
WiWltalk
EdmIs

John Pugh tind Pirul While

CarlOrm Uniwmhy 6 TIM Oh@ Pmph

SIGSPublicationsAdviaq BoaIII
Tom Atwood, Object Deeign
Fraryois Bnncilhon, 02 Technologies

Grn@ Bowh, Rational
Gewge Boswc@h, Oigiielk

Adele Goldberg, PercPlecn Bysinms

Tom love, IBM

Berirand Meyw, ISE

Meilir Pe@Jones, Weyfend Sysiams

Cliff Reeves, IBM

Bjeme Btmusirup, AT&T Ball Labs

Oeve Themes, Objeci Tachnolngy Inlerntimrnl

THESWTAU(tlEmrr Edtirisl Bomrt
Jim Anderson, LNgitalk

Adde Goldbe~, PBmPIBce Systems

Reed Phillips, Knowledge Sysmms Corp.

Mike Teylor, Oigitelk

Own Thorrm, UIjmtTachmbgy Intemariond

Columnists
Kant Back. !%st Class Software

Juantia Ewing, Oigitnlh

Grq Hendley, Knmvledg~ Systems Corp.

Tm Hmverd, FlothWMl Intnrnatiwml

Ed Mimes, Linaa Engirmming Inc.

Alnn KnigM, The Object People
William Kohl, RolhV&ll Intematimwl

Mmk lnrwr~ Hmems %ftwwe, km

Eric Smith, Knowledge Systems Corp.

Wham W7rfs-flmck ttwitnlh

SIGSPUBLICMIONSGROUP,INC.
Richwd P. Fi~dmen, Founder b Group Publiehw

Editorial/Production
Ktistine Joukhedw, Meneging Editor

Suetm Crrlligen, Pilgrim Floed, ltd., ksinn

Beth J. Budrey, Production Editw

Mwgemt Conti, Advwtiting Produciinn Cowdhmtor

Tenye Tmwnll, ErMwial Assistant

Brian Biebw, cover ilhmation

Circulation
Bmce Shiver, Jr., Circulation Oireciw

John R. !krgler, Cimulatinn Menefler

Mvmtising/Markating
Shirley SW Oirectm of SeIns

Gery Pwtie, Adverdsinn Meneryr, Ee.TICoast/Cmmdn/Eumpe

Micheel W, Peck, Advmtising Salns P&sistnnt

Seine Rnprnsonlaliv* Oimre Fuller b Awocitites, Met CcMst
40B.255.2991 (V), 40B,255.2BB2 (f)

Serah Hamiltun, Oirectw of Promotions end Reeeemh
Ceren Pnlner, Pmmoriww Gmphc Oesignw

Ministration
Marguerite R. Monck, Gnnerel Manegar

Oevid Chaltwpeul, Accounting Menagw

James Amenuvw, Bookkeewr

Mkhel~ WMkine, Special Aesishmt 10 tie Publisher
Joanna Lmvmtein, Administrefwn Awisierd

ESIGS
PUBLICATIONS

Publis.lmaOIJOURNALOFOBJECT-ORIENTED
PROGRAMMING,OBJECTMAGUINE,C++ REPCIRT,
5MALLTALKREFO~T,THE XJCIU~NAL,REPORTON
DBJEH ANALYSISk DESIGN,OBJECTSINEUROFL
DIRECTORYOFOdJEcTTECHNOLOGY,and OBJEKT
SPEKTRUM(Germany)

September 1994

September 1994

Features
Vol 4 Nol

Name space in Smalltal~ for Win32
Wayne Beaten
As Smalltalk continues to be used for larger and larger applications, the problem of

having one global name space is becoming a more prevalent problem. Wayne dis-

cusses a mechanism for introducing name spaces into Smalltalk/V for Win32 that
allows private classes to be defined,

Managing system changes with carriers
Pa72u Vi~amaa
An issue that often causes grief for developers working with a base implementation

is managing changes that are made to the base libra~. These changes are often nec-

essary but difficult to manage overtime. Panu introduces carriers to Smalltalk that
provide a mechanism for managing them.

Introducing VisualAge
Mark Lorenz
IBM has recently introduced its VisualAge product, targeted for GU1-based main-

stream software development. Mark offers a comparison of VisualAge’s features

with competing Smalltalk products by Digitalk and ParcPlace.

Product Report: Arbor Help System V2.O
Douglas Camp
Doug provides a review of Arbor Intelligent Systems’ Arbor Help System, a facility

for adding context sensitive help to Smalltalk applications.

Columns
comp.lang.smalltalk Performance tips

Aian Knight
Like all computing languages, Smalltalk has inherent ineffi-

ciencies that should be avoided. Unfortunately, knowledge of
how to avoid these inefficiencies is not available in any one

concise resource, Alan begins a two-part series this issue re-
viewing many of these known “gotchas” discussed on the

Smalltalk forum.

Smalltalk Idioms Using Patterns: Finishing the design

Kent Beck
I!ast issue, Kent began a discussion of how to effectively apply

design patterns (as opposed to discovering them). This issue, he
continues this theme with the discussion of applying’’Half Ob-

jecl” pattern.

Departments
Editors’ Corner

Product Announcements

Recruitment

4

11

14

17

19

23

2
26
27

ThBSmidhdk nqmwt[lMN# lEW&791BI ia puMishnd9 timm a ymar.mmthb mmpl in MN-41, Jul@rB, and Nc-OW. PuKtind bq SIGS Pubiiiiom Inc.,71 Wml
23nlSt,3ntFloor. Nw WC NY IEW1O. CMSnpqtight 19S4 by W3 Publicmions. AN rights wmrwd. Rqmdticm ot lhis Mwnrinl by elmrmnic Uansmi.ssicm. SEILM or

my odw mti will bs -d m a wiliiul h+dnrian ofdm 03 C@ghl Law md is Flnliy pmhhbd MmmiEl mq LM repdumd with eqrnw pmmtian from the pubhsh

Mailud Firm Class. Canado FM Itiadonnl Publicndom Mail Pmdwr SfdM AflmmnmI Nu 2e03BS

Subsci@ion mws 1 ymr [e isws) dmnesrit, S15 Foreign und C$mBda, $114. To mbmfi arlkles @E SEMI elmlmnic Iiles an dish in the Edh ar BB5 Meddr.4rd#

Wm W29, Omwa hlmia K2C 2N2, Canada, m via lnl~mel lo slmp~o~smeople.an,ca. HA Itmnais for ligums we Ma m 00S EPS, 7TE m GIF kmnaw. AIWWS

sand n papw UQV of your manmripl, indudmn cnmmrrrdy mpim ti qwr fiflurcs [laser OUIFUI is fine),

POSIM4STEFI: Smd nddmss clmngm and sutmxipdcm mdcm h Thn Smallinlk Rnpn P.O. GM 2027, I.mqhorno, W 19047. Fm sumh ❑n currmr mbscripdom call

215.705.5966, 215.7 B5.W173 (Ire). M097E@x4ink.mm (wmil), FflNIIO F4THE UM7E0 STATES.

I

2

We have just returned from attending the
ObjectWorld conference in San Francisco

and the first ParcPlace International Users
Conference in Santa Clara. The attendance

at the latterwas a big surprise, not only to us but also to
the organizers as 500 Smalltalk users gathered together
in what must have been the largest gathering of Small-
talkers ever in one place. Here’s a quick review of both

conferences, from a Smalltalk perspective.
ObjectWorld is a large conference and exposition

with more than 90 exhibitors, which, unlike 00PS LA,

has no booth size or height restrictions. The theme of
the conference was “Get Real,” and this was reflected

in the large number of presentations by early adopters
of object technology who now have real mperiences to
pass onto others. The most popular buzzwords remain
“distributed,” “client-server,” “interoperability,” and

“object-oriented.”
Smalltalk was much in evidence, although two of the

major vendors, Digitalk and ParcPlace, took the ap-
proach of being present in the booths of their partners

rather than having booths of their own. IBM unveiled
their new IBM Smalltalk product alongside their

VkualAge application development environment.
The most striking Smalltalk presence however was

found in the booths of the database vendors. In the
past only a few OODBMS-supported interfaces to
Smalkalk. In recent months this situation has changed
dramatically. At ObjectWorld, Objectivity introduced
Objectivity/DB for Smalltalk (their interface to

VkualWorks/Smalltalk) and Object Design was show-
ing ObjectStore for Smalltalk (the result of their part-
nership with ParcPlace Systems). Servio introduced
their 4.0 release of GemStone. Their booth featured an
innovative presentation on the impedance mismatch
between objects and relational databases complete with

“Relational Wall” that the poor hapless relational data-
base used to bump into. On the nonobject database
fi-ont the major activi~ has been on bridging the gap
between Smalltalk and relational databases; permitting
SmalltaLkprogrammers to manipulate relational data

as objects. Both the ObjectLens feature found in the
new Database Application Creator component of
VkualWorks 2.0 and the UtiSQL Smalltalk interface
provide developers with the ability to create classes
from relational tables or create tables from Smalltalk
class definitions,

For a number of years we have advocated that the
best approach to CASE for Smalltalk developers would
be the integration of tools into the Smalltalk environ-
ment that wotid permit developers

to move bidkectionally and seam-
lessly between analysis, design and
implementation. A major objective

of such systems is to keep informa-
tion from each phase consistent in
the presence of changes. Thk is a

major task and developments are

still in their infancy, but the first
Wits and potential of thk approach
can be seen in the initial release of
the Synchronicity product for Enfin
Smalltalk, where changes made to
the business model are reflected in

the Smalltalk implementation and
vice versa.

Fhm.lkts for the ComputerWorld

JOHN PUGH

PAULWHITE

Object Applications Awards included a number of pro-
jects utilizing Smalltalk technoloW, Caterpillar’s sys-
tem for forging steel plating and problem resolution

and two production client-server systems built with
Enfin Smalltalk at Sprint and Canadian Tire.

The ParcPlace Users Conference opened with two
half-day tutorials; the first on Object Behavior and
Design (OB/vb) ParcPlace’s object-oriented analysis

and design methodoloW, and the second aimed at de-
velopers moving their applications from VkualWorks
1.0 to 2,0. Many of the technical sessions were devoted
to the new capabilities added in the new release of
VkualWorks 2.0 such as interacting to relational data-

base report writing and business graphics and connect-
ing to C and DLL’S, One of the most significant recent
developments in the Smalltalk world has been its
adoption by major systems integrators such as Ander-
son Consulting, EDS, and Anerican Management
Systems. Conference presentations featured dkcussion
of the AMS ObjectCore framework, which extends the

VisualWork’s environment in areas such as data valida-

tion securi~ and internationalization. The conference
also included an exhibition by approximately 20 ven-
dors of Smalltalk-related products and services and a
reception held at the Tech Museum of Innovation in

San Jose, CA. The highlights of the conference, how-
ever, were provided by the inspiring and thought-pro-
voking keynote speeches of Adele Goldberg and Alan

Kay; two of the original Smalltalk pioneers.
Fhmlly thank you for all your positive comments re-

garding the new look of THE SMALLTALK REPORT.

We have passed on your praise to those responsible.
—The Editor~
The Smalltalk Report

I

I

STEPINTO11[FUTUREWITHTHECIIMPIINY
THIITIIEFIIIEIIOBJECTTECIIHO1OGYSERVICESi

When object oriented programming was in its infancy, such as American ManagementSystems,GECapitalCorporation,IBM,

KnowledgeSystemsCorporationwas alreadyputting it to work in com- NorthemTelecom,ThePrudential,SouthernCaliforniaEdisonand Sprint,

panics like yours.Today,we’re positionedto take you into the future of the STAPis a total immersion,project-focusedprogramthat compresses

object technology in ways that no other companycan. With the most six to ten monthsof learningexperienceinto four to sixweeks.

complete range of services in the

industry, KSCcan assure your suc-

cessful object transition everystep of

the way. Classroominstruction, pro-

ject-focused apprenticeships, and

consultingare all part of ourexclusive

commitment to object technology

services.

P

‘J
‘~ Once you’ve made the deci-.

~sion to moveto objecttechnology,you

want to get the benefits as quicklyas

possible. KSCoffers a complete cur-

riculum of classroom education, at

your site or in our corporate training

facility. Thesecourseshelpyou estab-

lish a firm foundation in object tech-

KSC can also tackle your

object technology projects head-on

with the most experiencedanalysts,

designers and programmers in the

business. You can outsource the

entire job, or use our consultants to

lend expertiseto your own develop

mentgroup,

In addition to our service

offerings, KSC is a distributor of

third party tools such as ENVY@/

Developer, the premier Smalltalk

team developmentenvironment.

If you’re ready to step into

the future of object technology,call

the one companythat will lead you

nologyconceptsandSmalltalkprogramming. there—Knowledge Systems Corporation, 919-481-4000. Or email:

Tocut monthsoff your transition time, we’ve developedan exclu- salesinfo~ksccary.corn. 4001 Weston Parkway, Cary, North Carolina

sive SmalltalkApprenticeProgram(STAP).Already provenin companies 27513.

Is
KNOW1[IIC[SYSTEMSCORPORATION

919- 4!1- 4000

,—
Name spaces in Sma[ltalk/V
for Win32
WayneBeaton
A 11in SmaUtalkis not perfect. However,SmaIltalkisbetter
thananythingelsethat’savailable.One of themajor
problemswith SmaUtelkisitsannoyingtenden~ to

dump all classesinto a single global name space.This means that if
I have a classnamed “Employee: then nobody else had betterhave
one. There arethose (iicluding myself) who would say thatifyou
have a conflict between classesnamed “Employee,” then chances

areyou’ve implemented something incorrectly.But nevermind
that.

For yeare,programmershave been exchanging useful Smalltalk
code quite freely, today,therearea number of vendorewho are
selling Smalltelkclssseethat provide many wonderfully usefld fa-
cilities.With more and more classesbehg included in images,

programmers arestardng to prefix their c~sses to ensuretl& their
names areunique. For exemple, if I suddenlywere to become in-
sane,I might prefix everyclassI make with W1’B(Wayne Thomas
Beaten). My image then could be polluted widI classesnamed
WTBSortedDicdonary,V71’Mrnployee,etc. Compound this with the

annoying abbreviationsthatsome people choose to employ, and
you can have an entireimage filled with classesmmed
lVllErtdDicg WTBGbLEmplnyee,rmdWTBLclErnployee.What do
these classesdo? Whatever.

