Simalltalk

R E P O R T

Editors
John Pugh and Paul White
Carleton University & The Object Peopls

SIGS Publications Advisory Board
Tom Atwaod, Object Design
Frangais Bancilhon, 0, Technologies
Grady Booch, Rational
George Bosworth, Digitalk
Adele Goldberg, ParcPlace Systems
Tom Love, IBM
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
CIiff Reeves, IBM
Bjame Stroustrup, ATGT Bell Labs
Dave Thomas, Object Technalogy International

THE SmALLTALK RepoRT Editarial Board
Jim Anderson, Digitalk
Adele Goldberg, ParcPlace Systems
Reed Phillips, Knawledge Systems Corp.
Mike Taylor, Digitalk
Dave Thomas, Object Technalopy Imtemational

Columnists
Kent Bach, First Class Software
Juanita Ewing, Digitalk
Grag Hendley, Knowledge Systems Corp.
Tim Howard, RothWall International
Ed Klimas, Linea Engineering Inc.
Alan Knight, The Object People
William Kohl, RothWell Imernational
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brack, Digitalk

SIGS PUBLICATIONS GROUP, INC.
Richard P. Friedman, Founder & Group Publisher

Editorial/Production
Kristina Joukhadar, Managing Editor
Susan Culligan, Pilgrim Road, Ltd., Design
Seth J. Bookey, Production Editor
Margaret Conti, Advertising Production Coordinator
Tonya Trowell, Editorial Assistant
Brian Sieber, cover illustration

Circulation
Bruce Shriver, Jr., Circulation Direclor
John R. Wengler, Circulation Manager

Advertising/Marketing
Shirley Sax, Director of Sales
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Michael W. Pack, Advertizing Sales Assistam
Salas Representative: Diane Fuller & Associates, West Coast

400.255.2991 {v), 408.255.2992 (f)

Sarah Hamilton, Director of Promotions and Research
Caren Polner, Promotions Graphic Designer

Administration
Margherita R. Monck, General Managar
David Chatterpaul, Aceounting Manager
James Amenuvor, Bookkeeper
Michele Watkins, Special Assistant 1o the Publisher
Joanna Lowenstein, Administrative Assistant

WSIGS

PUBLICATIONS

Publishers of JourNAL oF OBJECT-ORIENTED
Procramming, OsjecT MacGaziNg, C++ Reronrr,
SmaLLTALK ReporT, THE X JournaL, REroRT ON
OpjecT ANALYSIS & DEsien, OsjecTs IN Eurorg,
Direcrory oF OfjecT TEcHNoLOGY, and OBJEKT
SpexTRUM (Germany)

September 1994

Table of Contents

September 1994 Vol 4 No1
Features

Name space in Smalltalk/V for Win32 4
Wayne Beaton

As Smalltalk continues to be used for larger and larger applications, the problem of
having one global name space is becoming a more prevalent problem. Wayne dis-
cusses a mechanism for introducing name spaces into Smalltalk/V for Win32 that
allows private classes to be defined.

Managing system changes with carriers 11

Panu Viljamaa

An issue that often causes grief for developers working with a base implementation
is managing changes that are made to the base library. These changes are often nec-
essary but difficult to manage over time. Panu introduces carriers to Smalltalk that
provide a mechanism for managing them.

Introducing VisualAge 14

Mark Lorenz

IBM has recently introduced its VisualAge product, targeted for GUl-based main-
stream software development. Mark offers a comparison of VisualAge's features
with competing Smalltalk products by Digitalk and ParcPlace.

Product Report: Arbor Help System V2.0 17

Douglas Camp
Doug provides a review of Arbor Intelligent Systems’ Arbor Help System, a facility
for adding context sensitive help to Smalltalk applications.

Columns
comp.lang.smalltalk Performance tips 19

Alan Knight

Like all computing languages, Smalltalk has inherent ineffi-
ciencies that should be avoided.Unfortunately, knowledge of
how to avoid these inefficiencies is not available in any one
concise resource. Alan begins a two-part series this issue re-
viewing many of these known “gotchas” discussed on the
Smalltalk forum.

Smalltalk Idioms Using Patterns: Finishing the design 23

Kent Beck .

Last issue, Kent began a discussion of how to effectively apply
design patterns (as opposed to discovering them). This issue, he
continues this theme with the discussion of applying”Half Ob-
ject” pattern.

Departments

Editors’ Corner 2
Product Announcements 26
Recruitment 27

The Smalltalk Repart (ISSN# 1058-7976) is published 9 times a year, monthly excapt in Mar—Apr, July—Aup, and Nov—Dec. Published by SIGS Publications Inc., 71 West
23rd St., 3rd Floor, New York, NY 10010. © Copyright 1994 by SIGS Publications. All rights reserved. Reproduction of this material by electronic transmisgion, Xerox or
any other method will be treated as a willful violetian of the US Copyright Lew and is Ratly prahiited. Materiel may be reproduced with express permissian from the pubfishec
Mailed First Class. Canada Post International Publications Mail Praduct Sales Agreement No. 2903B6.

Subscription rates 1 year (9 issves). domestic, $79; Foreign and Canada, $114. Ta submit arlides, please send electronic liles an disk 1a the Editors at 885 Meadowlands
Drive #508, Otlawa, Omaria K2C 3N2, Canada, or via Inlemet to sirepori@objactpeople.an.ca. Preferved formats for figures are Mac or DOS EPS, TIF, or GIF formats. Akways
send & paper copy of your manuscript, including camera-ready copies of your figures {laser output is fine).

POSTMASTER: Send address changes and subscription orders to: The Smallialk Report, P.0. Box 2027, Langhorne, PA 18047, For service on current subscriptions call
215.785.5996, 215.785.6073 (fax), PO0976@nsilink.com (smail). PRINTED IN THE UNITED STATES.

