Object
Loader And Dumper to the object attribute of the multiple line text
by a bi-directional attribute-to-attribute connection. For this con-
nection to work, the Notify change on each keystroke attribute of
the multiple line text must be set to true.

Figure 4 shows a close up of the connections between the File
menu and the Object Loader And Dumper. The connection labeled
“1" hooks the clicked event of the Open... menu item to the action
promptForFileNameAndLoad. For the “Save” menu item, the con-

If you try to anticipate what
the next guy wants your part
to do, you're likely wrong.

nection labeled “2” connects the enabled attribute to the
isDumpEnabled attribute; the connection labeled “3” connects the
clicked event to the dump action. The connection labeled “4” con-
nects the clicked action of the Save As... menu item to the action
promptForFileNameAndDump.

From these connections, the File menu springs to life. The
“Save” item is disabled until a valid file name has been specified,
either by opening a file, or by saving one. Once enabled, the Save
item will save to the existing file.

CONCLUSION
VisualAge is missing some obvious features that would make life
easier for developers. Unfortunately, anticipating the needs of
thousands or millions of developers is a daunting task, and provid-
ing a general solution that everyone can live with is nearly impos-
sible. However, creating our own reusable parts is an easy matter.
The ObjectLoaderAndDumper is an example of a reusable nonvi-
sual part which will read a single object from a file or write a single
object to a file. Large applications may require a more sophisticat-
ed part to satisfy disk file access. The ObjectLoaderAndDumper is a
starting point which demonstrates the amazing potential of

VisualAge.

Wayne Beaton is a senior member of the technical staff and part-time instructor
at the Object People Inc., Ottawa, ON, Canada. He finds just about any kind of
problem “damed interesting.” He can be reached e-mail at
wayne@ohjectPeople.on.ca.

23

The best of comp.lang.smalltalk

Instance
initialization

NE OF THE goals of the object-oriented approach
O is not to have to worry about the internal representa-

tions of objects. One aspect of this is that clients
should not have to care about initializing the objects they use,
and that newly created objects can be expected to be in a
usable state. There are a number of ways of accomplishing this
in Smalltalk, and (naturally) a wide variety of opinions on the

relative merits of each.

ALAN KNIGHT

OVERRIDING NEW
The most common initialization technique is to override the
class method new to be

new “super new initalize.
With this override, any object created using new is guaranteed to
be initialized before any other messages are sent to it. It does
have a drawback, however. We have to implement this method in
quite a few places, and be quite careful about which places. The
default implementation of new doesn’t call initialize, so we must
provide an implementation in our classes, but only if they inherit
directly from Object. If we provide it in other classes, then their
initialization code will end up running more than once.

Ta see how this happens consider the following class
hierarchy.

Object

AbstractClass
ConcreteClass

‘We override new in both AbstractClass and ConcreteClass, and
provide initialize methods. The expression ConcreteClass new
will result in the following sequence of calls:

Concrete>>new

Abstract>>new (called via super from ConcreteClass)

Behavior>>new (called via super from Abstract)

Concrete>>initialize (called from Abstract>>new)

Abstract>>initialize (called via super from Concrete)

Concrete>>initialize (called from Concrete>>new)

Abstract>>initialize (called via super from Concrete)
This multiple initialization is inefficient and can cause prob-
lems if it’s not safe to run the initialize routine multiple times.
It’s important that new only be overriden once, in immediate

Alan Inight performs a wide variety of Smalltallerelated worle with the
DhjectPenple. He can be reached at 613.225.8812 or by e-mail at linight 2 acm.org.

subclasses of Object. It’s also important that we call super ini-
tHalize in our initialize methods unless we inherit directly from
Object, in which case we must not call it.

This is a bad thing, since we must be aware of a class’s posi-
tion in the inheritance hierarchy and modify code if the inheri-
tance hierarchy changes. It's not that difficult, but it's an
unnecessary and tricky detail that detracts from something that
tries to be extremely simple.

There’s a very simple way to fix this. The default new
method (in Behavior) should be:

~self basicNew initialize-
and there should be an Object>>initialize that does nothing.

This would allow the elimination of almost all overridden new
methods and make the usage of initialize much more consistent.