When I get a bunch of code from somebody else,I generally
don’t want to know how it works.That it works is enough (I imag-
ine that d-is is the philosophy behind DLLS).AU thatI reallywant
to know is the pubic inta%e (thoroughly documented, of-

couree).The bottom line is, I don’t want to have to look at stuff

Object
subclass: #Junk
imstanceVariables:”
classVariables:”
poolDifionaries: “ !

I,rnalltalkati#Junlr~lassesputDitiomuyrmv! I
Junlcllassesab ‘Junk’put Junk! I
Srndtalk removeKey#Junk ifAbsenh [] ! I

Figure 1. Win cods to dsfine e cless snd move k into a pool dictionary.

Object
subclass: #UsesJunk
instanceVariables:”
clasNariables: “
pooLDitirwies: ‘JunkClaeses’!

I
!UsesJunkmethods !
anewerANewJunk

‘Junk new ! !

1 I
Figure 2.Using e cless stored ins pool dictionary.

4

that I don’t need to look at.If the code requiressome 50 classes,
then great— just don’t make me look at them.

What is needed to bring Smalltalkto the next level, is some
way of permitting programmed to use the names that make sense
for their classeswithout worrying about conflicting with other
names, and the abiLityto hide awayclassesthat nobody elsepertic-
Ulsrlycareseklout.

In the February1993 issueofTr-rESMALLTALK REPORT, Nlk

Boyd discussedmodules for Smelltslk. Modules provide away of
hiding “private”classes.This provides some of the desiredbehavior,
but more is needed.

HAVE I GOT A DEAL FOR YOU..,

While this is not pmticulsrly clever,radical,or new, it’s something
that should have been done yeen ago. In fact, I marvel that this
hasn’tshown up yeGtherearc many very smartpeople in the

Smalltalkcommunity In all fairnessto Digit& their code seems
to indicate that they areleaning in this direction (end in fact,

SmalltalkAgents has had this from the beginning).
SrnaUtaIkneedsname spaces.The globalvariableSmallcdkis a

name spacq thisiswhere ellthe global namesarekept.We shouldbe
ableto havemore thanjust one name spareand useitjust likewe use
the global name Tam. In fzozwe can do thisalready

Pool dic-tioneriesaremoderatelyusefid things that can be used
to hold information that is to be sharedbetween classes.In our

code, pool variablesareaccessedjust like global variables.Pool dic-
tionariescan hold many wonderfid things. In fact, they can hold

any object — numbers, strings,collections, classes,etc.
When a classis defined, it is createdautomaticallyas a globel

variable.After a classhas been created,we easilycan include it in a
pool dictionruyand then remove the global reference.

Global variablesareell kept in the globel variablecalled Smsll-
tslk Smslltalkis en instenceof the classSysternDifionary.When
you attemptto remove a referenceto a classfrom Smalkalkusing
~e meth;d rernove~., the classitselfis removed from the eyst;m.
However, the method rernoveKe@lbsent does remove the key
from %nsll~ but it has no effect on the class.

F&xe 1 shows some code that can be filed-in to createa class

and then moved into a pool dictionary Figure 2 demonstrateshow
this classcan be used by another.Whale the magnitude of the use-
fidness of the demonstration method may not be appreciated,it is
obvious that fkm a use standpoint,very little is dif%ent. Only a
mention of the pool dictionary is requiredin the classdefinition to
use the class-in-a-pool-dictionary

We can now ileely define anotherclasscalledJunk and either
keep it asa global variable,or move it to enotherpool dictionmy.

When the compiler encountersa variablethatbegins with an up-
The Smalltalk Report

GetPowerfulNewControlsforSmalltalW’
Subpanes”lN is a library of unique
controls for Smalltallr/V.Place and edit
them interactively with WlndowBuilder’M
RoN When you use the right controls,
your applications will be easier to use. And
you’ 11save time because you won’t need to
fight controls thataren’t right for thejob.

A Table of Editable Cells
TablePane provides a scrollable grid of
editable cells. In addition to handling a
matrix of strings, it can manage a collection
of objects. Users edit cells in-line by
selecting them with the mouse or keyboard.

Hierarchical List Box

n

Et%, HierarchicalListBox-W
extends a normal listbox

M.aCbu to view a hierarchical
❑ w.
❑ mac-ld. group of objects.
❑“- Collapse or expand the
-w
E-1. hierarchy,use icons, use

Il#w 4 indentationto show the
relationships. Display any objects thathave
hierarchical relationships.

A List Box with Columns
ColumnarListBox displays multiple pieces
of information about each object of a
collection. You control headers,justifica-
tion, color*, multiple select* and more.

Bitmap Panes, 3D Frames, & More
Subpanes/V also includes BitmapPane, 3D
frames, ValueSet,Gauges, date, number,
and time editors, BitmapButton, and more.

No Runtime Fees
No runtimefees for applications developed
with Subpanes/V. It includes complete
documentation, full source, free support to
registeredusers for the first 90 days, and a
30-day money-back guarantee.

NW! For os/2 $235 (v2.0)

For Win $129 (v].0)

For Win32 $195 (V1.o)

“These features in version 2.0 only. Version 2.0 for Wn and
Win32 will ship in 3094.

Subpanes/V requires WindowBuildar Pm/V Subpanes PJ is
compatible with Team/l/ and ENVY/Daveloper. Subpanas is
implemental in Smalltalk. as subclasses in Digitalk’a Subpane
hiararchy. SupporI subscription available.

...AndCUA’91ControlsAreEasyToo!
WidgetKit’”/CUA’91 is a library of
CUA’91 controls for Smalltalk/V. CUA’91
controls provide a distinctive and powerful
user interface. WidgetKit/CUA’91 makes
them easy to use and portable. Place and
edit the controls interactively with
WhsdowBuildefl Pro/V. WidgetKit/
CUA ’91’s specialized editors give you easy
access to all of the control’s attributes.

Notebooks, Cached for
Performance
CachedNotebooks provide the CUA’91
notebook control. Performance is dramati-
crdly improved by dynamic page loading.
You get complete control of orientation,

k-$[”’’’[-1‘pi
“:::+~

I — 1

SHARE

tabs, align-
ment, color,
binding, and
caching.

Containers
CuaContainers
provide text or
icon representa-
tions of items they
contain, Items can
be dragged and
dropped between
containers. Supports icon, name, text, tree,
and detail views. CuaContainers can hold
objects of any type.

Value Set and More
CuaValueSetprovides a way for users to
select from icon and text choices with a
mouse click. WldgetKit/CUA 91 also
provides full support for the rest of the
CUA’91 controls, including slider and
spin button.

=;

For WindowBuilder Pro/V
WindowBuilder Pro/v lets you build
Smalltalk/V user interfaces fast. Place the
controls and edit them interactively.
Increase consistency, ease maintenance.
Call for a free brochure.

No Runtime Fees
No runtime fees for applications developed
with WldgetKit/CUA’91. It includes
complete documentation, full source, free
support to registeredusers for the first 90
days, and a 30-day money-back guarantee.

rEEEi!d
WidgetKit/CUA91 requires WindowBuilder Pm/Y WidgetKit/
CUA’91 is compatible with Taam/V and ENVY/Developar.
Includes DLLs. User interfaces built using WidgatlWCUK91 are
portabla to suppotied platforms. Supporl subscription available.

G 3 ObjectshareSystems,Inc.
5 Town& CountryVillage,Suite 735

4 SanJose, CA95128-2026
Call to order today (408)970-7280

E Fax408-970-7282

:
9AM to 5 PM PSX Monday through Friday

m
CompuServe76436,1063

30 dav monev-back guarantee
INc. @ Objectahare SystemsInc.1994

.

Now! Automatic Documentation
For Smallta!klV Development Teams — With Synopsis

Development Time Savings

SYIIO@S produces high quality class documentation

automatically. With the combination of Synopsis and Coding Documentation

Smalltalk/V, you can eliminate the lag between the Without

production of code and the availability of documentation. Synopsis *
A

start Finish

Synopsis for Smalltalk/V
Documentation

● Documents Classes Automatically
With

● Provides Class Summaries and Source Code Listings Synopsis
● Builds Class or Subsystem Encyclopedias A A

● Publishes Documentation on Word Processors
start Finish

● Packages Encyclopedia Files for Distribution Products Supported:

● Supports Personalized Documentation and
Coding Conventions

Digitalk Smalltalk/V
OTI ENVY/Developer for Smalltalk/V

Dan Shafer, Graphic User Interfaces, Inc.:
Windows: $295 0S/2: $395

“Every serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make documentation 8609 Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-847-2221 Fax 919-847-0650

—

per - character,it firstchecksthe pool dicdonariesof the classand

then Smalltalk(1imagine thatclassvariablesarealsoconsultedat
some point). We can munt on our method using theJunkclass
defined in the pool dictionaq before it attemptsto use anyother
Junk& thatwe may create.There is some potentialfor troubleifa
classusesmore than one pool dictionary— the orderin which mul-
tiplepool dictionariesaresearchedis unspecified(in the processof
defining a class,a collection of pool dictionarynames is createdas a
set and then turnedinto an array).

THAT’S GREAT,BUT...

This pool dictionq ideaworks well, with a muple of exceptions.
The browsing toolsjust aren’tup to snti. When the Class Hier-

archyBmwserpopsdatesit3listof classes,it askseach classhr its
subclasses.The listof classesis actuallya listof tke names of&es.

When the useractuaUyclickson a classname,the stringis usedto
askSmalltdk fir the actualclass(those reademthathavebeen pay-
ing attentiond notice the obvious problem with this).

It appearsasthough Dhgitalkhas been antiapating the inclu-
sion of name spacesin some futureversion of their Smalltalkpro-
ducts.In the process of creatinga class,an instanceof ClassInstaller

is created,thii ClassInstaUeris provided with the “environment” in
which to install the class.The “environment” is expectedto be
something with dictionq-lke behavioq by default this always
ends up being Smalltak (an instanceof Systernllicdommy).Any
6

other dictionary can be substituted(by changing the appropriate
methods) — except that the key that is placed into the dictionary
alwayswill be a SymboLThe SystemDictionW called Smrdltalk
uses Symbols for its keys.Pool dictionariesuse Strings(again, an
attentivereadermight notice thatwe have a bit of an inconsistency
here...)

NAME SIWsES

Pool dictionariescan be usedto providename spaces.However, it

would be nice to havean easy-to-usefacilityto use name spaces
searnlessly.There is perhapsmom behaviorthatname spacescould
havehat couldjustifj the station of a new class.l%e classNarsv+

Spaceprovidesthe behaviorrequiredfor name spacesin SrnaUtalk
Tbis class,combmed with a helperclassand some smallsystem
changes,provideseasy-to-useprotocols for usingname spaces.

Creatinganew name spaceis a siiple matterofpassing the
NarneSpaceclassthe messagenew and storingthe resultin a global

variable.For convenience,name spacesknow d-r%nam~ thismakes
thingsalittleeasierlater,when we need to know theirname.@urc 3
showshow a name spacecarsbe createdand stored.

NameSpaceshavebeen providedwith allthebehaviorrequiredfor
them to petiorm asa S@mnDictionay and asa pool dictionaryThe

implementationis simple the classhastwo variables,name and dic-
tionaryMethods havebeen providedto accessthe name sp~ just as
a SystemDicdonaryor a pool dictionaryis accessedThe methods at,

akifAbsent, abput, includes, and includesKeyworkjust asexpected.
The method add: is neededfor when a new classis creat~ sfterthe
clawis created,an associationcontainingit is added to the name
The Smalltalk Repod

That’s right, you get the
renowned VisualWorks
development product absolutely
free with each license of
HP’s Distributed Smalltalk
development bundle.

If you want to build client-server appli-

cations that truly give more power to

your end users, you’ll want HP

Distributed Smalltalk. You get tools

and CORBA compliant class libraries

for object request broker and related

services, along with the VisualWorks

Smalltalk environment and GUI

builder. And that gives you a faster,

easier way to develop and deploy dis-
tributed applications on any combina-

tion of supported UNIX and PC plat-

forms.

We’re convinced that once you try

HP Distributed Smalltalk, you’ll be

hooked. That’s why, for a limited

time, we’re willing to give you the
VisualWorks portion of our product

FREE.

Contact us today, for details!

Phone: (408) 447-4722
F=: (303) 229-2180

Attention: VisualWorks Offer

e-mail: dst@sde.hp.com
* Limited time offer.
Minimum order 5 licenses.

@ 19ss4 Hewlett-PackardCompany

E!zHEWLETT@
PACKAHD
space(thisispartof theinnerworkingsof Smalltalk— it reallyseems
odd to be ableto add an associationto a diciionay.. .).The method

assoriatititifhent alsois requitedaspertof thepool dictionary
bchavioq when a pool variableis accessed,the associationcontaining
thevalueis borrowedhm the dicdonary.I haveaddedanother
method, @ (at-sign),which providessome “eyntacdcsugaf for the at
message.

AU of the methods that involve a key convert the key into a
symbol. This way it is possible to accessa name space by eitherus-
ing a sting or a symbol asthe key.

Adding a classto a name spaceis mother simplematter.When
the classis created,the name spacein which the classshould resideis
specified.As well, the namesof allthe name spacesthatthe classhas
accessto arcspecified.F@.ue 4 showshow a classcan be createdin
the name spacecalledTestNameSpacewith mess to the name spaces

calledNameSpaceland NarneSpace2.
The name spacesarelistedby theirname,just likepool dictio-

naries.This is a mmeequenceof how they arebeing storedand used.
Currently name spacesareassociatedwith a classthe sameway a

pool dictionaryis — by theirnames.When the compiler needato
accessavariableiiom a pool dictionary it goes through its collec-

tion of pool names and asksSmaUtalkfor each one.This forces on
us a restrictionthatname spacesmust all be globally known. A
small change to the method pooUMableScopeFor, in classCompi-

Lerhterface,fixesthis restrictionto permit name spacesand pool
dictionariesto residewithin name spaces.