1

Editors’ Corner

e have just returned from attending the
ObjectWorld conference in San Francisco
and the first ParcPlace International Users
Conference in Santa Clara. The attendance
at the latter was a big surprise, not only to us but also to
the organizers as 500 Smalltalk users gathered together
in what must have been the largest gathering of Small-
talkers ever in one place. Here’s a quick review of both
conferences, from a Smalltalk perspective.

ObjectWorld is a large conference and exposition
with more than 90 exhibitors, which, unlike OOPSLA,
has no booth size or height restrictions. The theme of
the conference was “Get Real,” and this was reflected
in the large number of presentations by early adopters
of object technology who now have real experiences to
pass on to others. The most popular buzzwords remain
“distributed,” “client-server,” “interoperability,” and
“object-oriented.”

Smalltalk was much in evidence, although two of the
major vendors, Digitalk and ParcPlace, took the ap-
proach of being present in the booths of their partners
rather than having booths of their own. IBM unveiled
their new IBM Smalitalk product alongside their
VisualAge application development environment.

The most striking Smalltalk presence however was
found in the booths of the database vendors. In the
past only a few OODBMS-supported interfaces to
Smalltalk. In recent months this situation has changed
dramatically. At ObjectWorld, Objectivity introduced
Objectivity/DB for Smalltalk (their interface to
VisualWorks/Smalltalk) and Object Design was show-
ing ObjectStore for Smalltalk (the result of their part-
nership with ParcPlace Systems). Servio introduced
their 4.0 release of GemStone. Their booth featured an
innovative presentation on the impedance mismatch
between objects and relational databases complete with
“Relational Wall” that the poor hapless relational data-
base used to bump into. On the nonobject database
front the major activity has been on bridging the gap
between Smalltalk and relational databases; permitting
Smalltalk programmers to manipulate relational data
as objects. Both the ObjectL.ens feature found in the
new Database Application Creator component of
VisualWorks 2.0 and the UniSQL Smalltalk interface
provide developers with the ability to create classes
from relational tables or create tables from Smalltalk
class definitions.

For a number of years we have advocated that the
best approach to CASE for Smalltalk developers would
be the integration of tools into the Smalltalk environ-

ment that would permit developers
to move bidirectionally and seam-
lessly between analysis, design and
implementation. A major objective
of such systems is to keep informa-
tion from each phase consistent in
the presence of changes. Thisis a
major task and developments are
still in their infancy, but the first
fruits and potential of this approach
can be seen in the initial release of
the Synchronicity product for Enfin
Smalltalk, where changes made to
the business model are reflected in
the Smalltalk implementation and
vice versa.

Finalists for the ComputerWorld
Object Applications Awards included a number of pro-
jects utilizing Smalltalk technology; Caterpillar’s sys-
tem for forging steel plating and problem resolution
and two production client-server systems built with
Enfin Smalltalk at Sprint and Canadian Tire.

The ParcPlace Users Conference opened with two
half-day tutorials; the first on Object Behavior and
Design (0BA/D) ParcPlace’s object-oriented analysis
and design methodology; and the second aimed at de-
velopers moving their applications from VisualWorks
1.0 to 2.0. Many of the technical sessions were devoted
to the new capabilities added in the new release of
VisualWorks 2.0 such as interacting to relational data-
base report writing and business graphics and connect-
ing to C and DLL’s. One of the most significant recent
developments in the Smalltalk world has been its
adoption by major systems integrators such as Ander-
son Consulting, EDS, and American Management
Systems. Conference presentations featured discussion
of the AMS ObjectCore framework, which extends the
VisualWork’s environment in areas such as data valida-
tion security and internationalization. The conference
also included an exhibition by approximately 20 ven-
dors of Smalltalk-related products and services and a
reception held at the Tech Museum of Innovation in
San Jose, CA. The highlights of the conference, how-
ever, were provided by the inspiring and thought-pro-
voking keynote speeches of Adele Goldberg and Alan
Kay; two of the original Smalltalk pioneers.

Finally, thank you for all your positive comments re-
garding the new look of THE SMALLTALK REPORT.
We have passed on your praise to those responsible.

—The Editors

PAUL WHITE

The Smalltalk Report

STEP INTO THE FUTURE WITH THE COMPANY
. THAT DEFINED OBJEGT TEGHNOLOGY SERVIGES

When object oriented programming was in its infancy, such as American Management Systems, GE Capital Corporation, IBM,
Knowledge Systems Corporation was already putting it to work in com- Northern Telecom, The Prudential, Southern California Edison and Sprint,
panies like yours. Today, we're positioned to take you into the future of ~ the STAP is a total immersion, project-focused program that compresses
object technology in ways that no other company can. With the most six to ten months of learning experience into four to six weeks.
complete range of services in the KSC can also tackle your
industry, KSC can assure your suc- object technology projects head-on
cessful object transition every step of with the most experienced analysts,
the way. Classroom instruction, pro- designers and programmers in the
ject-focused apprenticeships, and business. You can outsource the
consulting are all part of our exclusive entire job, or use our consultants to
commitment to object technology lend expertise to your own develop-
_Services. ment group.
E Once you've made the deci- In addition to our service
offerings, KSC is a distributor of

third party tools such as ENVY®/

sion to move to object technology, you
want to get the benefits as quickly as
possible. KSC offers a complete cur- § Developer, the premier Smalltalk
riculum of classroom education, at team development environment.
your site or in our corporate training If you're ready to step into
facility. These courses help you estab- the future of abject technology, call

lish a firm foundation in object tech- the one company that will lead you

nology concepts and Smalltalk programming. there—Knowledge Systems Corporation, 919-481-4000. Or email:
To cut months off your transition time, we've developed an exclu- salesinfoaksccary.com. 4001 Weston Parkway, Cary, North Carolina

sive Smalltalk Apprentice Program (STAP). Already proven in companies 27513,

~
NNOWLEDGE SYSTEM3 CORPORATION

§19-481-40010

ENVY is a registered tradamark of Object Tachnology International Inc.