There are, however, a couple of problems. The first is that not
all objects require initialization, and some of those that don't are
important system objects. We don't really want to add an extra
message send to the cost of every Point, Rectangle, or Float cre-
ation. This is easily overcome. Instead of overriding new in most
user classes, override it in those system classes where it's important. *

In the absence of a
proper specification, an initialize
method provides an easy way fo see
at a glance the expected types of the
instance variables.

Most of these objects are already created with special class mes-
sages, and these can be changed to call basicNew instead of new.
The name basicNew even makes sense as a basic creation operation
that does nothing else, not even the normal initialization. This is
simpler and more consistent than cutrent usage, and it takes the
burden of worrying about the problem off of “normal” users.

The second objection is backward compatibility. It would
have been nice if Smalltalk was originally designed with this ini- *
tialization scheme, but it wasn't. If a Smalltalk vendor were to
make this change today, it would break almost every class writ-
ten for the old initialization scheme. In fact, it would introduce
exactly the multiple initialization problem it’s designed to avoid.
If only one vendor introduced this convention, it would add an
additional incompatibility with all the other dialects. Because of
this, I doubt such a change will be adopted unless it’s mandated
by a higher body like the ANSI standardization committee.

This suggestion isn't original, but has been suggested by
quite a number of people. I believe I first heard it suggested by
Bobby Woolf (woolf@acm.org).

OTHER INITIALIZATION ISSUES

There’s another potential problem with automatic initialization.
Even if the initialize only runs once, it can still do unnecessary
work It's rare that I actually want an instance of something

The Smalitalk Report

with the default values. Generally I'm going to create an object,
initialize it to default values, then immediately overwrite those
with the correct values, This wastes at least one memory alloca-
tion for each initialized variable, and probably more if those
objects have their own initialization code.

This isn't usually seen as very significant, for several reasons.
First of all, there isn’t the same possibility of actual error as
with multiple initialization. While initialize methods often
make assumptions about the state of the object, setting values
after initialization will normally use public accessors, which
are much safer. For example, an initialize method might be
written as

Injtialize

tempFile := (File named: self defaultFileName) open.
If this is run repeatedly because the original file variable will
get overwritten and the first file will never be closed. On the
other hand, public access methods usually assume they may be
run repeatedly and take appropriate precautions.

tempFileName: aFileName

(tempFile notNil and: [tempFile isOpen])
ifTrue: [tempFile close]-
tempFile := (File named: aFileName) open.
Overwriting initialized variables is not only safe, but it doesn’t
usually cost much. Object creation is extremely cheap in
Smalltalk, and if the default values are simple, the cost just isn’t
worth worrying about under normal circumstances.

If you do want to worry about it, it’s possible to work
around this problem using class creation methods. Lots of
objects aren’t created with new, but with custom class messages
which either require specification of the important variables or
provide defaults. Often there will be simpler versions in which
most of the arguments default to simple values and more com-
plex messages where all the parameters must be fully specified.
A typical example might look something like:

new

“self foo: self defaultFoo.
foo: aFoo
~self foo: aFoo bar: self defaultBar
foo: aFoo bar: aBar
~self basicNew foo: aFoo; bar: aBar.
If all instance creation is done through these class messages,
then all the variables requiring initialization should be initial~
ized exactly once, with no wasted effort.

Of course nothing’s perfect. This method has the disadvan-
tage of spreading code for default values even more than lazy
initialization (see below). It also suffers from Smalltalk’s strict
requirements on message form. To define something like this,
I really want to say that there is one creation method with N
arguments and that some or all of them may be omitted, in
which case they should use the default value. In Smalltalk I
have to explicitly define 2N different messages if all the combi-
nations are possible. The usual compromise is that only a few
different messages are defined, representing what the develop-
ers feel are the most common cases.

LAZY INITIALIZATION
A more general way of overcoming these difficulties is to use
lazy initialization. With this technique, variables are not initial-

March-April 1995

ized when an object is first created, but on first access to the
variable. This usually involves writing get methods as:
foo
foo ==nil
ifTrue: [foo := #defaultFoo]
ifFalse: [~foo].
There’s no danger of a variable being initialized twice, and if we set
the variable any time before it’s accessed there’s no duplicated work.
This technique has its own disadvantages. While it eliminates
the possibility of unnecessary work in initialization, it introduces
some overhead on each variable access. There are two sources,
the nil test and the inability of the compiler to optimize the
access method as is normally done for pure get/set methods. This
inefficiency is still negligible for most cases, and if there are sig-
nificant numbers of variables that aren’t accessed at all, the sav-
ings from not initializing at all can easily outweigh this overhead.