The method Subclassktance%riablelhmes
classvariablekmes~ooll)idomuies
nameSpacesAccessedmarneSpacehasbeen added to the classBehav-
ioq it addsa smalldeltato the originalmethod subc&instanceVari-

ableNames::poolDictioties. The originalmethod createsan instance
of classClassInslaller,loadsit up witlcinformationi%rthe new class
and thensendsthe messageinstall.‘l%e new method createsan in-
stanceof classNameSpaceClassTnstallerthattakesname spacesinto
considemtion.

One of the instancevariablesof Classhstdk is “environment”;
Classhwtalleronly looks at its environmentfor global information.
By dei%ad~thisvariableholds SmalltalkWhen an instanceof Narne-
SpaceClassInstaUeris ueated, the etinment variableis set to the

name spacespecifiedin the formal parameter.
When theNameSpaceClassInsMlercreatesa new class,it first

checksto seeif theparametersit hasbeen providedwith arevalid (the
superclassricesmost of thework).The name spacesspecifiedare
checkedto eneumthattheyarein factname spaces.Once everything

TestNameSpace:=
NameSpacenew name: #TestiameSpace

Figure3. Cresting a name space,

Dbject

subclass: #Test
ixsabmceVariables:“
claeshiables: “
poolDicLionaries:“
nanceSpacesAccessed:

‘NameSpacelNameSpace2’
nameSpace #TestNameSpace

Figure 4. Darining a class in a particular name space that accasses classes

in othar nama qracas.
September 1994 7

hasbeen validated the name spacesareincludedvviththe pool dicdo-
nariesand the installationcontinuesasnormal

The CompilerInterface method pooNhiableScopeFo~ was

changedto look into tbe namespacefor pool C1.itionasiesrather
thandkecdyinto Smalltrdk.Namespaceshavefmtherbeenex-
tendedso thatthemethodsat, akifldnert, includes:andin-
cludesKeyalllook into themachwfor thespecifiedkeyfirst,errdif
thekeyis not partof thenamespace,thebuck ispassedto the
outernamespace(Smalltalkby default).The currentimplementat-
ion onlyprovidesfor one levelof namespaces(i.e.,no name
spaceswithinnamespace.s),butthepotentialfor nestedname
spaceshasbeenworkedintothecode.

Namespacesarestoredin aclasswithpool dictionaries.Formost

p-es, ~ is-tti~ — lmwever,whenaclassprints itae~ it
would be betterto not havethe name spacesappearaspool dictio-
naries.The method fileOutOn.in classClasshasbeen modified to
accommodate name spaces.Methods havebeen added to errtract
name spaceinformation tlom a class;themethods nameOfNarne-
Space,narnesOfNameSpaces,arrdsharedhiablestring answerthe
name of the name spacethe classbelongs tq the names of allthe
name spacesthe classhas aoxss to, and a stringcontainingthe
namesof allthe pool dictionariesthatthe classaccesses,respectively

WITtlA UlllE BIT MORE EFFORT...

‘1’lis articlediscussesnames sparesexclusively.It does not consider
the modifications thathaveto be made to the browsing tools in or-
der to make anyrealuse of name spaces.As ~ the code pre-
sentedhere could be changed easilyto permit name spaceswithin
8

name spaces.An even easierextensionwould permit variableand

variablebyte eub&es to existin a name space.

CONCLUSION

This article has been written primarilyas food for thought. The
code provided here is in no way a complete solution.
It reallyseems odd that Smalhalk has lived as long as it has with-
out some of the fimdarnentslproblems having been addressed.It
seems thateverybody that uses SmalltaLkcan tell you 40 things
that arewrong with it. Fortunately those same people can tellyou
four billion thngs wrong with the alternatives,
As more and more industrialstingth applications arevmittenin
Smrdlt~ and more classesam becoming commercially available,
naming mnilicts areordygoing to get worse.

Soon, Srnalltalkerswill be ableto tellyou 50 thh-cgsthatarewrong
with Small@ and only threebillion thingswrong wit%tbe altern-
atives.The gap is closing and SmaUtalkhasto evolveto keepahead.

OH YEAH...

Alan IGight pointed out to me Aat I misused a term in a previous
submission. I had made referenceto fictional programming
when I had meant proceduralprogramming. Perhapswith age I

will gain a better appreciationfor terminology... ~

WayneBaatorris a seniormemberof the technicalstaff et TfraObject%opla.

Hia interestsinclodeuserinterfacesandneuralnatwrrrks,He can be reachad

et The ObjectPeoplain Ottawa,ON,Canada,at f13.225,SS12,or by emailat

weyrru@t)bjastPaopla.nrr,ca.
receiver is checked fist, then the outer scope. If the key is not

NameSpacemethode for aeceeaing
found, then the evahration of absentBlockis answered.”

mrne
“seti didionacy

at: (self corcvertKeyaStringOrSymbol)
“name ifAbsenk [

seLfoutsideScope
mnm aSyrnbol

name:= a$nnbol
ak aStringOrSymbolassyrnbol
ifAbsenk absentBlock]

NameSpacemethodsfor initilisfng @SaStringOrSyrnbol
“Answersthe object found at the key named aStringOrSymbol.”

titilise
self dictionzuy self defaukDiciionary

‘self at aStringOr5ymbol

WmeSpacemethodsfor accasaingwithaseociatisra
at aStringOrSynrbol

“Answersthe object found at the key named sStringOrSyrnboL”
‘self

Idd anAssociation
‘Whenthe compilaradds a class, it adds it as

ak aShingOrSycnbol
ihlbsenti [“self error: ‘Keyis Missing’]

an association. Why?Nobodyreally knows
for sure...” ah aShingOrSymbolputi anObject
self ‘Puts anObjectat keyposition aStringOrSyrnboL”

ah (self convertKey anAssociationkey)
puk enAssociationvalue

“self dictionary
ak (selfconvertKqc aStringOrSymbol)

Issociatioculti&ringOrSymbol Wsenk absentBlock
pub anObject

“Whenthe compilerattempts to access a global, it wants the NameSpacesnathodefor iterating
association. Checksthe receiver for the name fist, and then
the outer scope.” do: block

“seti dictionary ‘Tvaluatesblock for each object in the receiver.”
sssoaatiorulk (seti convertKey aStringOrSymbol)
ifAbsenk [

self dic+ionacydo: block

self outsideScope NameSpacemethodsfor removing keys
associational aStringOrSymbolasSyrnbol
ifAbsenti absentBlock] removeKey sSymbolOrStingifslbsent abserctSlock

TameSpacemethodefor acceeairrgbykey
“Removesthe object with key aSyrnbolOrShingfromthe receiver.”
self difionary

lb aStringOrSymbolifAbsenk absentBlock
removeKey (self convertKey aSyrnbolOrString)

“Answersthe object found at the key named aStringOrSyrnbol.The
ifAbsenh absentBlock
The Smalltalk Report

NameSpaeemethods for testing

includes: anObject
“Answerswhether or not an object is included in the receiver or the

outside scope.”
“(seti dictionary includex anObject)or

[self outaideScopeincludes: anObject]

fncludesKqr aShingOrSymbol
‘hrwera whether or not an object with keyaShingOrSymbolis

included in the receiver or the outaide scope.”
seLfah aStringOrSymbolihlbsenk [’false].
tie

isNameSpace
“Anawerawhether or not the receiver is a NameSpace.”
tie

NameSpacemethods for scopfng

outsideScope
“Answersthe name of the receiver’soutside scope.m
‘Smautaur

NanreSpaceprivatemehds

defaultDiclionary
“Private- hnver the difionary to use by det%nrlt.”
“Difionay new

convertKey r&ingOrSymbol
“Private- ConvertsaShingOrSymbolinto the appropriate object to be
used as a key in the receiver.”

‘aShingOrSymbolassymbol

dicbonary alliciionary
“Private”
dictionary:= aDitionary

dictionary
“Private”
‘ditionary

Behaviormethods for namespaces

subclass:claaaName
*ceVariableNances: instanceVariables
cla.whia.bleliame~ classlhciables
pooUSictionariexpoolDichonaries
nameSpaceaAcceasd narnesOfNameSpaces
nameSpacwrrameOfWrneSpace

“Createor mow the cLsssnamed <className>to be a subclass of the
receiverwitli the spealied instance variables, classvariables, pool
difiormies, and class i@ance variables.”

I installer I
installer:= NameSpaceClassInataUer

name: clapsName
environment (SmaUtaUrak nameOfNameSpace)
Subclasaohself
inatanceVariableNames:instanceVtiables
variablw seIfisVafible
pointers: @e
classVariableNames:claasVariables
poolDi~onaries: poollliciionaries
nameSpaces:namesOfNameSpaces
nameSpacwnameOfNameSpace.

“inatauer ip..stau

ClaasIrrsWersubclass: #NameSpaceClassInataUerinatanceVariableNames:
‘namesOfNameSpacesnameOfNameSpace’classVariabkNameK

“poolDitionaries: “’nameSpaces:”nameSpace:#SmaUtaUrcategory
‘NameSpaces’
September 1994
NameSpacaClassIsratallerclassmethodsfor fnatancecreation

name: claasName
environment globalDifionay
subclassOksuperclassObject
instanceVariableNames:inatancehiable.string
variable: variableBoolean
pointers: pofnterBoolean
cl.assVariableNames:classtkrriable.string
pooUlidionaries: poolDictionacyStrircg
nameSpaces:namesOfNameSpaces
nameSpace:nameORhneSpace

I tiller I
instaUer:= self

name clasaName
envirorurwrk globalDifionary
subclassOf superclassObject
instanceVariableNames:instanceVariableStig
variable variableBoolean
pointera: pointerBoolean
classVruiableNames:classVariableString
poolDicdonaries:poolDiclionaryString.

in.st.dler
namesOfNameSpaces:namesOfNameSpacesArrayOfSubstrings;
rcameOtNameSpacenameOfNameSpace.

“instaUer

NameSpaceClaaaInstaUermethods for accessing

rcameOfNameSpace:asynrbol
nameOfNameSpace:=a.$rnbol

namesOfNameSpaces:aCoUefion
namesOfNarneSpaces:=aCoUe&on

nameOfNameSpace
‘nameOfNameSpace

namesOfNameSpaces
“namesOfNameSpaces

NameSpaceClassInstallermethodsfor inahllhg

namesOfPoolshWrcceSpaces
“Private - Aww-crsan array containing the names of the pool dictio-

naries and the names of SUname spaces.”
‘self poolNames,

self namesOfNameSpaces,
(Arraywith: self nameOfNameSpace)

editsubclass
“Createor change the subclass the receiver should imstdl. Overrides

We superclass implementation to include name spaceswith the pool
dictionaries.”

‘self metaclass
name: self clad+ame
envirorunenb seUenvironment
subclassOf:self superclass
inatanceVariableNsnres:

self inatanceVariableNames
variable: self ia%riable
words: tnre
pointers: self iaPointers
claasVariableNames:

self classVariableNames
poolDiciionarieK

self namesOfPoolaAndNameSpaces
commenk Wing new
changed: NI

NameSpaceClaaaImrtaUermethodsforvalidaUrsg

validate
“hwer hue if the receiver contains a legal class defition, false

otherwise. Overridesthe super class implementation to validate
name spaces.”

I “super validate end: [selfvalidateNameSpaces]
9

1

didateNameSpaces
“Private- Ensuresthat the name spaces specified are aUvalid name
spaces.”

(NameSpaceisNameOfNameSpaceself nameOfNameSpace)
ifFalse: [

“seLfinvalidBeeause:‘Nameapaceis invalid’].
self namesOfNameSpacesdo: [:each I

(NameSpaceisNameOilhrcceSpacweach)
ifFaLse:[

‘self irwalidBecauae:‘Namespace is invalid’]].
“hue

lompilar[nterfacemethods for name spaces

loolVariableScopeFonaClass
“Returna scope containing all of the pools for the argument class.”
I spool poolVariableScopeI
pooNkuiableScope:=MultiplePoolScopenew.
allass sharedPools do: [:pn I
“Lookat the class name space.It wifl automatically look at the

outer scope.”
spool:= “was–~ Smalhalk”allass nameSpace

ak pn i.fAbsenk[nil].
aPool==nil ifFalss [

pooWariableScopeadd:
(self scopeForPooLspool named: pn)]].

‘poolVariableScope

lass methodsfor namespaces

ileOutOruabeam
“Appendthe class definition message for the receiver to aStream.

Extendedto file out name apaceinformation correctly.”
I atig I
aStream cr;

neatPutAILseti superclassprintString; space;
nerrtPrrtAILself kindOfSubclass;space;
nextpotilb name storeShirrg; et; space; space.

se~ iaBits
ifFaLse:[

a.%eam nextPutAIL‘insta.nceVariableNamex‘.
(aShing:= self instanceVariableShing)isEmp&

ifFalse:[aSbeam cr; nerrtpcrtfdt ‘ ‘].
aStream

nextputldti astrircgstoreString;
cr; spacq space].

S.Sbeam
neatputtllk ‘classVariableNames:‘.

(aSbing :=self classthriable.%ing) isEmpty
ifFalae:[aSheam er; neatPutAIL’ ‘].

aStieam
nmrtput.rllka%ing storeShi.ng;cr; apac~ space
nextPutAk ‘poolDichrcaries: ‘.