Name spaces in Smalltalk/V

for Win32

Wayne Beaton

1l in Smalltalk is not perfect. However, Smalltalk is better |

than anything else that’s available. One of the major

problems with Smalltalk is its annoying tendency to
dump all classes into a single global name space. This means that if
T have a class named “Employee,” then nobody else had better have
one. There are those (including myself) who would say that if you
have a conflict between classes named “Employee,” then chances
are you've implemented something incorrectly. But never mind
that.

For years, programmers have been exchanging useful Smalltalk
code quite freely; today, there are a number of vendors who are
selling Smalltalk classes that provide many wonderfully useful fa-
cilities. With more and more classes being included in images,
programmers are starting to prefix their classes to ensure that their
names are unique. For example, if I suddenly were to become in-
sane, I might prefix every class I make with WIB (Wayne Thomas
Beaton). My image then could be polluted with classes named
WTBSortedDictionary, WIBEmployee, etc. Compound this with the
annoying abbreviations that some people choose to employ, and
you can have an entire image filled with classes named
WIBSrtdDict, WTBGhEmployee, and WTBLlEmployee. What do
these classes do? Whatever.

When I get a bunch of code from somebody else, I generally
dor’t want to know how it works. That it works is enough (I imag-
ine that this is the philosophy behind DLLs). All that I really want
to know is the public interface (thoroughly documented, of
course). The bottom line is,] don’t want to have to look at stuff

Object
subclass: #Junk
instanceVariables: "
classVariables: "
poolDictionaries: " !

Smalltalk at: #JunkClasses put: Dictionary new !
JunkClasses at: 'Junk' put: Junk !

Smalltalk removeKey: #Junk ifAbsent: [] !

Figure 1. File-in code to define a class and move it into a pool dictionary.

Object
subclass: #UsesJunk
instanceVariables: "
classVariables: "
poolDictonaries: 'JunkClasses' !

UsesJunk methods !
answerANewJunk
AJunk new ! !

Figure 2. Using a class stored in a pool dictionary.

4

that I don't need to look at. If the code requires some 50 classes,
then great — just don't make me look at them.

What is needed to bring Smalltalk to the next level, is some
way of permitting programmers to use the names that make sense
for their classes without worrying about conflicting with other
names, and the ability to hide away classes that nobody else partic-
ularly cares about.

In the February 1993 issue of THE SmALLTALK REPORT, Nik
Boyd discussed modules for Smalltalk. Modules provide a way of
hiding “private” classes. This provides some of the desired behavior,

but more is needed.

HAVE | GOT A DEAL FOR YOU..

‘While this is not particularly clever, radical, or new, it’s something
that should have been done years ago. In fact, I marvel that this
hasn't shown up yet; there are many very smart people in the
Smalltalk community. In all fairness to Digitalk, their code seems
to indicate that they are leaning in this direction (and in fact,
Smalltalk Agents has had this from the beginning).

Smalltalk needs name spaces. The global variable Smalltalk is a
name space; this is where all the global names are kept. We should be
able to have more than just one name space and use it just like we use
the global name space. In fact, we can do this already.

Pool dictionaries are moderately useful things that can be used
to hold information that is to be shared between classes. In our
code, pool variables are accessed just like global variables. Pool dic-
tionaries can hold many wonderful things. In fact, they can hold
any object — numbers, strings, collections, classes, etc.

When 2 class is defined, it is created autornatically as a global
variable. After a class has been created, we easily can include it in a
pool dictionary and then remove the global reference.

Global variables are all kept in the global variable called Small-
talk, Smalltalk is an instance of the class SystemDictionary. When
you attempt to remove a reference to a class from Smalltalk using
the method removeKey:, the class itself is removed from the system.
However, the method removeKey:ifAbsent: does remove the key
from Smalltalk, but it has no effect on the class.

Figure 1 shows some code that can be filed-in to create a class
and then moved into a pool dictionary. Figure 2 demonstrates how
this class can be used by another. While the magnitude of the use-
fulness of the demonstration method may not be appreciated, it is
obvious that frorn a use standpoint, very little is different. Only a
mention of the pool dictionary is required in the class definition to
use the class-in-a-pool-dictionary.

‘We can now freely define another class called Junk, and either
keep it as a global variable, or move it to another pool dictionary.

‘When the compiler encounters a variable that begins with an up-

The Smalltalk Report

Get Powerful New Controls for Smalltalk/V

Subpanes”/V is a library of unique
controls for Smalltalk/V. Place and edit
them interactively with WindowBuilder™
Pro/V. When you use the right controls,
your applications will be easier to use. And
you’ll save time because you won’t need to
fight controls that aren’t right for the job.

Firsl | Lasi Compary Shas +]
Name | Name Hize 4

1] Qhjacrshom Systonms |

28 Srlhar Dajecishare § 9f

J Hobes! |Yerme Unjectsharp Spstams 1

4 Mina F Igchar Dhjprtshare Sysiame 0

9 Lze Roberts Oojecishare Suzlems 3

6 Ied Melere Caoper & Hetars L]

7 Kem Coopsy Couper & Petars 11

A Table of Editable Cells

TablePane provides a scrollable grid of
editable cells. In addition to handling a
matrix of strings, it can manage a collection
of objects. Users edit cells in-line by :
selecting them with the mouse or keyboard. [

Hierarchical List Box
HierarchicalListBox
extends a normal listbox
to view a hierarchical
group of objects.
Collapse or expand the
hierarchy, use icons, use
| indentation to show the
relationships. Display any objects that have
hierarchical relationships.