The default new method should
be "self basicNew initialize.

A stylistic objection is that lazy initialization pretty much
requires all variable access to be through message sends. That
isn't such a bad thing, and in fact lots of people advocate it as
good style. The big disadvantage is that you must define access
methods for everything, even private variables. Since no
Smalltalk currently supports enforced private methods these
methods must be public. Some of the issues involved with this
style of coding are discussed in Kent Beck's article “To acces-
sor or not to accessor?” (THE SMALLTALK REPORT, 2(8):8).

A number of people I spoke to didn't like lazy initialization
because they believed it was important to keep all the initial-
ization code in one place. None of them had a convincing
explanation why it was important, but I have a theory. I think
it has to do with specification rather than initialization,

Since Smalltalk is dynamically typed, there’s almost no
information in a class declaration. You know the superclass,
and the number and names of the instance variables. There’s
no information on the expected type of each variable, and even
if the names are good they don’t necessarily indicate types.
Information about possible types is one of the valuable things
class comments provide. Unfortunately an awful lot of code is
written without class comments, and those that exist aren't
necessarily accurate. In the absence of a proper specification,
an initialize method provides an easy way to see at a glance the
expected types of the instance variables.

WHICH IS BEST?

The ideal initialization mechanism depends on what you're try-
ing to accomplish. My normal technique is to use super new ini-
tialize by default. If I start to run into difficulties or serious inef-
ficiencies with that approach I'll use lazy initialization as it seems
appropriate. One situation where lazy initialization is particularly
useful is with class variables and class instance variables. There
are lots of other issues associated with initializing classes. One
reference for these is Juanita Ewing’s article “Should classes be
initialized?” (THE SMALLTALK REPORT: 1(3):6). @

25

t-oriente

m using the
right medel at the
right dme.

~Jim Rumbaugh

ok F L

The teaming
of two great minds
_to shape 2 standard in
ob|ect technology:

w'yourseli oW
rature ofd jeadin JAGD W t_ssare'evOMg o:reate
‘(‘.;“e:t“‘:,‘e‘""d o ole, seamiess M successful de velopme
Joriented
architecture, and

the pragmatics of AGENDA April 724 Chicag?

EGlSTER

the deVelopment Conce
. ptual models under Phone 2\2—242—15! 5
?:‘,ce:s‘ edam ong the Booch m ® thod April 25 New York CitY fFax: 212.242-7578
p and the OMT April 27 Dallas Email:
develop and refine . info@s) ccom.
an architecture. + A practical example iHus- g San Francisco® nfo@sigs.uucP-neteo com

April 2

trath th thod! Price: $550 per rson
_Grady Booch rating both meho® s per P

Registe py March 31 and get 2 FREE
of Rational Rose” ior Windows
o

\ -
lDFTﬂAl‘cDHPDHATION C ()Nl—l)U-N(l'ﬁ

Advanced Concepts Center s I crademark of the Martin in Parier2 Corporadaf- OMToal is 2 wratemark of the Martin Marienz2 Corparation-
The wRasional Software rpﬂﬂﬂm = and Rational’s pro ducts are tradema! emarks of § Rational Software re Corporatian
Reference ©@ other companies and their producu use wrademarks oW gwned by the respecuve compantes 3 and are for reference purpeses only.

Smalltalk Idioms

What? What
happened to
garbage
collection?

KENT BECK

"LL. TELL YOU what happened to garbage collection. I sat

down three times to write the next column about garbage

collection, and nothing came out. Between that, my wife’s
ten-garme-~-winning streak at Cribbage, and 46 inches of rain so
far this year (and it's still January), I'm pretty frustrated.

T've been reading Edward DeBono’s book Thinking Course
(highly recommended). One of the techniques he suggests, and
also one I've seen in art, 1s when you're stuck, do the opposite.
In art, if you're having trouble drawing a thing, try to draw
something that is completely the opposite. Of course, it’s
impossible to draw “not a flower,” so you end up with some-
thing which gets at “flowerness” backwards. I'm writing a col-
umn about “not garbage collection.” I'm not sure where I'll end
up, but at least the column will be done.