(aShing:= self aharedVmiableString)isEmpty
ifFalse:[aStreamCUnextPcrtAlk’ ‘].

aStream
nextputtilk a.%ing storeString.

aSbeam
CUspace; space;
nexLPutAlk‘nameSpaces:‘“.

selfnamesOfNameSpacesdo: [:each I
aSheanr nextPutAll each; space].

a.%eam
ne8tPut $’;a; space; space;
nextputtdb ‘nameSpace:#’;
nerrtPutAILseMnameOfNameSpace

emovel%omsysterncheekForInstances
“Private - Remove the receiver from Smalltslk Report an error if
0

there are any subclasses or instances of the receiver. If

checlrForInstsnccs is true then we check if there wc any instances of
the receiver. Remove the receiver frnm its name space, not

necessarily SmsfltsJL”
I index index2 I
((OrderedCollection new

add: UndefinedObjeti
add: Class;
add: True;

add False;
add: DeletedClass;

add EmptySlot;
add SnraUInteger;
yourself)

inchrdes: seLf)
ifhus [

‘self erroc ‘Class cannot be removed.’].
checkForInstances HTrue: [

self ahstances notEmpty ifl’rue:
[Aself emo~ ‘Has instances’]].

self aUSrbclasses notEmpty me:

[Welf erro~ ‘Has subclasses’].
self nanceSpace ‘%as –~ SmaWlr”

removeKey selJ Symbol ifAbsenh [],
self class superclass ==NI ifFalse:

[self class superclass
removeSubclass:seti class].

self class become: DeletedClasaclass.
self superclass==NI ifFalae:

[self superclass removeSubclass:seWj.
selfbecome: DeletedClass

narneSpace
“Answersthe name space the receiveris a pact of.”
“NameSpacenamed: self nameOfNameSpace

narrceOfNameSpace
‘Answersthe name of the name space the receiver is a part of.”

%elf sharedPooLs
detect [:eaeh I

(NameSpaceisNameOfNameSpacmeach)
and [(NameSpacenamed: each) inchrdes: sew]

ifNone: [#SmalMlr]

sharedVariableStcing
“Private- Answera String contiing aUof the pool difionary names

referred to by the receiver. Thenames are separated with blanks.
Motied to exclude name spaces.”

I aSbeam pools I
aStream:= WriteStreamoru (String new 16).
pools:= self slmedPools rejecti ~each I

(NameSpaceiaNameOfNameSpace:each)].

pools asSortedCollefion do [:eaeh I
aStieam

space;
nextPutAlk each].

aSheam position= OifFalse: [astiearn apace].
“aStream contents

namesOfNameSpaces
“Answersa collection containing all the name spacesthe receiver has

accessto.”
‘sell sharedPook select Leach I

(NarneSpaceisNameOfNameSpacweach) and
[((NameSpacenamed: each) fnchrdex sew not]]

MetaClaaemethods for name spaces

nameSpace
“hswers the name space the receiver is a part of.”
‘self instarrcetis nameSpace
The Smalltalk Report

Managing system changes
with carriers
PanuViljamaa
G ood object-oriented classes adapt to the changing
needs of their environment. Sometimes it is also im-

portant to adapt the environment to its objects. “Sys-
tem-changes” apperu to be a necessity if rules of good design
are obeyed as dkcussed in this article. With the reflective capa-

bilities of Smalltalk we build classes that carry system-changes
with them.

Much of the power of object-oriented development comes
from the reuse of existing class libraries, the “environment” or
the “system” on top of which applications arebuilt. The impact
of class libraries and tools is well appreciated by the vendors.

What is lacking is an emphasis on techniques and approaches
for assuring the incremental development of the environment.

In this ~cle we argue for the fiportance of system-changes.
We utilize reflective featuresof Smalltalk to build classes that

CZITYsource-code for the system changes they need with them.

THE IMPORTANCE OF SVSTEM CHANGES

A typicsl use of system changes could be to modq the system’s
menus to add your own tools to them. Another typical reason to
change the system is porting. Instead of adapting an application
to a new environment it is often economical to adapt the envi-
ronment to the application.

Reflective capabfities of environments like Smrdltalkintio-
duce exotic possibilities for system changes. You can modifi the
compiler to allow for syntactic dil%erencesof different
Smalltalks. Or mod+ it to accept a totally different language.

One important rationale for system changes is subtle: good
style. Good object-oriented style often means dkiding the re-

sponsibilities among classes so that robustness and reuse is
marrimized.The creators of the environment can’t anticipate all
fiture uses of their classes.When unanticipated usage occurs,
the optimal division of work has to be reconsidered.

In an example of good and bad design, Beckl describes a way
to avoid testing for an object’s class.Testing for the class is bad
because a decision is baaed on the class of the object, as opposed
to its true capabilities. A bad method looks like

someElemenb acolleciion

(aColletion iaKindOt IndexedCollection)

ifl’rue [AaColleciionfist]

ifFaise:[AaCoUectionasArrayfist]

To make the code better you can define the method #l%st for

Collection (the root of all collections) to return ‘self
Arrayfirst. Then all collections understand #fist and the com-
plicated code-example can be replaced by
September 1994
soraeElementiacrdledon
“aCollectionfirst

To write in good style,we have introduced a system change. A
system change appears to be the solution for good style in many
other situations also.

The Law of Demete~ aims at reduced coupling between
classes. It advocates moving functionali~ from the users of a
class to that class itself. Thk allows that i%nctionality to be
reused by several clients. The law forbids chained messages. Ac-
cording to Demetrx, the following is bad style because we are
not only requiring the argument to understand #name but also
that the result of #name understands #asUppercase:

badMethodanhg
‘anArgname asUppercase

Wecan rewrite the examplein good style like this:

goodMetho&antirg
‘anhg nameAsUppercase

Functionality is moved from the client into the server’s method

#narneAsUppercase. But when we create clients of system classes

and we want to move functionali~ into them, we want system

changes, The changes could be gathered in a subclass but it is a

good idea to place functionality in the highest possible places

because then they can be reused by subclasses. With system

changes we make argument classes more similar, instead of

making the recipient handle many dissimilar arguments.

The #someElementi example exlibits more reusabfity if

Hrst is defined also in Object to return the object itself. After

that #someElementi will work with any kind of argument, In

general, we achieve the abllty to treat collections snd non-col-
lections similarly and (re)uae the same client-code with both
kinds of arguments.

THE NEED FOR TOOLS TO MANAGE SYSTEM CHANGES

To reap the benefits that system changes can provide, they
should be easy to use and reuse.We now look at how the con-
ventional tools are lacking, and how they could be better.

ChangeSets is a traditionrd tool in Smalltalk-80. In Change-
ListViewindividual changes can be browsed, removed, and
added. The set of changes can be stored in a fle and multiple
files kept around. Thk is not particularly object-oriented
however. The basic shortcoming is that iiles are not objects
and therefore:

“ The link between applications and their needed changes is
weak. Files cannot be arranged in dependency relations. No
one warns you if you delete a needed change-file. It is hard to
know which applications need a given file.
11

“ Files cannot be “subclasses” to redefine a given change but
inherit others. Fdes maybe treated as fde-objects but they are
not change-objects,

Instead of tie-based change-management, we want change-ob-
jects thati

“ Know the changes they contain.

“ Cm-y the source code for these with them.

● Errtractthat source-code automatically from the current im -

age.

■&e persistent and can be imported to standard ention-

ments.

● Can be worked on with standard tools like the browser,

The requirement of persistence with portability appears to be a
hard one when there is no vendor-independent external repre-
sentation for objects. Yet there is a common solutiom the fle-
out-format of Smalkalk is a standard way for exporting and im-
porting classes as portable, persistent objects.

THE CARRIERS

We now irm-educe sofiware that allows you to &eat changes as
persistent objects~s classes.The source-code for such a class,

called Carrier940701is given in Listing 1. By subclassing it, you
createyour own change-modules, called “carriers.”The code has
been tested on Smalltalk/V for Macintosh 2.0 and Windows
1.1. It should be easy to port to other platforms also.

The basic design is to create methods automatically in the

carrier that return the source-code for a given external method.
You modifj and test the system methods to be taken along, then
ask the carrier to generate in itself the methods that return their
sources. The method that returnsthe source-code for #method
of AClassis named #AClassXmethod.

The class Carrier940701carries one system-change itse~ tbe
method #systemChange of Object.The purpose of #system-
Change is just to make possible the marking of places where the
system has been changed. By looking at its senders you find

those places. When Carrier940701is #INSTALLED,all Objects
gain the following method:

syeterrtlmnge
“Calledhorn places where system has been modified. Doesnotbhg. By

lookng at my senders you fid those places.”

tie ifFalsw [self Carriar940701]

“Referenceto the carrier of this method:’

#systemChange calls “self Carrier940701”to create an explicit
link back to the class that produced its source-code. The method
named after the carrier (#Carrier940701) will be autocompiled
into each target-class modified. Looking at methods named like
carriers,you quickly see whkh ones have contributed to a given
system-class. The created method in Object is:

carrier940701
‘Autocompiledby Carrier940701(3/22/94 1027). ByIooldng at my

senders you fid the places it has modified.’

tie ifFalaw[self Carrier940701].

The changes carried are described by the result of a carrier’s

#systemChanges. Below is that method for Carrier940701.As
12
shown, it specifies a single system-change, the #systemChange

of Object, plus an example of specifying a class method, com-

mented ouc

yebssnChanges

“Ratum a list of pairs #(class selector) that tell the methods whose

source-codeI carry.”

TESTCarrier940701FREE2E
,,

Iasetl

aSet:= Set new.

aSet add: (Arraywittu Objectwiti #systemChange)“–-

; add (Arraywittr Objectclass with: #CO- --”

. “aset

To make the changes of a carrier have effect, you send it #IN-

STALL.Based on the result of #systemChanges , it decides the

names for the source-code-returning X-methods (in #canySe-

lectorFocofi), calls them and compiles their results.

The code-returning methods are automatically generated

from the current sources in the system. This happens when

#FREEZE is cslled. Now it is possible to modfi the sources as

usual with the browser, instead of having to deal with the more

complicated file-out format of source-code inside files.
#FREEZEcalls #codeFo~ofi to get the current source for a

method, then #myCodeRetuming: nturred:to generate the car-
rier’sown method that will return that source.

APPLYING CAllRIEflS

To apply system changes effectively,we must detect and resolve.- —
conflicts between change-sets. AU dependent changes must be
carried slong together.This introduces the problems of multiple
replicants of the same carrier in separatemodules, possibly out
of sync if they areversioned.

If two c~ers defie the same method differently there
will be a conflict. But because the changes are explicitly de-

M Good object-
oriented style otlen
means div[ding the

responsibilities
among classes so

that rohstness and
reuse is maximized. 77

clared, it is easy to build conflict-checkers, to be used beforethe
changes are compiled, The versioning problem is solved by
sutlixkg the creation date to the names of carrier classes and
methods they add to the system. The time-stamp in the names
makes the changes into objects with identity. If others modify
your code, they probably use a new date-stamp also. The end-
result looks technical, which is just fitting in component-based
software industry.

The changes you make are either redefinitions of existing
methods or new methods for existing classes, If possible, use the
latter.There can be many different additions simultaneously but
orslyone current version of a (changed) system method.
The Smalltalk Report

CLIEmRi
WE(

DIVI1OPER

Now making its debut
as a magazine!

CLIENT/SEWER DEVELOPER is a new publication
committed to helping programmers, developers and tech-
nical managers understand C/S technology. We are now

actively seeking manuscripts on the following:

Operating Systems ● Databases ● Programming Languages ●

Okject Technology and Reuse ● C/S Application Design
Methodologies and Tools ● Software Engineering Methodolo-
gies ● Pre-Packaged C/Supplications ● Business Process Re-
Engineering ● Projest Management in a C/S Environment ●

Metrics and Testing ● Multimedia

To submit an article or request author guidelines,
contact:

Thomas O’Flaherty, Editor
411 Weat End Avenue, Suite 2B
New York, NY 10024
Phone: 201.801.0050 Fax: 201.801.0441
Because a carrier’schanges are compiled with an explicit
message, we can fkst ille-in them all, then use arbitrary pro-

grams to activate the relevant ones, in the needed order. A sim-
ple procedure would be: before #INSTALLinga carrier, fist in-
stall its superclass.This allows a subclass to modlfj the changes
of its superclass.

To collect groups of related changes together, we misuse sub-
classing. A change-set consisting of a class and its subclasses can
then be easily fled-out and transferredto other images. This
suggests we start collecting changes in a hierarchy like:

Carrier940701
StandardChanges940701

0bjectChanges940701
CoUecdonChanges940701

ST80Changes940701
ST80GUIChanges940701

.ST80ViewChanges940701
ST80ConhoUerChanges940701

STSOCompilerChanges940701
SlVmacCharrges940701

Flefmences

1. Becfq K. It’s not just the case,THE SMALLTALK REPORT, 3(3),

1993.

2. Lieberherr, K. J., and I. M Holland, Assuring good style for object-ori-

ented programs, IEEE SOFTWARE,6(5), 1988.

PmruViljsmaa may Isarsachadvia intamat at panu@ajk.tela.fi.
conh”nuedonpage 16
Source-codefor the class-methodsof ‘Carner940701,”in the
‘%rowserforrnat.”

Class definition:

Dbject
subclass: #Carrier940701
irrstanceVariableNames:“
classVariableName~‘
poolDictionaries:”

Gloss-methods of Cam”er940701:
INSTALL
‘Compilethe source code returned by my methods that cany sourcecode of
xterrral classes. Themethods to cdl depend on my#systemChanges.
rEsT

Carrier940701INSTALL.
“I changedClasschSelectorrnyselector sourceToCompileI
self systemcharrges
do: [:C I

charrgedclaas := (c ah 1).
chSelector := (c ah 2).
myselector:= seLfcarrySelectorFo~chsekctor

oi?changedclass.
sourceToCompile := selfperforrmmySelector.
(ReadSheamon :sourceToCompile)fileIn.
self compileReferenceIn : changedClass

1

~temchanges
‘Returna list of pairs (class selector) that tell the methods whosesource-
code I carry.Notethe waya class-methodis spedied.
September 1994
TEST
Carrier940701FREEZE”

I aSetI
aSet:=Set new.

aSet add: (Array witk Object with: #systemChange) “-

; add (Arraywitk Objectclass witk #COMMENT)
; add (Arraywitk AClasswith: #aSelector) –“

. “aSet

C~eleetorFoc aSeleetor ok a~~~
“Returnmy method-selectorthat willstore the source-codet%rthe method
aSelectorof allass. Theresult willbe QClass name>X<selecto~but in
the names of meta classesthe spaces are removedand “class”is replaced
by ll~s.” ,!

aclass isMetaClaas
ifhse: [“(aClassinstancel%ss name,

#ClaseX, aselector) asSymbol]
iffalee: [“(aClassname ,

#X, aSelector) asSymbol]

ObjectXa@esnChange
“Autocompiledby Carrief140701(4/5/94 10:36 PM).The string belowis in

Srrrdltallrfile-out -format.”
An

! Objectmethods !
systemchange
“Calledfromplacesthat have somethingto do with modifyingthe systemto
mark the place as such.”
tie ifFalse: [seti Carrier940701]
“– Referenceto the carrier of this source-code.-”
!!
13

Introducing VisualAge

MarkLorenz
Recently IBM released VisualAge, its own SmaUtalkenviron-
ment and GU1budder. For Smallt~ this is an event worth not-
ing. So, let’s take a look at VkuaLAge and relate it to the other
major Smalltalk vendors’ products: ParcPlace’s VkwlWorks,

Digitalk’s SmalltrdMV and PARTS, and Easel’s Enfin.