A List Box with Columns
ColumnarListBox displays multiple pieces
of information about each object of a
collection. You control headers, justifica-
tion, color*, multiple select* and more.

Sridhar
Yerex
Frmcher
Habeds
Prtorx

jectshare Syslems
Syslems

Cuupur & Privyn
Coopaer K Peters
Graphical User lmesfaces

Canaultom

Bitmap Panes, 3D Frames, & More
Subpanes/V also includes BitmapPane, 3D
frames, ValueSet, Gauges, date, number,

and time editors, BitmapButton, and more.

No Runtime Fees

No runtime fees for applications developed
with Subpanes/V. It includes complete
documentation, full source, free support to
registered users for the first 90 days, and a
30-day money-back guarantee.

SUBPANES/V

NEW! For OS/2 $235 (v2.0)
For Win
For Win32

$129 (vi.0)
$195 (vi.0)

*These features in version 2.0 only. Version 2.0 for Win and
Win32 will ship in 3094

Subpanes/V requires WindowBuilder Pro/V. Subpanes /V is
compatible with Team/V and ENVY/Developer. Subpanes is
implemented in Smalltalk, as subclasses in Digitalk’s Subpane
hierarchy. Support subscription available.

..And CUA*91 Controls Are Easy Too!

WidgetKit"/CUA91 is a library of
CUA91 controls for Smalltalk/V. CUA*91
controls provide a distinctive and powerful
user interface. WidgetKit/CUA'91 makes
them easy to use and portable. Place and
edit the controls interactively with
WindowBuilder™ Pro/V. WidgetKit/
CUA“91’s specialized editors give you easy
access to all of the control’s attributes.

Notebooks, Cached for
Performance

CachedNotebooks provide the CUA’91
notebook control. Performance is dramati-
cally improved by dynamic page loading.
You get complete control of orientation,

-, tabs, align-
- ment, color,
2" |, binding, and
.|| page3 i caching.

Containers I:

CuaContainers ; o

provide text or

icon representa- o O

tions of items they | %' STvPMn

contain. Items can O 3aa
be dragged and STYPMI4 TEST Vo=
dropped between 3 e =

containers. Supports icon, name, text, tree,
and detail views. CuaContainers can hold
objects of any type.

Value Set and More

CuaValueSet provides a way for users to
select from icon and text choices with a
mouse click. WidgetKit/CUA’91 also
provides full support for the rest of the
CUA’91 controls, including slider and
spin button.

For WindowBuilder Pro/V
WindowBuilder Pro/V lets you build
Smalltalk/V user interfaces fast. Place the
controls and edit them interactively.
Increase consistency, ease maintenance.
Call for a free brochure.

No Runtime Fees

No runtime fees for applications developed
with WidgetKit/CUA91. It includes
complete documentation, full source, free
support to registered users for the first 90
days, and a 30-day money-back guarantee.

WIDGETKIT/CUA 91
NEW! For 0S/2.......... $295
For Win .ceeveeee $295 (3094)
For Win32 $295 (3094)

WidgetKit/CUA'91 reguires WindowBuilder Pro/V. Widgetiit/
i CUA91 is compatible with Team/V and ENVY/Developer.

Includes DLLs. User interfaces built using WidgetKit/CUA'31 are
portable to supported platforms. Support subscription available.

Objectshare Systems, Inc.

5 Town & Country Village, Suite 735
San Jose, CA 95128-2026

Fax 408-970-7282

CompuServe 76436,1063

© Objectshare Systems Inc. 1994

Call to order today (408) 970-7280

9AM to 5 PM PST, Monday through Friday
30 day money-back guarantee

Now! Automatic Documentation

Synopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

* Documents Classes Automatically

* Provides Class Summaries and Source Code Listings
* Builds Class or Subsystem Encyclopedias

Publishes Documentation on Word Processors
Packages Encyclopedia Files for Distribution

Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

For Smalltalk!V Development Teams — With Synopsis

Development Time Savings

Coding Documentation

Without
Synopsis A "

Start Finish

Documentation
With Coding ERFFEETH
Synopsis
A N
Start Finish
Products Supported:

Digitalk Smalltalk/V

OTI ENVY/Developer for Smalltalk/V
Windows: $295 0S/2: $395

Sy Synopsis Software
8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

Name spaces in Smalltalk/V

per case character, it first checks the pool dictionaries of the class and
then Smalltalk (I imagine that class variables are also consulted at
some point). We can count on our method using the Junk class
defined in the pool dictionary before it atternpts to use any other
Junk class that we may create. There is some potential for trouble if a
class uses more than one pool dictionary — the order in which mul-
tiple pool dictionaries are searched is unspecified (in the process of
defining a class, a collection of pool dictionary names is created as a
set and then turned into an array).

THAT'S GREAT, BUT...
"This pool dictionary idea works well, with a couple of exceptions.

The browsing tools just aren't up to snuff. When the Class Hier-
archy Browser populates its list of classes, it asks each class for its
subclasses. The list of classes is actually a list of the names of classes.
‘When the user actually clicks on a class name, the string is used to
ask Smalltalk for the actual class (those readers that have been pay-
ing attention will notice the obvious problem with this).

It appears as though Digitalk has been anticipating the inclu-
sion of name spaces in some future version of their Smalltalk prod-
ucts. In the process of creating a class, an instance of ClassInstaller
is created,; this ClassInstaller is provided with the “environment” in
which to install the class. The “environment” is expected to be
something with dictionary-like behavior; by default this always
ends up being Smalltalk (an instance of SystemDictionary). Any

6

other dictionary can be substituted (by changing the appropriate
methods) — except that the key that is placed into the dictionary
always will be a Symbol. The SystemDictionary called Smalltalk
uses Symbols for its keys. Pool dictionaries use Strings (again, an
attentive reader might notice that we have a bit of an inconsistency

here...)