CLASS
Bob Williams pointed out a problem with the column I wrote a
year and a half ago or so on instance specific behavior. The
Smalltalk/V version works fine, but when you specialize an
instance in VisualWorks, all of a sudden a bunch of code stops
working. The problem? Class tests.

For example, Point comparison (comparison is where this
happens most often) is implemented like this:

Point>>= aPoint

~self clags = aPoint class and: [self x = aPoint x & (self y = aPoint y)]

It’s implemented this way so you can put Points and Rectangles
and Arrays and Strings and a bunch of other objects that don't
respond to x and y in the same Set and not have things blow
up. All well and good, until you start specializing instances.

The problem is that “class” returns whatever is in the class
field of the object. Instance specialization in VisualWorks oper-
ates by creating an anonymous Class (really a Behavior), and
setting the class of the instance to it. That way, you can make
changes to the Behavior without affecting all the other objects
of the same class.

The Point comparison code above, though, will fail, even if

Itent Beclc has been discovering Smalltalk idioms for ten years al Tektronix, Apple
Computer, and MasPar Camputer. He is the founder of First Class Saltware, which
develops and distributes developer tools for Smalltalk. He can be reached at First

Class Software, P.O. Box 226, Boulder Creel, CA 95006-0226, 408.338.4649
(voice), 408.338.3666 (fax), or hy email at 707611216 (Compuserve).

March-April 1995

two Points are equal. If the receiver has been specialized and
the argument not, the class of the receiver will be reported as
this funny Behavior while the class of the argument is just good
old Point. Are they equal? No way. Therefore the two Points
aren’t equal, even if they both print as "2@3”.
I turned to David Liebs, my own personal guide to
VisualWorks arcana, for ideas. Here’s what we came up with.
When you ask an object for its class, it should return a real
Class, the thing you defined in the browser. If you want to use
instance specific behavior in VisualWorks, you need to make
the following changes. Note that if you try the following, the
order in which the methods are defined is important. Trashing
images is exciting, but it doesn’t rank high on the productivity
scale.
First, the class primitive, the one that just returns the con-
tents of the receiver’s class field, has to be renamed:
Object>>primClass
<primitive: 111>
self primitiveFailed
Next, we have to be able to go up the superclass chain looking
for a real class. Instances of Class and MetaClass are real.
Class>>1ealClass
~self

Meta(Class>>realClass
~self
Behavior, however, needs to ask its superclass for a real class.
Note that this code ignores the kinky case of a Behavior with-
out a superclass, which doesn't arise in normal use, nor in the
instance specialization code. I'd have to think carefully about
what I wanted the code to do in that case.
Behavior>>realClass
~self superclass realClass
Finally, Object>>class needs to be modified so it finds a real class:
Object>>class
~self primClass realClass
Now it works. You can specialize Points and still have “=" work
correctly.

FORMATTING

On to the chosen secondary topic for the day—code format-
ting. What? You think this is a dull, dry, boring topic best rele-
gated to corporate style guides? Not so. As soon suggest that
typography is uscless, that content is all that matters. The
medium is the message—formatting your code is an opportuni-
ty to communicate subtle but important information to your
readers. It is the first thing people will look at when they see
your work. In groups, it is the one topic most likely to cause
friction. Everybody has to do it the same or everyone is frus-
trated, but no one wants to do it like anyone else.

I decided to apply the power of patterns to the problem of
source code formatting. Ward Cunningham and I used to have
long discussions at Tektronix about just the right way to format
a method. Roxie Rochat also produced an excellent style guide,
which I didn’t entirely agree with, but that took a comprehen-
sive look at the issue of formatting. In the years since, I have
often wondered if there were rational rules of formatting, or if
it really was just a matter of personal style.

27

Smalltalk Idioms

The appearance of the new Cooper and Peters product edIt,
with its cool programmable formatting, also drove me to try to
canonize my own formatting style.