WHAT IS VISUAIAGE?

Vk@e is a complete Smalltalk environment, with all the

corresponding tools including a debugger and browser, plus sn

instance-based GUI builder with logic connection capabilities.

The Sma.lltalk environment is simikir to SmalltM, Vknml-

Works, and Enfln. The Gul-buildlng is dfierent than any of the
others, but closest to the way PARTS works. VisualAge comes
in a standalone and team version. The team version has ENVY
capabilities built in.

VkwlAge lets you develop and utilize visual, nonvisual, and
IBM Smalltrdkreusable components to create new applications.

The visua/ components include most of the widgets on the
Composition Editor palette, such as push buttons and Listboxes.
It also includes the windows and dialogs that you create.

The nonvisual components are the model objects from your
business domain that you create. A few nonvisual components
are supplied by IBM: the Models folder has OrderedCollection,

ObjectFactory (to create instances), and Variable (to hold in-
stances); the Database Functions folder has DatabaseQuery and
StoredProcedure.

The IBM Smalltalk components are the same kind of claes-
baeed objects that you find in Smalltrdk/V, ObjectWorke/Small-
talk and Enfin. You can work at the Smalltalk level and later in-
clude IBM Smalltalk components through the Options/Add

part... menu item on the Composition Editor.

To visually develop applications, you primarily work with

three edltors:the Composition Editor, the Script Editor, and the

Public Interface Editor.

THE COMPOSITION EDITOR

The Composition Edkor is where you compose your visual and
nonvisual parts into collaborating pieces of the application puz-
zle. Figure 1 shows an example application I built following the

User’s Guide that comes with the product. You see a Road Race
window visual component and two nonvisual components: a
RurrrterFactory and a Runner Collefion. These were connected
interactively to compose a simple application to record the re-
sults of a race. This application is composed in the containing
visual component RoadRaceView.

Putting the pieces together involves creating instances of the
14
component classes and making service request connections be-

tween them. Thk can be done programmatically or visually.
Changes to the class affects all the instances in the application.
This is similar to the way PARTS works, but PARTS also allows
local instance scripts to be written for that instance only. Vku-
alWorks and W1ndowBuilder Pro used in conjunction with
Smalltalk/V facilitate programmatic connections but don’t have

visual connection support.
It is possible, certainly to use multiple visual pieces to create

an application. See the section “So how do I put an application
together?” for a dkcussion of how thk is done.

THE SCRIPT EDITOR

The Script Editor is where you write IBM Smalltalk code that

Figure 1. The Composifioo Editor.

>FreshlhinnersLlst
“Refreshes the vlwral Ust of runners

~;

*,3:
evtir~ time d runner Is drlded lU [he
Runners CoUWtionmm &~*!

I runners sorlcdRunncrs j p“ I
r!runners := self partAttrlbuteValw ~ ~1

il(sr”Rlmnt?r Cnllecrlm’ lrsr+lf).
;“2;

sortecwtunnars := SOrtectcollectlcm new. ~; ~
runners do Lrurrmx I , :.,!

SO I ted Runlxrs add: :,.!~

(runner asResuIrsrrlng]].
l:ii
{$:

“sor tedllunrrers as WaerecKollectlm “’-”
E;

..-.
Figure 2.ScriptEditor
The Smallta[k Report

will work with the visual editora. F@sre 2 shows an example
method from the runner application.

Note the code that reads self partAthibuteValue: #(# ‘Runner
Collection’ #self). This gives you a peek into the underlying tech-
niques of working with VkuelAge’s visual programming tools.

Interacting with VisualAge-enabled components involves these
indirect referencesthrough Dictionarylookups. The editor has
capabilities to help you write this VisualAge-enabled logic At-
tributes and Actions. These buttons bring up windowa that list

the components that are a part of the RoadRaceView(see Fig. 3).
Upon selection, the attributes or actions of the selected com-

ponent are listed. The VisuelAge code to get or set the selected
attribute or access the selected action is then inserted at the cur-
sor in the method under construction.

So, what’s going on here? VkualAge uses dictionaries to look
up attributes and actions. In the above example, the RoadRace-
Viewobject’s components instance variable is a Dictionarywith

one of its keys equal to Runner Collefion (see Fig. 4).

THE PUBLIC INTERFACE EDITOFI

The Public Interface Editor defines the attributes, events, and
actions that arevisible to clients of the component. F@re 5

shows that I have made the refreshRunnersListaction a part of
the available public services of the RoadRaceView.

Similarly, I can make attributes available to clients and
define event notifications as attributes are changed in my com-

“Label

Text

Labell

Labe12 q last

Te%t2
f

.,! ~,;
:,,;

Labe13
S,!,,,?.

Labe14
r. .,

List
,- .;

Push Button
~,. ,.

Runner Factory “:

,.,

Figure 3. Attribute code lookup.

I~ventDeDendent, ~Olc~lOnarMan AbtShellVlew(a Window) an Abt~
salf

,,
IparentPart ,,%i

, .~

kr{abtlsDestro ed l..!
;;
.,

prlmargPart ~!
attrlbuteConnec tlons ~ ~
lnstancelnterfaceSpe s ~
parentVlew t:

self

n Window ! .:
,.. I
Figure4.Looking up components.

September 1994
ponent. Each of these appear in the component’s connect menu
on the Composition Editor.

SO HOW DO I PUT AN APPLICATION TOGETHER?

We’ve seen the editors availableto define and connect visual and
nonvisual objects together. One application view object, such as

the RoadRaceView,will normally have one window and possibly

46EsuaL4ge lets you develop and
utilize visua~ nonvisua~ and

IBM Smalltalk reusable
components to create new

applications.

77
one or more popup dkdogs. An application will normally have
multiple windows though. To make thesewindowe work together,
we need to make surethatwe work with the same instance objects
acrossour view components. We can do this two ways:

“ put the instance in a variable from the palette in one view

and make that part of the public interface for the view object
(from the second view)

■ startup the second view with the component as a parameter.

The following code will accomplish this feat
SecondVkwClassStewPart

valueOfAtLtibuteNamed#variableNameifAbsenk [‘nil]

put (self partAtttibuteValue: #(#partName #self));

openWidget.

CONCLUSION

At this point, the verdict is out on how well VisualAge will do
compared to the other Smelltelk environments in the race to
meet customers’ needs. There are certainly challenges ahead for
IBM, whkh they are working on for the next release. Two major

ones are the runtime size, which is larger than it should be for

the standalone veraion (the team version includes a packager that

lets you drop in minimum size from 3+MB to 1.3MB accorchg

to IBM), and the lack of source code, which is less than the other

Smalltalk environments. There are also smeller nuisances, such as

the fact that keyboard clipboard actions don’t work as advertised

Figure 5,Public Intwfacs Editor.
15

tmtimudjom pugs13

16
snnpileReferenceIn:a(lass
Compileinto aclass a method with the same selector as myname to serve
ISa reference back to me.”
I sc browserCodeI
]rowserCode:=(seti name, ‘
Autocompiledby’, self name printString, ‘‘ ,
Date dateArcdTimeNow)printString, ‘.
ly looking at my senders you find the places
nodifiedby it.”
rue iffalse: [self Carrier940701

“Theroot of it all”].

)-
;C:= (’
!,, aclass name,’ mefio~ !

‘, (browserCode),‘
!!

).
‘ (ReadSbeacnon: SC)fileIn
?RIEZE
‘Produce/autocompilemysource-code-returning methods named
>&ssnaroe>X<methodName?.
~ESTCarrier940701FREEZE.”
Ichangedclass changedSourcechselector myselector carryCodeI
;eti syatemCharrges
do [:C I

changedClass := (c ak 1).
chselector := (c ah 2).

changedSource:= se~ codeFo~ chselector
or?changedClass.

myselector:= seti canySelectorFo~ chSelector
oh changedClass.

carrycode := self myCodeRetuming:changedSource
named: mySelector.

(ReadShearnon: carrycode) fileIn.

1

wdeFonasalectoroh aChss
‘Returna sbing of exi.shg source-codein flein-format as it vdl appear
inside another filein -format (note the double exclamationmarkswith no
space in between them).”

(
.1

!! ,, a~ass rime, ,methods !!

‘,,(~lass soorceCodeAt:aSelector), ‘
.. . .

‘)

nythdelteturzringaWirzgnamed:aSelector
‘Produceand return sourc~code for my method aSelector that will return

E&@.”
I aCommentbrowserCodeI
iComment:=’
‘Autocompiledby’, self name, ‘ ‘, (Date dateAndTirneNowprint.kring),’.
he sbing belowis in Srrdtalk file-out -format.”

]rowaercode:= tielector, aComment,‘“’,aString printShing.

(
,1

‘, self name, ‘class methods !
, browserCode,‘
!!

)

on the menubar, dialogs that prompt for information don’t give
you a list to choose from, and globsl message selector searches
list nonmethod symbols with no differentiation.

Despite these first release drawbacks, it is possible to do a

lot in a little time in VisualAge. The environment has more
classes than any of its competitors, including multiple database,
communications, and multimedia widgets. IBM is also fostering
a components industry around VkmlAge, so you can expect to
see more and more widgets available for the palettes in the fu-
ture. I can relate an example of the productivity that can be
achieved from a personal consulting effort. I recently worked
with a large company in the finance industry using VisualAge.
In less than a week, we held some rapid modeling sessions to
discover the right objects for their business, and implemented
the first scenario script using VisualAge. The scenario involved
building a self-validating GUI and interfacing with a SQL

Server database.*

Acknow18dgemont

Thanks to Cynthia McCrickard in the VisualAge support group
at IBM Cary for the sample code to pass parameters between
view objects aswell as for useful review comments.

Mark Lornnzis Foundersnd Presidentof Hatterss Softwnrs, Inc., rs

compsnythat spocisrfizesin hslpingothsr compsniesuss objssttechnology

nffectivsly.HSwelcomas qusstionsondcommentsvis emsil at

71214.3120@compuaotve.comor phonamailat 919.051.0993.

* In n fubm aticle, I’ll prosnnl sams tips im acssssing databasas from Visua14ge.
The Smallta[k Repod

Arbor Help System
Douglascamp

V2.O
A rbor Intelligent Systems hasjust started shipping ver-
sion 2.0 of tbe Arbor Help System (heresfter referred
to as AH S), a class library for adding context-sensitive

on-line help to VkuaIWorks applications. AHS is designed to
allow anyone (not just developers) to easily create and edit help
text in an application under development or in a running appli-
cation. AHs provides two types of help, a statusline facihty and
a hypertext outline browser.

VERSIONS
AHS 2.0 is availablefor any plat60rm for which PPS Vkual-
Works 1.0 is available. Full source code as well as partial source
code versions are available. Single image as wefl as ENVY~an-

ager versions are available.

DOCUMENTATION
AHS includes a well-written, concise (65-page) manual.The first
hne of tbe manual notes that, in keeping with the company’s fo-
cus on on-line help, the manual was deliberately kept short. In
lieu of a large,priited manual, severaldemo applications arepro-
vided. The manual appears sufficient for most purposes, and you
can browse the methods in the demonstration and other classes,
however many of these classesare sparselycommented. Three
months of free support and upgrades are included.

INSTALLATION
Installation is straightforward, especially for an ENVY applica-
tion. 1 installed AHS on a 486/25 with 16-M RAM, under Win-
dows 3.1 using ENVY~anager in single-user mode, in about an
hour. Using ENVY slightly complicates the process, however
AHS supplies a diskette with the help system in ENVY applica-
tion format, ready to import into your repository.

After unzipping the AHS application you import it into your

ENVY library Next, tie in a .st file containing changes to system
methods. This modfies 11 classes scattered throughout the VI-
sualWorksBase and WindowSystem applications. The Menu-
Tiacker subclasses for each widget look policy are modified, as
well as the controllers for the basic VisualWorks/ObjectWorks
widgets. Some of these modifications arevery extensive. For ex-
ample, the MenuTrackefi>startUpAtiKeepOpen.IfIn:method
grows from an slready Imge 33 lines to around 140 lines nested
too deeply to understand easily.

USING AHS
AHS provides two ~es of help-resl-time and fill outline.
September 1994
Real-time help is a “statusline” facility,whale full outline help is
a hypertext driven text outline browser.

REAL-TIME HELP
Real-time help is very much like the statuslines often found in
Microsoft Windows application=when the user points at a
widget with the mouse (no mouse click is required), the help
text associated with the widget is displayed in a statusline area
(a VkualWorks subcanvas).

Adding real-time help to a new or existing VkualWorks can-
vas is very easy.F~st, make the super class of the canvas AHS
HelpApplicationModel (which is a subclass of the standard Ap-
plicationModel). Next, either create a subcanvas of your own in

which to display the help text, or you can use a default subcan-
vss spec supplied with AH S. If you choose to createyour own
subcanvas, sll that is necessary is to add an InputBox with the id
#helpText. Optionally you can add a CheckBox with an id of
#helpF1.ag+f the check box is checked, help will be dkplayed in
the InputBox, otherwise no help text is displayed.