NAME SPACES

Pool dictionaries can be used to provide narne spaces. However, it
would be nice to have an easy-to-use facility to use name spaces
seamnlessly. There is perhaps more behavior that name spaces could
have that could justify the creation of a new class. The class Name-
Space provides the behavior required for name spaces in Smalltalk.
This class, combined with 2 helper class and some small system
changes, provides easy-to~use protocols for using namne spaces.

Creating a new narne space is a stmple matter of passing the
NameSpace class the message new and storing the result in 2 global
variable. For convenience, name spaces know their name; this makes
things a little easier later, when we need to know their namne. Figure 3
shows how a name space can be created and stored.

NameSpaces have been provided with all the behavior required for
them to perform as a SystemDictionary and as a pool dictionary. The
implementation is simple: the class has two variables, name and dic-
tionary. Methods have been provided to access the name space, just as
a SystemDictionary or a pool dictionary is accessed. The methods at:,
at:ifAbsent:, at-put:, includes:, and includesKey: work just as expected.
The method add: is needed for when a new class is areated; after the
class is created, an assodation containing it is added to the name

The Smalltalk Report

space (this is part of the inner workings of Smalltalk — it really seems
odd to be able to add an association to a dictionary. ..). The method
associationAt-ifAbsent: also is required as part of the pool dictionary
behavior; when a pool variable is accessed, the association containing
the value is borrowed from the dictionary. I have added another
method, @ (at-sign), which provides some “syntactic sugar” for the at:
message.

All of the methods that involve a key convert the key into a
symbol. This way it is possible to access a name space by either us-
ing a string or a symbol as the key.

Adding a class to a name space is another simple matter When
the class is created, the name space in which the class should reside is
specified. As well, the names of all the name spaces that the class has
access to are specified. Figure 4 shows how a class can be created in
the name space called TestNameSpace with access to the name spaces
called NameSpacel and NameSpace?2.

The name spaces are listed by their name, just like pool dictio-
naries. This is a consequence of how they are being stored and used.
Currently, name spaces are associated with a class the same way a
pool dictionary is — by their names. When the compiler needs to
access a variable from a pool dictionary, it goes through its collec-
tion of pool names and asks Smalltalk for each one. This forces on
us 2 restriction that name spaces must all be globally known. A
small change to the method poolVariableScopeFor:, in class Compi-
lerInterface, fixes this restriction to permit name spaces and pool
dictionaries to reside within name spaces.

The method subclass:instanceVariahleNames:
classVariableNames:poolDictionaries:
nameSpacesAccessed:nameSpace: has been added to the class Behav-
ior; it adds a small delta to the original method subclass:instanceVari-
ableNames: :poolDictionaries:. The original method creates an instance
of class ClassInstaller, loads it up with information for the new class
and then sends the message install. The new method creates an in-
stance of class NameSpaceClassInstaller that takes name spaces into
consideration.

One of the instance variables of ClassInstaller is “environment”;
ClassInstaller only looks at its environment for global information.
By default, this variable holds Smalltalk When an instance of Name-
SpaceClassInstaller is ereated, the environment variable is set to the
name space specified in the formal parameter.

‘When the NameSpaceClassInstaller creates a new class, it first
checks to see if the parameters it has been provided with are valid (the
super class does most of the work). The name spaces specified are
checked to ensure that they are in fact name spaces. Once everything

TestNameSpace :=
NameSpace new name: #TestNameSpace

Figure 3. Creating a name space.

Object

subclass: #Test

instanceVariables: "

classVariables: "

poolDictionaries: "

nameSpacesAccessed:
'NameSpacel NameSpace2'

nameSpace: #TestNameSpace

Figure 4. Defining a class in a particular name space that accesses classes
in other name spaces.

September 1994

t
VisualWorks

FREE®

That’s right, you get the
renowned VisualWorks
development product absolutely
free with each license of

HP’s Distributed Smalltalk
development bundle.

If you want to build client-server appli-
cations that truly give more power to
your end users, you'll want HP
Distributed Smalltalk. You get tools
and CORBA compliant class libraries
for object request broker and related
services, along with the VisualWorks
Smalltalk environment and GUI
builder. And that gives you a faster,
easier way to develop and deploy dis-
tributed applications on any combina-
tion of supported UNIX and PC plat-
forms.

We're convinced that once you try
HP Distributed Smalltalk, you'll be
hooked. That’s why, for a limited
time, we're willing to give you the
VisualWorks portion of our product
FREE.

Contact us today, for details!

Phone: (408) 447-4722

FAX: (303) 229-2180
Attention: VisualWorks Offer

e-mail: dst@sde.hp.com

* Limited time offer.
Minimum order 5 licenses.

© 1994 Hewlett-Packard Company

(D Prostraky

has been validated, the name spaces are included with the pool dictio-
naries and the installation continues as normal.

The ComopilerInterface method poolVariableScopeFor: was
changed to look into the name space for pool dictionaries rather
than directly into Smalltall. Name spaces have further been ex-
tended so that the methods at:, at:ifAbsent:, includes: and in-
cludesKey: all look into themselves for the specified key first, and if
the key is not part of the name space, the buck is passed to the
outer name space (Smalltalk by default). The current implementa-
tion only provides for one level of name spaces (i.e., no name
spaces within name spaces), but the potential for nested name
spaces has been worked into the code.

Name spaces are stored in a class with pool dictionaries. For most
purposes, this is acceptable — however, when a class prints itself, it
would be better to not have the name spaces appear as pool dictio-
naries. The method fileOutOn: in class Class has been modified to
accommoadate name spaces. Methods have been added to extract
name space information from a class; the methods nameOfName-
Space, namesOfNameSpaces, and sharedVariableString answer the
name of the name space the class belongs to, the names of all the
name spaces the class has access to, and a string containing the
names of all the pool dictionaries that the class accesses, respectively.