When I started writing these patterns, I thought I'd end up
with fifteen or twenty. As it turns out, I only found five, and
Type Suggesting Parameter Name isn't really about formatting,
The code they turn out isn't exactly like I would have formatted
it before I enumerated the patterns, but I like it. It is simple
and consistent, and it meets the main goals of code formatting.

What are the goals of formatting? As far as I can tell, the
main forces influencing any code formatting style are:

® Minimize height—Formatting should produce the fewest
possible number of lines, consistent with the rest of the con-
straints. This is important in Smalltalk, because fewer lines
translates into more browsers, or less scrolling in the existing
browsers.
® Minimize width—Formatting should produce code that
doesn't have to be either scrolled horizontally or line
wrapped. Line wrapping makes reading more difficult,
because it messes up the shapes made by indentation, and
hotizontal scrolling slows down typing because you're always
adjusting that darned scroll bar.
¢ Quick recognition—Formatting should produce code whose
gross structure is apparent at a glance. Important features
like flow of control and the presence of blocks should be
obvious within a fraction of a second of seeing the code.
® Careful reading—Formatting should produce code that
reads well in detail. You should be able to accurately read
selectors. You should be able to understand the flow of con-
trol in detail,
These constraints are often in conflict. A good formatting style
finds the right balance between them. I'm not saying that what
follows is the be all and end all of formatting, but it is simple
and consistent. If you disagree (and I'm sure some of you will),
try to write up your own formatting style as patterns. Figure
out what constraints you are resolving and how you are resolv-
ing them.

These patterns, and a whole lot more, also live on the
Portland Pattern Repository, a Web server operated by
Cunningham and Cunningham. Check them out by pointing
your Web client at “http://c2.com/”.

TYPE SUGGESTING PARAMETER NAME

‘What should you call a method parameter?

There are two important pieces of information associated with
every variable—what messages it receives (its type) and what
role it plays in the computation. Understanding the type and
role of variables is important for understanding a piece of code.

Keywords to communicate their associated parameter’s role.
Since the keywords and parameters are together at the head of
every method, the reader can easily understand a parameter’s
role without any effect on the name.

Smalltalk doesn't have a strong notion of types. A set of
messages sent to an object appears nowhere in the language or
programming environment. Because of this lack, there is no
direct way to communicate types.

28

Classes sometimes play the role of types. You would expect a
Number to be able to respond to messages like +, -, *, and /; or a
Collection to do: and includes:. Therefore:

Name parameters according to their most general expected
class, preceded by “a” or “an.” If there is more than one para-
meter with the same expected class, precede the class with a
descriptive word.
An Array that requires Integer keys names the parameters to
at:put: as

at: anInteger put: anObject
A Dictionary, where the key can be any object, names the para-
meters:

at: keyObject put: valueGbject
After you have named the parameters, you are ready to write
the method. You may have to declare Role Suggesting
Temporary Variables. You may need to format an Indented
Control Flow. You may have to use a Guard Clause to protect
the execution of the body of the method.

INDENTED CONTROL FLOW
You are writing a method following Type Suggesting
Parameter Name.

How do you indent messages?
The conflicting needs of formatting to produce both few lines
and short lines is thrown in high relief with this pattern. The
only saving grace is that Composed Method creates methods
with little enough functionality that you never need to deal
with hundreds or thousands of words in a method.

One extreme would be to place all the keywords and argu-
ments on the same line, no matter how long the method. This
minimizes the length of the method, but makes it difficult to
read.

If there are multiple keywords to a message, the fact that
they all appear is important to communicate quickly to a scan-
ning reader. By placing each keyword/argument pair on its own
line, you can make it easy for the reader to recognize the pres-
ence of complex messages.

Arguments do not need to be aligned, unlike keywords,
because readers seldom scan all the arguments. Arguments are
only interesting in the context of their keyword. (This would be
a good place for a diagram with an arrow going down the key-
words in order to read at:put:, and another scanning left to
right as the reader understand the message and its arguments.)

Therefore, put zero or one argument message on the same
lines as the receiver.

foo isNil

2+3

a <b ifTrue: [...]

Put the keyword/argument pairs of messages with two or
more keywords each on its own line, indented one tab.

a<b

ifTrue: [...]
ifFalse: [...]
array
at: 5
put: #abc
Rectangular Block formats blocks. Guard Clause prevents
indenting from marching across the page.