Any widget for which you want to provide help text must
have an Id property.The id is part of the key used to lookup the
help text.The help text itself is held in a class instance variable of
the canvas class.The other element of the key describes the wid-
get state,one of #(#defiult #on #disabled). This means you can

provide the user of an application with speciiic help text based on
the current state of the widget (the #on state is applicable only to
radio buttons and check boxes). Any widget, including the menu
bsr, can have help text. Also, individual elements in the menu
bm, or in selection lists, can also have their own help text.

Full outline halp
Fulloutline help provides a hierarchical text outLinebrowser that
is activatedby typing F1 whalethe mouse cursor is over a widget.

The fidl outhe help browser is again reminiscent of the help
system found in Microsoft Wkidows. The top pane lists help
topics, whkh can be nested to form outlines. Topics can be col-
lapsed/expanded to show the subtopics they contsin. The bot-
tom pane displays the help text associated with the selected
topic. Any widget can be linked to an outline topic. Ako, the
canvas itself can provide a default help topic for all widgets on
the canvas. Users navigate through help text in the full outline

browser either by selecting topics and subtopics, or by activating
hyperlinkrembedded in the help text.

Navigating through hyperlinks
AHS supports four different kinds of hypedink Hypertext links
17

jump to another topic when clicked. Hypergraphic links open a
new window which displays a graphic. Glossary links open a

small modal dialog near the linked text that (typically) contains a
definition of the linked text. Fhmlly there is something called a

HyperCarts link The HyperCarn link is used in conjunction with
another product from AIS called &borCam. i%borCam is a tool
for capturing and displaying “screen movies.” The idea is that
when a user clicks a H~erCam li~ a screen movie is displayed,

perhaps demonstrating some action in detail. We don’t have Ar-
borCsm, and so can’t comment on its usabili~ with AHS.

The implementation of h~erlinks in AHS is very nice. Dis-

tinct visual feedback is provided for each kind of link (e.g., hy-
pertext appears in green and is underlined, the cursor also
changes to a hand icon when over the link). Creating a hyper-
Linkis a simple point-and-shoot operation: while in edit mode,
you simply type text into the bottom pane of the fish outline
browser, select the text to be h~erlinked, then select the type of

link from the operate menu.

Creating help text-The help editor
Help text is entered and edited for real-time help, and links to
outlines established for full outline help, via the help editor. One
of the most interesting features of the AHS is that the help edi-
tor can be activated, and new help text or outlines created, either

while the canvas class is under development (i.e., open in the
UIPainter) or whale the application is actually running. This
mesns that developers can focus on application development
and allow other team members (technical writers, prototype
users, interface designers, etc.), who perhaps don’t even know

SmaUtrrl~to add help to a VisualWorks application. Being able
to add help text to an application whale it’s running is a very

natural and productive way to develop on-line help. As you use
the application, places in the process that may require help text

are readily identified, and it’s easierto develop that text as you
interact with the running application. In a sense, AHS extends

the flexibili~, immediate feedback and ease of use of the Small-
talk environment iteelfto the task of creating on-line help.

When an application and its help text are complete, the abd-

ity to mod@ help t- can be turned off in the run-time image.
——. —-. M

‘7nu===R==---

Figurs 1 Rna}time help.
18
MEMORY CONSIDERATIONS
Help textcan be storedin the image (real-timehelp only), in a
flatfile (N outlinehelp only), or in aVereantor Gemstone ob-
ject database.If your applicationincludedlots of real-timehelp
textthatwas storedin the imagethe memory requirements
could become significant.In thk case,AHs providesbehavior
that thedevelopercan useto selectivelyIoachnload portionsof
the help textdictionaryinto memory on demand.There is also
some provisionfor minimizingthe memory footprint of de-
ployed applications containing AHS. A list of classes that can

safely be stiipped from a runtime image is included.

PRICING
The M sourceversion of AHS se~sfor $1395. Each license enti-
tles the user to use AHS on one system at a time, and to distribute

applications developed using AHS free of runtime fees (except of
course the PPS VkmalWorks runtime fee) provided the abfity to

edit help text witlin the running application has been turned off.

OTHER FEATURES
AH S conttins severalother interesting featuresthat arenew in
version 2.0 Internationalization of help text is supported. For elC-
arnple,you can implement all help text in Spanish and English,

FUe ToPS=Hle&JryBock Seercb G50eemy

-

Figurs 2. Full outh help.

@l@imoumne\
----- 1 I

wsuVSuwonhenBkFky8temn

--~

Figure 3. Thehelp editor.
The Smal[talk Report

ALAN KNIGHT

Performance
●

tips
g

~hisistheiirstofa two-part seriesofarticlescmoptirniz-

1 ing performance in Smalltslk It’s very easy to write an

inefficient Smslltalk program, and easy to blame the lan-

guage for the ress.dtig inefficiency rather than spend a little tie

tuning it. While optimizing performance is a huge and complex

topic, 1 hope this csn present a few general principles and hints

for those seeking to improve the response time of their applica-

tions. The discussion flom which most of these posts are taken

started with a question bm Bfl Punch (puneh@cps.msu.edu)

who writes:

I don’t want to start an argument about why Smalltalk is
slow/i%t or other languages are slowerhster. My question is
this: If youwite a ST program, and it isn’t as fast as you
would have liked, what tips, tricks-of-the-trade, advice etc.
can the ST community offer to make systems go faster?
We have written a small-medium size ST program (12,000

lines, if that means arsyt.hhg)that runs a blt slowly. We
rewrote it, started caching results, and using other “algorith-

mic” approaches to get more speed (and shrunk the code at
the same time), but it is still a bit slow. We’d like to go faster
but we’ve exhausted our “algorithmic” approaches. Are there

things in Smalltalkwe should dcdavoid to get improved per-
formance?

BASIC PRINCIPLES

The most important principle of petiormance optimization is to

optirnkc in the right places. It only makes sense to tune the code
where it will make a difference to the overallperformance of your

apphcation. In most applications, a great deal of the run~n
time is spent in a relativelysmall amount of code. Exactly which
code depends enormously on your application, and to a lesser ex-
tent on the version of Smalltalk and the operating system.

Use a Profhr
How do you find the performance-critical sections in your ap-
plication? Simple. Use a profiler.These are available from a vari-

ety of sources. As far as I know, they all work in roughly the
September 1994
same way.You provide a block of Smslltalk code, which is run in
a separateprocess, The profiler runs another process, and peri-
odically interrupts the process being profiled, taking a snapshot
of the stack-Most can show either the calling sequence or the
total time spent in a particular method. For the most part, they
are quite simple to use.Jan Steinman (jan.bytesmiths@acm.erg)

provides a couple of tips.

It’s a sampling technique, so it is necessary to make certain
you have enough samples, or else you end up with aliasing
artii%cts.Make sure you loop lots of times in the profile. Be
aware that lengthy primitives may “pile up” the time on ei-
ther side of a sample. In general, the bottom few lines should
show most of the time in primitives, or at least most of the
time should be in base methods. If not, you have a target for
tuning.

For a good introduction to the uses of profilers (and lots of other
great aficles, on performance tuning and programming in gen-
eral) seeJon Bentley’s books PROGRAMMING PEARLS and MORE

PROGRAMMING PEARLS (Addison-Wesley ISBN 0-201-10331-

1, and 0-201-11889-0 respectively).

Don’t ovar*ptimiza

Performance optimization is a good thing, but too much of a
good thing can be bad for you in the long run. Some kinds of

optimization are almost always good because they are the kind
of things that we normally strive for in programming. The algo-
rithmic improvements described in the original question ususlly
fall into thk category because they also can make the code

cleaner and simpler. On the other hand, some optimizations re-
duce encapsulation, hinder maintenance, and generally make
you do things you would otherwise consider bad practice. They
are still worth using, but should be employed csrefislly,with the
realization thatyou are trading rnsintainabilky for speed. They
should definitely be avoided early in the development process.
Many of the most powerful optimizations come from exploiting
knowledge of the application’s structure.If we are guaranteed
that some circumstance cannot possibly occur, we carsoften
make dramatic simplifications and speed optimization by ex-
ploiting that knowledge. The danger here is that next month’s
addition to the list of requirements maybe the abili~ to handle
exactly that circumstance.

Avoid rscompssting

Many applications compute the same values repeatedly.Avery

common optimization is to cache values that are repeatedly
computed, trading space for speed. This can be implemented by
storing dictionaries of vslues in a class variable.Thk is particu-
larly valuable when there are relativelyfew values that are expen-
sive to compute.

Knowwhat’s axpansiva
SmaUtalkallows you to program at a high level of abstraction.
It’s easy to write code quickly using the most convenient opera-
tions rather than the most efficient. For performance optimiza-
tion it’s vitsl to understand the costs and ~ade-offs of different
operations. Thk detailed knowledge of the standard class libra~
19

and how to achieve the best performance with it is an important

part of the toolkit of expert Smalltalk programmers.

Collections

The Collection hierarchy is widely used in almost zLIprograms,
and wise use of it is vital to writing fast Smalltalk code. There

are severalissues that can often snag beginners.

Growth
The most basic collection in Smalltalk is an array. it’s ilxed-size

and is accessed by indexing. It’s also the fastest collection to ac-

cess, Fiied sizes are inconvenient, though, and it’s much more

common to use OrderedCoUetion, whkh supports a number of

additional operations. The most important is add, which ap-

pends an object to the collection, growing the collection to ac-

commodate it if necessary. This growing process is surprisingly

efficient. Peter Epstein (peter@objectime. on.ca) writes:

Adding an item at the end of an OrderedCoUectionis amor-
tized O(1) (in otlmrwords, adding n items at the end requires

O(n) time) since no shifting is needd and growing is done by
a percentage ratherthan a constant number of slots.

For those unfamiliar with terms like “amortized O(l),” here’sa
brief mqdanation.OrderedCollectionsareordinarily implemented
using an arraythat is at least as large as the number of elements in

the collection. There may be additional space, in anticipation of
elements being added later.Adding one element to m OrderedCol-
lefion that is Ml may requirequite a bit of work (it allocates a

new, largercollection and then copies all of the elements into it)
but this expensiveoperation is guaranteedto happen rarely.Since

the number of extraspacesskated is proportional to the size of
the collection, over a sequence of operations the averagecost of
each is still small, regardlessof the sizt of the collection.

Even though adding to OrderedColletions is relatively
efficient, it still has a cost. Jan Steinman writes:

If a collection never needs to grow, make it an hay. (Do the
same thing ifit grows to a certain point, then becomes essen-
tiallyread-only.) If it nn+ needs to grow, make it an A-ray

~PY, ~d cow it each time, or consider streaming it.

If a collection does need to grow, it’s often useful to guess at its
size, The default size of an OrderedCollefion is usually around a
dozen elements. If you have a pretty good idea that a collection

will hold hundreds of elements, use OrderedColletion new 500
ratherthan OrderedCoUeclionnew. If you’re right, you’ll save

severalgrow operations, and if you’re wrong you only waste a bit
of space. Overestimating may also be a good idea if you’re not
quite surewhat the system code does.

This becomes even more important with other kinds of col-
lections. When an OrderedCollectiongrows, it only needs to

copy a bunch of object pointers. Sets and Dktionaries are
hashed, and must rehash all of their elements when they grow.

In extreme cases, growing collections can be a major factor
in application performmce. Andy Choi (andyc@hprnlac.
rose.hp.tom) writes:
20
Using the VisualWorks APOK time prcdler, we’ve found that in
one of our applications, up to 70% of the time was spent adding el-
ements to collections... We’ve found that in general, growing col-
lections is one of the most time mnsurning partsof VW.

IJsethe right collectionfor the job

There are many collection classes to choose from, and the choice
can tiect performance substantially.We’ve seen that Ordered-
Collections are reasonably efficient using operations like ah,
at:put, and addLast. There are many other operations that are
not at all efficient, requiring a linear search or moving many of
the elements in the collection. These are operations like
addFirsh, indexOfi, add:before:, afte~, and rernoveIndex:. If you
find yourself using operations like this on large collections, con-
sider changing your representation.

SortedColletions are like OrderedColleciion,but maintain

their elements in sorted order. They therefore behave much like

OrderedCollections except that it is very slow to add objects

(since they must re-sort). If you must add objects to a SortedCol-

lection, try to group them together and use addAIL, which adds

several elements but does only one sort.

Sets, Bsgs, and Dictionaries are collections implemented as

hash tables, and as such don’t maintain an order for their ele-
ments. They are only a little less efficient for iterating thsn se-
quenceable collections but are much more efficient for inserting,
deleting and testing membership. IdentityDifionaries (and
IdentitySets) can be used for greater efficiency in some situa-
tions, but you must be careful that an identi~-based collection is
reallywhat you want. It’s also important to ensure that the ob-
jects used as keys have a good hash function. These issues, and
others associated with hashed collections were discussed in de-
tail in The SMALLTALK REPORT, 2(8).

It’s not necessay to confine yourself to the collections avail-
able in the base image. A radically different collection imple-
mentation may be ideal for your application, making it worth
the extra effort of findhg sn implementation (Klnfi refer to
some of my previous columns on freely available“goodies”) or of
implementing it yourself Thk is particularly likely to be useful if
you have very large collections or very sophisticated operations.
David Siegel (dsiegel@paticom) writes:

bother approach is to build data structures that grow incre-
mentally (like self-balancing trees) rather than Dktionaries.
This approach is a win for large data stmctures (I’ve seen
crossover between 5,000 and 50,000 elements, depending on
the problem and the data structure).

If you don’t need to iterate,the best solution maybe not to use an
explicit collection at all. Eliot Mm& (eliot@ircam.fi) writes:

Another approach might be to make membership a property
of the objects themselves, rather than implement it by plac-
ing them in a m!k.ction.For example, posit you have a set of
objeetz S,and wish to implement subsets Saand ~, so that an
object in S can be in eitherSaor ~, in both Saand ~ or neither.
If it’s possible to add an instancevariable to all objects in S then
membership of Saor ~ muld be remrded in this instance vari-
able.l%e implementation can be hidden behind an interi%ce
such as isInSa,ish~, jotia, leave%, etc.
The Smalltalk Repod

Objekt-orientiertes Programmieren—. ..—.—.——

OOP ’95
—.. .--—. —

MU NC HEN

@

,-., ,:+
%>+?.