WITH A LITTLE BIT MORE EFFORT...

This article discusses names spaces exclusively. It does not consider
the modifications that have to be made to the browsing tools in or-
der to make any real use of name spaces. As well, the code pre-
sented here could be changed easily to permit name spaces within

name spaces. An even easier extension would permit variable and
variable byte subclasses to exist in a name space.

CONCLUSION
This article has been written primarily as food for thought. The
code provided here is in no way a complete solution.
It really seems odd that Smalltalk has lived as long as it has with-
out some of the fundamental problems having been addressed. It
seems that everybody that uses Smalltalk can tell you 40 things
that are wrong with it. Fortunately, those same people can tell you
four billion things wrong with the alternatives.
As more and more industrial strength applications are written in
Smalltalk, and more classes are becoming commercially available,
naming conflicts are only going to get worse.

Soon, Smalltalkers will be able to tell you 50 things that are wrong
with Smalltalk, and only three billion things wrong with the alterna-
tives. The gap is closing and Smalltalk has to evolve to keep ahead.

OH YEAH...

Alan Knight pointed out to me that I misused a term in a previous
submission. I had made reference to functional programming
when I had meant procedural programming. Perhaps with age I
will gain a better appreciation for terminology... @

Wayne Beaton is a senior member of the technical staff at The Object People.
His interests include user interfaces and neural networks. He can be reached
at The Object People in Ottawa, ON, Canada, at 613.225.8812, or by email at

wayne@ObjectPeople.on.ca.

Listing 1. The NameSpace class.

NameSpace methods for accessing
name
“name

name: aSymbol
name := aSymbol

NameSpace methods for initializing

initialize
self dictionary: self defaultDictionary

NameSpace methods for accessing with assodations

add: anAssociation
"When the compiler adds a class, it adds it as
an association. Why? Nobody really knows
for sure..."
self
at: (self convertKey: anAssociation key)
put: anAssociation value

associationAt: aStringOrSymbol ifAbsent: absentBlock
"When the compiler attempts to access a global, it wants the
association. Checks the receiver for the name first, and then
the outer scope.”
~self dictionary
associationAt: (self convertKey: aStringOrSymbol)
ifAbsent: [
self outsideScope
associationAt: aStringOrSymbol asSymbol
ifAbsent: absentBlock]

NameSpace methods for accessing by key

at: aStringOrSymbol ifAbsent: absentBlock
"Answers the object found at the key named aString0rSymbol. The

receiver is checked first, then the outer scope. If the key is not
found, then the evaluation of absentBlock is answered "
~self dictionary
at: (self convertKey: aString0rSymbol)
ifAbsent: [
self outsideScope
at: aStringOrSymbol asSymbol
ifAbsent: absentBlock]

@ aStringOrSymbol
"Answers the object found at the key named aStringOrSymbol."
~self at: aStringOrSymbol

at: aStringOrSymbol
"Answers the object found at the key named aStringOrSymbol."
~self
at: aStringOrSymbol
ifAbsent: [*self error: 'Key is Missing']

at: aStringOrSymbol put: anObject
"Puts anObject at key position aStringOrSymbol."
~self dictionary
at: (self convertKey: aStringOrSymbol)
put: anObject

NameSpace methods for iterating

do: block
"Evaluates block for each object in the receiver."
self dictionary do: block

NameSpace methods for removing keys

removeKey: aSymbolOrString ifAbsent: absentBlock
"Removes the object with key aSymbolOrString from the receiver."
self dictionary
removeKey: (self convertKey: aSymbolOrString)
ifAbsent: absentBlock

The Smalltalk Report

NameSpace methods for testing

includes: anObject
"Answers whether or not an object is included in the receiver or the
outside scope."
~(self dictionary includes: anObject) or:
[self outsideScope includes: anObject]

includesKey: aString0rSymbol
"Answers whether or not an object with key aString0rSymbol is
included in the receiver or the outside scope."
self at: aStringOrSymbol ifAbsent: [*false].
“true

isNameSpace
"Answers whether or not the receiver is a NameSpace."
“true

NameSpace methods for scoping

outsideScope
"Answers the name of the receiver's outside scope.”
~Smalltalk

NameSpace private methods

defaultDictionary
"Private - Answer the dictionary to use by default."
~Dictionary new

convertKey: aStringOrSymbol
"Private - Converts aStringOrSymbol into the appropriate ohject to be
used as a key in the receiver."
~aString0OrSymbol asSymbol

dictionary: aDictionary
"Private"
dictionary := aDictionary

dictionary
"Private”
~dictionary

Listing 2. Additions to Behavior class.
Behavior methods for name spaces

subclass: className
instanceVariableNames: instanceVariables
classVariableNames: classVariables
poolDictionaries: poolDictionaries
nameSpacesAccessed: namesOfiNameSpaces
nameSpace: name0fNameSpace

"Create or modify the class named <className> to be a subclass of the
1eceiver with the specified instance variables, class variables, pool
dictionaries, and class instance variables."

| installer | .

installer := NameSpaceClassInstaller

name: clagsName

environment: (Smalltalk at: nameOfNameSpace)

suhclassOf: self

instanceVariableNames: instanceVariables

variable: self isVariable

pointers: trge

classVariableNames: classVariables

poolDictionaries: poolDictionaries

nameSpaces: namesOfNameSpaces

nameSpace: nameOfNameSpace.
~installer install

Listing 3. The ClassInstaller class.