The Smalltalk Report

Oddly enough, a company with possibly the largest
and most deployable Smalltalk/OO workforce is
virtually unknown - Until Now.

Over 400 Experienced Smalltalk/00 Developers,
Mentors & Trainers Availahle Today.

Object/nfeligence

The Object Services Company

¢ On-Site Smalltalk/OO Programming & Mentoring
o On-Site Customized Smalltalk/OO Training

o OODBMS Development: ObjectStare, Gemstone & Versant

o GUI Front-End Design/Build to Legacy Systems
o Object Modeling, Analysis & Design
o Smalltalk/Object Mapping to Sybase, Oracle & DB2

Call (919) 859-7384 o e-mai: infoeobjectint.com

Oblectinteligence Comporation s 6300-138 Creedmoor Rd., Ste. 196 « Raleigh, NC 27612 « (919)848-0045 Fax

Smalltalk Idioms

RECTANGULAR BLOCK

How should you format blocks?

Smalltalk distinguishes between code that is executed immedi-
ately upon the activation of a method and code whose execu-
tion is deferred. To read code accurately, you must be able to
quickly distinguish which code in a method falls into which
category.

Code should occupy as few lines as possible, consistent with
readability. Short methods are easier to assimilate quickly and
they fit more easily into a browser. On the other hand, making
it easy for the eye to pick out blocks is a reasonable use of extra
lines.

One more resource we can bring to bear on this problem is
the tendency of the eye to distinguish and interpolate vertical
and horizontal lines. The square brackets used to signify blocks
lead the eye to create the illusion of a whole rectangle even
though one isn't there. Therefore:

Make blocks rectangular. Use the square brackets as the
upper left and bottom right comers of the rectangle. If the
statement in the block is simple, the block can fit on one
line:

ifTrue: [self recomputeAngle]
If the statement is compound, bring the block onto its own
line and indent:

ifTrue:

[self clearCaches.
self recomputeAngle]

March-April 1995

GUARD CLAUSE

How should you format code that shouldn’t execute if a con-
dition holds?

In the bad old days of FORTRAN programming, when it was
possible to have multiple entries and exits to a single routine,
tracing the flow of control was a nightmare. Which statements
in a routine got executed when was impossible to determine
statically. This lead to the commandment “Every routine shall
have one entry and one exit.”

Smalltalk labors under few of the same constraints of long
ago FORTRAN, but the prohibition against multiple exits per-
sists. When routines are only a few lines long, understanding
flow of control within a routine is simple, it is the flow between
routines that becomes the legitimate focus of attention.

Multiple returns can simplify the formatting of code, partic-
ularly conditionals. What's more, the multiple return version of
a method is often a more direct expression of the programmer’s
intent. Therefore:

Format conditionals that prevent the execution of the rest of
a method with a return.
Let’s say you have a method which connects a communication
device only if the device isn't already connected. The single exit
version of the method might be:
connect
self isConnected
ifFalse: [self connectConnection]
You can read this as “If I am not already connected, connect my
connection.” The guard clause version of the same method is:

continued on page 32

29

%ﬁ

Smalltalk Developers

JMB Realty Corporation, one of the nation’s largest
and most diversified real estate owners and managers,
is developing high impact knowledge-based software
for the retail real estate industry.

This is an opportunity for you to play a significant role
in state-of-the-art product development, and to work in
a unique, highly collaborative environment. If you’re a
professional with strong business and OO or GUI
experience, please mail your confidential resume to:

JMB Realty Corporation
Information Services Recruiting
900 N. Michigan Ave = Chicago, Illinois 60611
Internet: LLN @jmbcorp.mhs.compuserve.com
Fax: 312-915-1193

JOIN THE FASTEST GROWING LEADER
IN HEALTHCARE SOFTWARE

Information Technology Professionals
Atlanta, GA, Amherst, MA, Minneapolis, MN & Central Florida
HBO & Company (HBOC) designs, develops and maintains software
solutions for our business partner hospitals and other members of
the healthcare enterprise. Celebrating over 20 years of profitable
growth and with 1994 revenues exceeding $300 million, HBOC is
the second largest and fastest growing provider in our industry.

Smalltalk
The ideal candidates will have experience with object-oriented
analysis and design, PC sofiware development and Smalltalk

programming.