3!.

Don’tMissGe ::’ ,~.,
MostAttende ~~‘“”

ObjectTechnology
&(++ (onference!

Moving Forwardwith ObjectTechnology

Here’sWhatProminent
GermanPublicationsSaid
AboutOOP’94,..

‘COOP ’94: A lot of new

exhibitors with new

products..,”

—Computerwoche, Nr. 7,
February 18, 1994

“For companies who want to

givejiwther education to their

employees by participating in

a conference or who are

making important buying

decisions... it is the only

alternative.”

—iX Magazim March, 1994

“The most important thing for

the attendees was the quanti~
and the quality of the talks

and the seminars.,. It was a

positive experience in contrast

to mass-events like Cebit...

For sojiware developers it is

recommended to visit this

conference.”

—mc Magazin fur
Computerpraxis; Jan. 1994

[ORINFORMATIONONEXIIIBITINGORATTENDING00P’!)5[[ATURING[++World(ONTA(T:

(lntheUSA)SIGS[onfwences,lnf.,,...,211l14Z47S15l,,f,f,llLlk2.7S78

(lnGermany)SIGS(onkmnc~sGmN......v.089.9S7.9517...f,089.9S7.9125

Objects
Everywhere!

Why settle for hybrid implementations when
you can have the real thing? JumpStart k the
leading provider of solutions and training
progtams for pure object systems using
Smalltalk and the GemStone(Cm)ODBMS. We
also specialize in deploying IBM Smalltalldtm)
and VlsualAge@m)applications.

Ask about our Corporate Educators Progmm.

Manufacturing
ProcessCOntml
Networ& Management
Pharmaceutical

)
ClientServer IS Systems

ti
CeWied Semce ParimeIs WIUI.

—

919.460.1583
—— - -.

@ -
==-~+= Smlm

@@Bhl 1994,~ Jusn@taoSVSMIS,h.
Concatenation

Of course, collections don’t grow unless things are being added
to them. If we can reduce the number of unnecessaq appends
we also will get significant savings. One major source of unnec-
essary collection operations is copying collections, particularly
strings. The biggest culprit is the comma operator “,” which
concatenates two strings, It’s very common to see code like:

Transcriptshow ‘Myr%voritevariable =‘, myFavoriteVariableprintString,
‘atstep’, stepNumberprkt.%ing;cr.

There’s nothkg inherently wrong with this kind of code. It does
what it’s supposed to, it’s easy to write, easy to understand, and
debugging code doesn’t have to run fast anyway However, if

your application uses this type of code a lot, you should be aware
what’s going on to execute thk. First of all, printitring is imple-
mented as something like:

IaStreamI
aStream:=WriteStreamon: St.rkrgnev..
selfprMOn aStieam.
‘asbeam contents.

For each call to printString, we’re creating a stream, printing the
object on it, then copying the contents and dkcarding the
stream.The stream will almost certainly have to grow the string
at least once,

So, to execute the previous debugging statement we create
and discard two stresms, copying their contents and then per-
forming three successive concatenations, each of which allocates
a new string and copies both of its arguments into it.

For small strings, and small numbers of strings this ineffi-
ciency is not a big problem, and maybe worth it for the conve-
22
nience of the code. If necessary,however, thk can be written

much more efficiently (if less compactly) as

I SStreamI

aStream:=WriteStream om (Sbing new 100).

aStream nestPutAL ‘Myfavoritevariable =‘.

myFavoriteVaiableprintOn: aStream.

aStream nextPutAIL‘at step ‘.

stepNumberprintOn: aSbeam,

Transcriptshow &earn contents; cr.

It’s also possible to improve on thk if you’re wilhng to go out of
the realm of reasonable code transformations and into effitienq

hacks. The Stream>>contents message normally copies its con-
tents. If you know you’re not going to modlfj the contents, you
may be able to access the collection being streamed over directly,

We‘vefound that in one of our
applications up to 709f0of the time was
spent adding elements to collections.

saving a copy. If you’re writing to the Transcript, you can treat it
as a stream and use next.putsll~repeatedly (in some versions you
have to add a few extra methods in order to treat the Transcript
as a WriteStream).Only do a show on the last operation, since
that wiU force a screen update, which is much slower than any
reasonable number of string operations.

On the general subject of strearning,Jan Steinman writes:

Streaming is more efficient the larger the number of items
you want to concatenate. My rule of thumb is that I use
streams whenever I need to concatenate three or more

Strings, especially ifI lmow about how big the result will be,
or if any of them needs to be sent #printString. At least in

PPS ST-80, #nextPuti is a primitive, and #nextPutAll: is lit-
tle or no more expensive &-an an ordinary copy leading one
to intuit that two concatenated Strings is close to break-

even, and any over that is a win for streaming.

A blgwin is to pre-allocate your stream. If you know your

Tcx-Wkwwillhave about a thousand characters, using

(String new 1000)

writeStream means you have a grand total of two copies per

Character, no matter how many little bits and pieees you’re

putting together once to put them on the Stream, once to

take them off. In general, try to make it slighdy bigger than

the most likely result size.
That’s all for collections. In the next column, I’ll look at some
hints regarding blocks, numbers, special classes and messages,
gtaphic~ operations and some miscellaneous tips. ~ -
The Sma[ltalk Report

Using
patterns:
Finishing
the design
I

B
efore I begin, I’d like to comment on the code in the
June issue by Bill Cole and Tlm Howard. I loved the
simplifications to VkualWorks’ ApplicationModel com-

ponent protocol. I use them now whenever I can. I did have a

bone to pick with their programming style, though.
I didn’t like it that many of their methods would take either a

Symbol or a Collection of Symbols as arguments. There are at
least two conflicting forces at work here.The first is the desire
for simplicity, to add as few selectors as possible. I certainly ap-
preciate simplici~. I have too many selectors memorized as it is.
However, a method that takes eifi-er one or many arguments is a
violation of a more important principle-clarity of expression.
Whale their simple examples of usage weren’t confusing, down
the road I thkk it is much clearer all around to have two flavors
of the message, one that takes a single argument and one that
takes a collection. Here is the kind of thing that has happened
to me in similar situations.

First I start out wirh code like this:
...
self hide: #okay.

...
Then I realize I have the same symbol in many dflerent meth-
ods, so I factor thk into two methods:

...
self hide: self hiddenButtons.

...
hiddersButtons

“#okay

Later on, I find self hide: self hiddenButtons and say “Oh, great.
I can iterate through all the hidden buttons.” So I write:

self hiddenButtons do: [:each I ...]

Boom! Not only does my code not work as expected, the error
occurs somewhere deep inside the block because Symbols re-
spond to do: just he, but the loop variable each gets set to a
Characterinstead of a Symbol.
September 1994
As I said, I prefer to have two variants of the message, in this
case hide: aSyrnboland hideAlb aCollection.Thk strategy gains
in clarity,but doesn’t it lose simplicity? Not really,because I
know that if I have a message, foo:, which tskes a single argu-
ment, if I have a version that takes multiple arguments it is al-

WSYScfled fooAlk. I don’t have to remember two messages, just

one message and one rule that applies to sll messages.

I don’t claim any originsky in this. I’m just copying the col-
lection protocol, which has add: and addtll~. I have found that

applying the same Pattern consistently leaves me with code that
is easy to read and use, even months or yesrs after I fit wrote it.

lNTllODIJ~lON

In the previous column we began exploring what it would be
like to use patterns. I mentioned threeways I’ve found to use
patterns: as documentation for designers, as documentation for
reusers,and as a design aid. I started presenting an example in-
tended to simulate the use of patterns in design.

The example problem is to design the objects to run a televi-

sion with a remote control. We had applied three patterns—
Objects from the User’s World, Objectified Library, and Event,
to come up with five objects:

Television

= change channels

RemoteControl
■ translateuser input into commands
■ read keyboard events

Kaybosrrd

■ create events from keystrokes

Event

To change a channel, the Keyboard creates an Event,which is
read by the RemoteControland interpreted to send a message to
change the channel to the Television.

In d-is column we’ll finish the design by showing how the
objects get dhided between the address space in the remote con-

trol’s processor and the address space in the television set.

HALF OBJECT

There is one common approach to giving an object a presence in
more than one address space. I call it RemoteProxy. In it, you
put the fidl object in one address space, and you put a minimal
object in all the others. The minimal object, the remote proxy,
only has enough information to forward any message it receives
across the network to the real object, This pattern relies on most
of the processing being done in one address space, and only re-
quests for processing originating from other address spaces.

In our example, the object that I want to make accessible in

both address spaces is the RemoteControl (you might also dis-
tribute the Television, but there are other good reasons we’ll get
into later for not distributing the Television). Looking at its re-
sponsibdities, one of them, “read keyboard events,” has to take

place in the remote control. The other, “translateuser input into
commands,” needs to take place in the television so the com-
mands can be executed. We cannot use Remote Proxy to dktrib-
23

conh”nuedonpage 28
ute the RemoteConbol,becausethe processingis balancedbe-
tweenthe two addressspaces.

Here is a secondpatternfor dktributingobjectsI learnedon
atelecomconsultingassignment

Ha~Object

How canyou dikribute an object that ha~wb~tantia[proce~sing

responsibi[itie~ in more than oneaddresx~pace?

The usual pattern for distributing objects is Remote Proxy,
which puts a minimal stub object, the proxy, in all but one of the
address spaces. Messages to the stubs are forwarded to the “real”
object. Thk works well for “client/server”-style interactions,
where there is little dkdog between the sender of the message
and the receiver.When the object maintains an active role in

more than address space, though, it leads to excessive communi-
cation overhead. No matter where you put the object, many of
its messages are remote.

Another case where Remote Proxy is not appropriate is where
part of the fimctionality of an object is implemented in a system

that you do not control. To maintain a legacy,you may not be
able to concentrate all of the processing in a single addressspace.

Giving an object a presence in more than one address space
leads to its own set of problems. You must maintain the object’s
identity, even across communication failures or system recovery.
You must keep the parts of object synchronized if there is dupli-
cate information. You must also design the split between the
parts of the object to minimize long-dktance communications.

Even with these drawbacks, where necessa~, splitting an
object across address spaces is a reasonable design decision.
Therefore:

Sp~it one conceptual object acron address .cpaces,For symmetrical

#its (where the same code is running in all addre~~~pace~),

prepend “Ha~to the objectk name. For asymmetrz”ca[sp[it~,

prepend a word desm”bing the addres~~paceto each o~ects’ name.

Once you have divided the object, you will need to design a pro-
tocol to go between the parts.

Here’s how we’ll use Half Object on RemoteContiol. We put
the responsibility for reading keyboard events in remote control,
and call it RemoteRemoteControl.We put the responsibility for
mapping input to commands in the television, and call it Televi-

sionRemoteControl. As is often the case with names generated
blindly (or it maybe a weakness in the above pattern), these
names don’t read well. We’ll simpli~ them to RemoteControl
and TekvisionContiol.

RomoteControl

■ read keybosrd events

TelswisionControl

■ map user input to commands

DESIGNING THE PROTOCOL

Notice that Half Object has a little coda that reminds us that we
need to design a protocol to go between the rwo halves of the
RemoteControl.Many patterns don’t solve a whole problem by
24
themselves. Solving one problem leads to others, and so on until
you have running code (heck, until the product finally dies).
How do we design the protocol?

The problem statement in the last issue specified that we
were given a library for infrared communications. We can use
Objectified Library to make thk into an object, InfraredSbeam.

lnfraradStraam

“ read and write bytes
This takes care of how the bytes will get transmitted, but there
is still a big gap between “the two hslves of the object need a
protoco~ ~nd ‘read and write bytes.” There are two parts to this
question: what gets sent between the RemoteControland the
TekvisionConbol, and how does it get formatted. Fortunately
the answer to the first question is easy- Events.Once a Televi-

sionControlgets ahold of an Event,it knowswhatto do. Now
we’releftwith the problem of how to formatEvents.What we
needis an objectwhose responsibilkyis to readandwrite
Events,bridgingthe gapbetweenwhat the RemoteControland
TelevisionControlneed,andwhat the IrtfraredSheamprovides.
Here is apatternI usefairlyoften for this:

Formatting Straam

How should you translateobjects to and from lower level repre-
sentations, like charactersor bytes?

One simple solution is to have the object that needs to read
or write another object do the formatting. This has the advan-—
tage of simplici~, as you don’t need to introduce any new objects
and you don’t need to add to the behavior of the object being
formatted. However, this mesns that the object doing the for-
matting has to know the details of the object being formatted,—
making it less flexible. Also, if one object wants to write and a
different kind of object wants to read, you are stuck either with
two copies of the formatting code to synchronize, or you have to
waste inheritance on sharing the formatting code.

Another solution, more i%omaticdly ob~ct, is to have the ob-
ject being read and written do the formatting. This insulatesthe

reading snd writing objects from all the detailsof what object is
being read or written, and centralizesthe formatting code. How-
ever,-youmay not have authority to change the obje-~ being read
and written, or you may want to have multiple formats. Therefore:

Create a stream for tAe olyectsyou wish to read and write. The

name of the stream i~the kind of ob]ict being written concate-

nated with Stream, The externalprotocol is nextfor reading the

next obJ_ect,nextl%t: anObject for writin~ an ob~ict, and athd to

te~t wAetAer there are any objectsfor reading. Create tfie .ctream on

a lower level Jtream.

Using Formatting Stream on our problem causes us to create
EventSbeam,which we will create on an InfraredStream,Thk
gives us the flexibility to change the transport mechanism (Eth-
emetTV?), or the format of the events without affecting either
the RemoteConbol or the TelevisionControl.