ClassInstaller subclass: #NameSpaceClassInstaller instanceVariableNames:
' namesOfiNameSpaces nameOfNameSpace ' classVariableNames:
"poolDictionaries: "nameSpaces:" nameSpace: #Smalltalk category:
‘Name Spaces’

NameSpaceClassInstaller class methods for instance creation

name: className
environment: globalDictionary
subclassOf: superclassObject
instanceVariableNames: instanceVariableString
variable: variableBoolean
pointers: pointerBoolean
clagsVariahleNames: classVariableString
poolDictionaries: poolDictionaryString
nameSpaces: namesOfNameSpaces
nameSpace: nameOfNameSpace

| installer |

installer := self
name: className
environment: globalDictionary
subclassOf: superclassObject
instanceVariableNames: instanceVariableString
variable: variableBoolean
pointers: pointerBoolean
classVariahleNames: classVariableString
poolDictionaries: poolDictionaryString-

installer
namesOfNameSpaces: namesOfNameSpaces asArrayOfSubstrings;
name(0fNameSpace: nameOfNameSpace.

~installer
NameSpaceClassInstaller methods for accessing

name0fNameSpace: aSymbol
nameOfNameSpace := aSymbol

names0fNameSpaces: aCollection
namesOfNameSpaces := aCollection

name0fNameSpace
~nameOfNameSpace

namesOfNameSpaces
~namesOfNameSpaces

NameSpaceClassInstaller methods for installing

namesOfPoolsAndNameSpaces
“Private - Answers an array containing the names of the pool dictio-
naries and the names of all name spaces.”
~self poolNames,
self namesOfNameSpaces,
(Array with: self name0fNameSpace)

editSubclass
"Create or change the subclass the receiver should install. Overrides
the superclass implementation to include name spaces with the pool
dictionaries."
~self metaclass
name: self className
environument: self environment
subclassOf: self superclass
instanceVariableNames:
self instanceVariableNames
variable: self isVariable
words: true
pointers: self isPointers
classVariableNames:
self classVariableNames
poolDictionaries:
self namesOfPoolsAndNameSpaces
comment: String new
changed: nil
NameSpaceClassInstaller methods for validating

validate
"Answer true if the receiver contains a legal class definition, false
otherwise. Overrides the super class implementation to validate
name spaces."
~super validate and: [self validateNameSpaces]

September 1994

validateNameSpaces
"Private - Ensures that the name spaces specified are all valid name
spaces."
(NameSpace isNameQOfNameSpace: self nameOfNameSpace)
ifFalse: [
~self invalidBecause: ‘'Name space is invalid'].
self namesOfNameSpaces do: [:each |
(NameSpace isNameOfNameSpace: each)
ifFalse: [
~self invalidBecause: 'Name space is invalid']].
“frue

Listing 4. Changes to CompilerInterface class.

Compilerinterface methods for name spaces

poolVariableScopeFor: aClass
"Return a scope containing all of the pools for the argument class."
| aPool poolVariableScope |
poolVariableScope := MultiplePoolScope new.
aClass sharedPools do: [:pn|
"Look at the class name space. It will automatically look at the
outer scope.”
aPool := "was —> Smalltalk” aClass nameSpace
at: pn ifAbsent: [nil].
aPool == nil ifFalse: [
poolVariableScope add:
(self scopeForPool: aPool named: pn)]].
~poolVariableScope

Listing 5. Changes/additions to Class class.

Class methods for name spaces

fileQutOn: aStream
"Append the class definition message for the receiver to aStream.
Extended to file out name space information correctly."
| aString |
aStream cr;
nextPutAll: self superclass printString; space;
nextPutAll: self kindOfSubclass; space;
nextPutAll: name storeString; cr; space; space.
self isBits
ifFalse: [
aStream nextPutAll: 'instanceVariableNames: '.
(aString := self instanceVariableString) isEmpty
ifFalse:[aStream cr; nextPutAll: ' "].
aStream
nextPutAll: aString storeString;
cr; space; space].
aStream
nextPutAll: ‘classVariableNames: '.
(aString := self classVariableString) isEmpty
ifFalse:[aStream cr; nextPutAll: ' '].
aStream
nextPutAll: aString storeString; cr; space; space;
nextPutAll: 'poolDictionaries: '.
(aString := self sharedVariableString) isEmpty
ifFalse:[aStream cr; nextPutAll: ' '].
aStream
nextPutAll: aString storeString.

aStream
cI; space; space;
nextPutAll: 'nameSpaces: ™.
self namesOfNameSpaces do: [:each |
aStream nextPutAll: each; space].
aStream
nextPut: $'; cx; space; space;
nextPutAll: 'nameSpace: #';
nextPutAll: self nameOfNameSpace

removeFromSystem: checkForlnstances
“Private - Remove the receiver from Smalltalk. Report an error if

there are any subclasses or instances of the receiver. If
checkForlnstances is true then we check if there are any instances of
the receiver. Remove the receiver from its name space, not
necessarily Smalltalk.”
| index index? |
((OrderedCollection new
add: UndefinedObject;
add: Class;
add: True;
add: False;
add: DeletedClass;
add: EmptySlot;
add: SmallInteger;
yourself)
includes: self)
ifTrue: [
~self error: 'Class cannot be removed."].
checkForInstances ifTrue: [
self alllnstances notEmpty ifTrue:
[*self error: 'Has instances']].
self allSubclasses notEmpty ifTrue:
["self error: 'Has subclasses'].
self nameSpace "was —> Smalltalk"
removeKey: self symbol ifAbsent: [].
self class superclass == nil ifFalse:
[self class superclass
removeSubclass: self class].
self class become: DeletedClass class.
self superclass == nil ifFalse:
[self superclass removeSubclass: self].
self become: DeletedClass

nameSpace
"Answers the name space the receiver is a part of."
~NameSpace named: self nameOfNameSpace

name0fNameSpace
"Answers the name of the name space the receiver is a part of."
~self sharedPools
detect: [:each |
(NameSpace isNameOfNameSpace: each)
and: [(NameSpace named: each) includes: self]]
ifNone: [#Smalltalk]

sharedVariableString

"Private - Answer a String containing all of the pool dictionary names
refenred to by the receiver. The names are separated with blanks.
Modified to exclude name spaces."