Visual C++

Positions require 2+ years of development experience with Visual
C++ in a Windows environment.

Sybase
Requirements include 2+ years Sybase SQL Server administration
experience and knowledge of relational table designs.

The professionals we seek must possess excellent communication
skills and the ability to work in a team environment.

HBOC offers excellent benefits, competitive salaries and a team-
oriented professional work environment where promotion A
from within is the norm. Forward/fax/email your resume to:
HBO & Company, Corporate Recruiting, STR3/95,
301 Perimeter Center North, Atlanta, GA 30346; fax A
0 (404) 393-6063; email to: lisaphillips@hhoc.com.

An Equal Opportunity Employer, M/F/D/V.

30

Smal

Pick Your Location

Smalltalk careers from Wall Street to Main Street.
Access the best Smalltalk cultures & applications.
Contract & direct careers nationwide. Client fee paid.

800-220-1044
Paul Morris Personnel
Send ascii to ptm @pmorris.com

To advertise
in the
Recruitment
section,
please call
Mike Peck at
212.242.S1GS

The Smalltalk Report

OBJECT TECHNOLOGY PROFESSIONALS

We're just as committed to

object technology as you are.

At SHL SYSTEMHOUSE, client/server computing isn’t just a part of our business. It is our business.
We're a billion dollar systems integrator dedicated entirely to business transformation through client/
server computing.

And we're using object technology to make these transformations a reality.

Join SHL and help us build mission critical applications using object technology from analysis to
construction, We'll challenge you and support you. You'll collaborate with the industry’s top object
technology professionals. And you'll make a major impact.

As a leader in 2 $100 billion industry, our potential for growth is extraordinary. If you've got the
knowledge, imagination and vision, your career opportunities at SHL are endless.

If you're committed to objecrt technology, join a company that is firmly committed to
your future. Please send your resume and letter of introduction to: SHL, Manager of
Human Resources, Dept. M]S-395, 300 South Wacker Dr., Suite 2500,

Chicago, IL 60606. FAg(: (312) 939-0066. E-mail: oops@chi.shl.com.

SHL is an Equal Opportunity Employer M/F/D/V.

SHL SYSTEMHOUSE Sversmmovss

SUCCESS
@1755%

At QSYS we have successfully
provided Object Oriented consulting
services to our customers for over

seven years. This has created opportunities

for Smalltalk Specialists to participate in

leading edge, mission critical assignments with

our Fortune 1000 clients.

Smalitalk Developers

Experienced Smalitalk and
ENVY/Developer consuitants
wanted for 3-6 month contracts
in Europe. 0S/2 and Visual Age
experience helpful.

Lingo Allegro U.S.A., Inc.

113 McHenry Road, Suite 161
Buffalo Grove, lllinois, 60089 USA
Phone: +1 312 203 4926
Fax: +1 708 459 8501

March-April 1995

If you have demonstrated experience implementing
large 00 systems using IBM Smalltalk or Visual
Age™ ParcPlace VisualWorks,® Digitalk Smalltalk/V,®
we would like to hear from you!

For further information, contact
Elspeth Koor at 1-800-999-9776.

1 Yonge Street, Suite 1801, Toronto, Canada
MBE 1W7 Fax:(416) 369-0515

90 Park Avenue, Suite 1600, New York, NY
10016 Telephone:(212) 984-0715

Email: 72072.2575@compuserve.com

31

Smalltalk Idioms

continued from page 29

connect
self isConnected ifTrue; ["self].
self connectConnection
You can read this as “Don't do anything if I am connected.
Connect my connection.” The guard clause is more a statement
of fact, or an invariant, than a path of control to be followed.
You may need to return a Nil Return Value to signal an
unusual condition.

SIMPLE ENUMERATION PARAMETER

What should you call the parameter to an enumeration block?
It is tempting to try to pack as much meaning as possible into
every name. Certainly, classes, instance variables, and messages
deserve careful attention. Each of these elements can commu-
nicate volumes about your intent as you program.

Some variables just don't deserve such attention. Variables
that are always used the same way, where their meaning can be
easily understood from context, call for consistency over cre-
ativity. The effort to carefully name such variables is wasted,
because no non-obvious information is communicated to the
program. They may even be counter productive, if the reader
tries to impute meaning to the variable that isn't there.