Tying it togathar

Let’s follow a scenario all the way through from the user push-
ing a button on the remote control to the channel changing.
The Sma[ltalk Report

The manager’sguideto implementingobject
technology. The “point of entry” for softwere
managementinfusing objects into theirwork

environment.Filled with how-to advice, usable

strategies, and real world experiences.

Written for programmers and developers

using OOP techniques, Internationsd in

scope, Code intensive, practical, technical.
Breakthrough peer-reviewed papers and

invited columns. Now in its 7th year,

Informs C++ developers on how to get the

most out of the language. Ideas and techniques
for increasing your productivity with C++,

Code-intensive, functional tips and tricks for

C++ users on all levels and platforms.

Filled with “how-to” advice
for Smrdltrdk users at all
levels and in all dialects.

The best way For Smalltalk
programmers to maximize the

language’s potential.

Addresses language-indepen-
dent, architectural concerns
about O-O analysis, design end

modeling. Platform and system
independent, ROAD is written

for sofiware developers and
project leaders.

~SIGS
PUBLICATIONS

1--------------------------- --------------------------- ---------------------------- ------------ 1

i.

Yes, I want my subscriptionto the following publicationsto begin
immediately.If not completelysatisfied,I maycancel at anytime
end raceiveafull refund of the unusadportion.

❑LMject/14agazi/re (lyear,9 issues).. , ..$39
❑ ~OOP (1yaar, 9 issuas) ..$s9
❑ C++17epoti (1 yeer, 9 issues) ..$69

:~;~{$ uThe Sma#talkReport(lyear,9issues) ..$79

uROAD(lvear.6issuas) ..&g
TOTAL

Method of Payment
a Bill me, Attn:
c Check Enclosed (Payable to SIGS Publicatiorrs)
❑ Charge MY ❑Visa ~ MasterCard ❑Amarican Express

Card# Exp _

Signature

Name

Titla

Company

Address

City

Province/State Postal Code/Zip

Country

Phone Fax

Return this mupon by mail or faL or call to start your eubacription~

Meik SIGS Publication, In~, P.O. Box 2027, Langhome, PA 19047

Fex: 215-785-6073

Phone 215-785-5996

Importanb Non-U.S. orders must be prepaid.Pleaseadd $35 per subscriptionyear for air
service.Checksmust be in U.S. dollarsdrawnon a U.S. hank.

Product Announcements are not reviews.
They are abstracted from press releases provided by

vendors, and no endorsement is implied.

Vendore interested in baing included in this feature
should send press releases to THE SMALLTALK REPORT,

Product Announcements Dept., ~ Meedowlande Dr. ~,
Ottawa, ON K2C 3N2, Canada,

613.225.8812 (V), 613.225,5943 (f].

KnowledgeWare and Digitalk Ship
PARTS Wrapper for ADW
KnowledgeWare Inc. and Digitalk Inc. have announced that they
have begun shipping a client/server link between Knowledge-

Ware’s Application Development Workbench (ADW) and Dig-
itdk’s PARTS,

The PARTS Wrapper for ADW makes the ADW~kmning and
Anslysis models of businessrequirementsavailableas components
for quick assemblyinto applications,which is done using Digitalk’s
object-oriented PARTS assemblyand reusetoolset. Developers csn
reuseand combine models of businessrequirementsdeveloped
with ADW, and assemblethem with other new or legacy applica-
tion components into enterpriseapplications.

The PARTSWrapper for ADW createsSmakdk classesthatre-
lateto theentitiesin ADW businessmodels, and methods thatim-
plement the attributesand relationshipsof those entities.The rezult-
ing Smalkalkobjectsareusedin PARTSWorkbench to mate fully
ilmctional clientisewerapplicationsbased on businessrequirements
identifiedin ADW. Also, methods containedin SQLstatemen~for
databaseamesssreautomaticallycreatedhm idormation contained
in ADW datamodck. These methods areautomalicdy maintained
asthe businessmodel changes.Automatic SQLgenerationand

maintenanceeliminateshoursof manualei%rt for developers.
The PARTS Workbench also snows developers to combine

the reusable objects created from ADW/planning and Analysis
models and assemble them with other new or legacy application
components for enterprise applications.

KnowledgeWare, 404.231.3510, ext. 235 (v).

Digitalk, 5 Hutton Centar Dr., 1 Ith floor, Santa Ana, CA

92707,714.513.3000 (V), 714.513.3100 (f).

Servio Announces GemStone Version 4.0
Servio Corporation, a major supplier of advanced database and
development technology, has announced GemStone Version 4.0
and in the process set the stage for deployment oflarge-scale
commercial applications based on object technology.

In developing GemStone Version 4.0, Servioworked closely
with its major customers to determine their application require-
ments and to incorporate those requirementsinto GemStone, It
provides a transparentlink to the SmsJltalkprogramming lsnguage
coupled with an underlying ODBMS architecturethat meets cor-
porate MIS’s definition of a “production quslity” multiuserdanbase
management systemfor heterogeneousdistributedcomputing en-
vironments. GemStone Version 4,0 also supports applications
written in C or C++ and has tools for integratinglegacy data.

The major enhancements in GemStone Version 4.0 include
the addition of a shared memory architecture, transaction pro-

26

cessing and 1/0 optimization, improved concurrency, improved
operational support for 24-hours-a-day seven-days-per week

operations, and new facihties for administration and tuning of
GemStone databases in production environments.
Sarvio Corp., 408.879.6214 (v).

Sofflab and Digitalk Integrate Product
Sofdab and Digit~ Inc., announced a Iong-term partnership
agreement under which Softlab will provide a comprehensive re-
development solution by integrating Digitalk’s PARTS into

Softlab’s Maestro II product line, Softlab also has signed a
worldwide non-exclusive agreement to market and distribute
PARTS along with its own Maestio 11products.

By combining stiengths, Softlab and Digitalk are able to pro-
vide a migration path to bring legacy systems to the desktop in
an integrated LAN workgroup environment. The combination of
products allows usersto identi~ reusablecomponents of existing
legacy systems using Maestro II and then use Digitalk’s PARTS

Wrapper technology to create GUI-based desktop applications.
A product of the relationship is an integratedlink whkh will

be called the PARTS Wrapper for Maestro II. It will enable devel-
opers to identify reusablecomponents of msiniiame applications
that can be migrated to client/semer environments in Digitalk’s
fly object-oriented PARTS Workbench. Thk automatic map-
ping eliminates hours of manusl effort for developers and results
in a rapid, visual development of object-oriented applications. By

utiizing PARTS Wrapper technology to integrateMaestro 11and
PARTS , organizations now can have a smooth migration path

from mainframes to object-oriented clientherver architectures.
Softlab’s Maestro II solution is an application maintenance

and redevelopment environment that allows large teams of users

to easily maintain mainframe legacy systems and identi$ exist-
ing mainframe components that are candidates for reuse in
client/server or other architectures.
Softlab, 404.668.8856 (v].
Digitalk, 5 Hutton Center Dr., 1lth floor, Santa Ana, CA

92707,714.513.3000 (V), 714.513.3100 (f].

~~

visualwork8 Reportwriter
ParcPlace Systems, Inc. has announced VisualWorks Re-
portWriter release 1.0, an extension to its VisualWorks product
line. ReportWriter is a client-server database reporting tool that
allows corporate developers to visually create sophisticated re-
ports without SmaUtalkor database programming. Reports can
be built using a point-click approach, then deployed on Win-
dows, 0S/2, Macintosh, and UNIX platforms.

ParcPlace’svisual layout approach let’s you createsimple and

complex reports whaleproviding developers with full control over
WYSIWYG report presentation. Vk.mlWorks ReportWriter also
provides MIS departments with concurrent access to a wide
range of data sources including SQL relational databaseslike

Sybase and Oracle.
ParcPlacelicensed Vkualworks ReportWriter from Synergenics

Solutions, Inc. ReportWriter was developed by SynergenicsSolu-
tions using ParcPlace’sVisualWorks clientkrver development tool.
ParcPlace Systems, Inc,, 408.720.7514 (v) snichols@parc-

place.com (amail)

The Sma[[ta[k Report

on
advertising in the

Recruitment Section,

contact
Michael W. Peck

Electronic Data Systems Corporation, the world
leader in applying information technology, currently

has opportunities in New York, London and Tokyo

[or experienced 00P professionals. Qualified
Programmer Analyst candidates must have hands-on

experience with Smalhalk. Experience with UNIX
and exposure to the Securities Industry preferred.

EDS offers salaries commensurate with experience
and excellent benefits. If you are interested in further
developing your professional skills working with an
industry leader, mail your resume to:

EDS Staffing, Dept. 2410

1251 Avenue of the Americas

41st Floor
H

D

New York, NY 10020

EDS is on qual opporhmiV employer, mll/dlw
EDS i! a registered mark of Electronic Dato Systems Corprdon.

Afheri
Group”

The American Funds Group is one of the most
successful mutual fund organizations in the world.
Since 1931, we have provided our shareholders with
consistently superior investment results and out-
standing service. Share in the continued growth of
our Norfolk, VA OffIce.

We have been a financial industry leader in Small-
talk development for over 5 years. We are currently
developing a large client server baaed customer serv-
ice system. This application is being created using
the latest object oriented methods and is in the be-
ginning stages of development. Ideal candidates will
have the opportunity to be a part of the design team
whose responsibilities will include these initial
phases of development.

We offer a competitive salary and excellent
benefits package including

● Medical, dental and vision care coverage
. Education~ assistance

● k outstanding company-paid retirement plan

Positions are currently available for:

This positon requires 2 h 5 years of Smalltalk ex-

E
erience including OOA and 00D, Job res onsi-

Xilities will include leading in the overall esign
and creation of class and object hierarchies.

In this position you will supervise a team of 5 to 6
Smalltalk developers. Five years experience manag-
ing client server development is required for this po-
sition. Ideal candidates must have at least one year of
object oriented experience including OOA and OOD
methodologies.

In this position, you will develop GUI based client
server applications. At least one year of Smalltalk ex-
perience is required.

If you are interested in applying for any of the
positions listed above, please send your resume
and salary history to:

The American Funds Group
(Please specify position)
5300 Robin Hood Road
Norfolk, Virginia 23513

EQUAL OPPORTUNITY EMPLOYER

continuedjom page 24
continuedj%m page 18

then allow the user to switch between languages throughout the

aPPlicati’JnM* one buflon click M~Y of the *HS ~~s’es (%
scrollable input fields, text outline classes,notebook widgets)
have been redesigned so that they can be more readily reused in
your own applications. Also, the fill outline browser has been en-
hanced to support glossaries,a hktory list, and text searches.

Summary
The AHS is a well designed,very usefid fi-smeworkfor adding on-

line help to Yisualworks applications.The real-time and full out-
line help facilitiesintegratewell into the VisualWorks environ-
ment, and the abilityto easilyallow nondevelopcrs to a-eateand
edit help text in a running application is very nice. For a demo disk

or firther information on the AHS contact Robert Royce atArbor
Intelligent Systems,313.996.4238, or roycerf%uncc.umich.edu. ~

Acknowledgments
The author would like to thank Sivaram Hariharan of Knowl-
edge Systems Corporation for assistancewith this report.

DougCampis a SarriorMambar of tfra DavalopmantSarvicas Staff at

KrrowladgaSyetams Corporation.Ha can ba rsachadat 919.677.1116or

dcamp@heccary.com.
Call for

mEEl ‘p
Edi

● (omm

tions

is seeking e~ert reports, tuton”als, ● Applk

and technical papers. Articles should _Proied

be instructi~e, product-neutra~
● Vetiiro

rimsIib

and technical. ● Portob
. O~er

Submit papers, discuss story ideas,or request
Projec

Writers’ Guidelines from:
● Ropidp
. Version

John Pugh and Paul White, Editors . Applka

THE SMALLTALK REPORT
● Teama
● Organ

855 MeadowlandsDr. #509, Ottawa, ON K2C 3N2 s Inlrad

613.225.8812 (V), 613.225.5943 (f)

streport@objectpeople. on.ca

28
In the remote contiol

1. the user presses a key

2. the Keybomd creates an Event for the key press

3. the RernoteContiolreads the Event, and write it on its

EventStieam

4. the EventSbeam writes the Event on the InfraredSbeam

5. the InfraredSbearn transmits the bytes

Then in the television:

6. the InfraredStreamreads the bytes
7. the EventStreamreads the bytes and creates an Event

8. the TelevisionContiol reads the Event, decodes it, and sends

the “channek anInteger” message to the Television
9. the channel changes

This design still leaves many decisions fuzzy. Exactly what con-
trol structuresarebeing used to read and write? Polling or inter-
rupt driven? How would the system work with a more compli-
cated, realktic keyboard that has many different kinds of keys?

When I have a design thk close, I like to build a prototype
that has sll of the pieces in place, but none of them finished. I

sometimes call this a “spike.” In the next issue 1’11present the ar-
chitectural prototype for the remote control television in literate
programming style. ~
Writers

plicatiOns‘ois
forial topics include:

arad,smginearirrg& sriantifkopplko- ● Ilserintarfombuildars

S Obpdeditors
ofionsframeworks ● Applimiiondevelopment100Is
monogemenl ● Proiedmonogemenl1001s
l[opplimtion]andhorizontal(syslem) ● CASEteals
mries
ilii issues Language ieaues
tIibrorymonogement ● Inheritance

● Userinterfaceporodigms
t management ● Conrurrenq

ratotyping ● Persistenta~ectsond dotabases
monogement ● Oistribuied$molholk issues

lion monrrgement ● Performomeissues
rgonization . Typing
izingfar reuse ● Nelolevelprogramming
mirrg5mallialkintaanorganization

(Competitive st~endpaid)

The SmaWalk Report

	By Article Title
	Arbor Help System V2.0
	Introducing VisualAge
	Managing system changes with carriers
	Name space in Smalltalk/V for Win32
	Performance Tips
	Using Patterns: Finishing the design

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Camp, Douglas
	Knight, Alan
	Lorenz, Mark
	Viljamaa, Panu

	By Topic
	comp.lang.smalltalk
	Product Review
	Smalltalk idioms