Call the parameter “each”. If you have nested enumeration
blocks, append a descriptive word to all parameter names.
For example, the meaning of “each” in:

self children do: [:each | self processChild: each]
is clear. If the block is more complicated, each may not be
descriptive enough. In that case, you should invoke Composed
method to turn the block into a single message. The Type
Suggesting Parameter in the new method will clarify the mean-
ing of the object.

The typical example of nested blocks is iterating over the
two dimensions of a bitmap:

1 to: self width do:

[zeachX |
1 to: self height do:
[:eachY | ...]]

Nested blocks that iterate over unlike collections should proba-
bly be factored with Composed Method.

You may need Composed Method to simplify the enumera-
tion block.

INTERESTING RETURN VALUE
‘When should you explicitly return a value at the end of a method?
All messages sends return a value. If a method does not explic-
itly return a value, the receiver of the message is returned by
default. This causes some confusion for new programmers, who
may be used to Pascal’s distinction between procedures and
functions, or C’s lack of a definition of the return value of a
procedure with no explicit return. To compensate, some pro-
grammers always explicitly return a value from every method.
The distinction between methads which do their work by
side effect and those that are valuable for the result they return
is important. An unfamiliar reader wanting to quickly under-
stand the expected use of 2 method should be able to glance at

32

the last line an instantly understand whether a useful object is
generated or not. Therefore:
Return a value only when you intend for the sender to use
the value.
For example, consider the implementation of topComponent.
Visual components form a tree, with a ScheduledWindow at the
root. Any component in the tree can fetch the root, by sending
itself the message topComponent. VisualPart implements this
message by asking the container for its topComponent:
VisualPart>>topComponent
~container topComponent
ScheduledWindow implements the base case of the recursion by
returning itself. The simplest implementation would be to have
a method with no statements. It would return the receiver.
However, using Interesting Return Value, because the result is
intended to be used by the sender, it explicitly returns self.
ScheduledWindow>>topComponent
~self

VisualWorks dialog development

continued from page 13

SUMMARY

In VisualWorks, a dialog is an application model that opens a
modal window. There are four basic purposes for dialogs: dis-
playing simple messages, acquiring simple information, provid-
ing application specific services, and editing objects. The stock
dialogs provided by the Dialog class provide basic dialog func-
tionality but there is still a need for custom dialogs. There are a
few drawbacks with the current approach to custom dialog
development in Visua[Works. A dialog that is a subclass of
SimpleDialog cannot leverage off of the powerful features pro-
vided in ExtendedApplicationModel, nor can it implement the
accept and cancel methods, nor does it provide the option of
opening 2 nonmodal window. A dialog that is a subclass of
ApplicationModel cannot access components during runtime and
its pre- and postbuild methods are never executed. For these
reasons, the ExtendedSimpleDialog class was created to compli-
ment the ExtendedApplicationModel class and facilitate custom
dialog development. A dialog should be designed as a subclass
of ExtendedApplicationModel. This provides the following
benefits: execution of pre- and postbuild methods, accept and
cancel action method execution, runtime interface access, option
for modal or nonmodal versions of the interface, and all the
additional features of ExtendedApplicationModel. Full source
code for ExtendedSimpleDialog and ExtendedApplicationModel,
as well as examples, is available from the archives at the
University of Illinois (st.cs.uiuc.edu). @

Reference
1. Howard, T, and B. Kohl, Extending the application model ,
SMALLTALK REPORT, 3(7): 1-7, May 1994.

Tim Howard is a senior consultant at FH Protocol, Inc. He is interested in
application development using 00 technologies in general, and using the
language of Smalitalk in particular. He can he reached at
7#213.1517@compuserve.com or 214.931.5319.

The Smallitalk Report

	By Article Title
	Building a Gopher from sockets and widgets
	Cleaning up after yourself
	Storing objects into files in VisualAge
	Suggestions for a successful user interface
	VisualWorks dialog development
	What? What happened to garbage collection?

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Farmer, Dave
	Gause, Amy S.
	Howard, Tim
	Knight, Alan
	Mueller, Patrick
	Sharp, Alec

	By Topic
	comp.lang.smalltalk
	Smalltalk Idioms