| aStream pools |

aStream := WriteStream on: (String new: 16).

pools := self sharedPools reject: [:each |

(NameSpace isNameOfNameSpace: each}].-

pools asSortedCollection do: [:each |
aStream
space;
nextPutAll: each].
aStream position = 0 ifFalse: [aStream space].
~aStream contents

namesOfNameSpaces
"Answers a collection containing all the name spaces the receiver has
access to."
“self sharedPools select: [:each |
(NameSpace isNameQOfNameSpace: each) and:
[((NameSpace named: each) includes: self) not]]

Listing 6. Additions to MetaClass class.
MetaClass methods for name spaces

nameSpace
"Answers the name space the receiver is a part of."
~self instanceClass nameSpace

10

The Smalltalk Report

Managing system changes

with carriers

Panu Viljamaa

ood object-oriented classes adapt to the changing

needs of their environment. Sometimes it is also im-

portant to adapt the environment to its objects. “Sys-
tem-changes” appear to be a necessity if rules of good design
are obeyed as discussed in this article. With the reflective capa-
bilities of Smalltalk we build classes that carry system-changes
with them.

Much of the power of object-oriented development comes
from the reuse of existing class libraries, the “environment” or
the “system” on top of which applications are built. The impact
of class libraries and tools is well appreciated by the vendors.
What is lacking is an emphasis on techniques and approaches
for assuring the incremental development of the environment.

In this article we argue for the importance of system-changes.
We utilize reflective features of Smalltalk to build classes that
carry source-code for the system changes they need with them.

THE IMPORTANCE OF SYSTEM CHANGES

A typical use of system changes could be to modify the system’s
menus to add your own tools to them. Another typical reason to
change the system is porting. Instead of adapting an application
to a new environment it is often economical to adapt the envi-
ronment to the application.

Reflective capabilities of environments like Smalltalk intro-
duce exotic possibilities for system changes. You can modify the
compiler to allow for syntactic differences of different
Smalltalks. Or modify it to accept a totally different language.

One important rationale for systemn changes is subtle: good
style. Good object-oriented style often means dividing the re-
sponsibilities among classes so that robustness and reuse is
maximized. The creators of the environment can't anticipate all
future uses of their classes. When unanticipated usage occurs,
the optimal division of work has to be reconsidered.

In an example of good and bad design, Beck! describes a way
to avoid testing for an object’s class. Testing for the class is bad
because a decision is based on the class of the object, as opposed
to its true capabilities. A bad method looks like:

someElement: aCollection

(aCollection isKindOf: IndexedCollection)

ifTrue: [*aCollection first]

ifFalse:[*aCollection asAmray first]
To make the code better you can define the method #first for
Collection (the root of all collections) to return “self

asArrayfirst. Then all collections understand #first and the com-
plicated code-example can be replaced by:

September 1994

someElement: aCollection
~aCollection first
To write in good style, we have introduced a system change. A
system change appears to be the solution for good style in many
other situations also.

The Law of Demeter? aims at reduced coupling between
classes. It advocates moving functionality from the users of a
class to that class itself. This allows that functionality to be
reused by several clients. The law forbids chained messages. Ac-
cording to Demeter, the following is bad style because we are
not only requiring the argument to understand #name but also
that the result of #name understands #asUppercase:

badMethod: anArg

~anArg name asUppercase

We can rewrite the example in good style like this:

goodMethod: anArg

~anArg nameAsUppercase
Functionality is moved from the client into the server’s method
#nameAsUppercase. But when we create clients of system classes
and we want to move functionality into them, we want system
changes. The changes could be gathered in a subclass but itis a
good idea to place functionality in the highest possible places
because then they can be reused by subclasses. With system
changes we make argument classes more similar, instead of
making the recipient handle many dissimilar arguments.

The #someElement: example exhibits more reusability if
#Hfirst is defined also in Object to return the object itself. After
that #someElement: will work with any kind of argument. In
general, we achieve the ability to treat collections and non-col-
lections similarly and (re)use the same client-code with both
kinds of arguments.

THE NEED FOR TOOLS TO MANAGE SYSTEM CHANGES
To reap the benefits that system changes can provide, they
should be easy to use and reuse. We now look at how the con-
ventional tools are lacking, and how they could be better.
ChangeSets is a traditional tool in Smalltalk-80. In Change-
ListView individual changes can be browsed, removed, and
added. The set of changes can be stored in a file and multiple
files kept around. This is not particularly object-oriented
however. The basic shortcoming is that files are not objects
and therefore:

* The link between applications and their needed changes is
weak. Files cannot be arranged in dependency relations. No
one warns you if you delete a needed change-file. It is hard to
know which applications need a given file.

11

Carriers

* Files cannot be “subclassed” to redefine a given change but
inherit others. Files may be treated as file-objects but they are
not change-objects.

Instead of file-based change-management, we want change-~ob-
jects that:

* Know the changes they contain.

* Carry the source code for these with them.

* Extract that source-code automatically from the current im-
age.

» Are persistent and can be imported to standard environ-
ments.

* Can be worked on with standard tools like the browser.

The requirement of persistence with portability appears to be a
hard one when there is no vendor-independent external repre-
sentation for objects. Yet there is a common solution: the file-
out-format of Smalltalk is a standard way for exporting and im-
porting classes as portable, persistent objects.

THE CARRIERS

‘We now introduce software that allows you to treat changes as
persistent objects—as classes. The source-code for such a class,
called Carrier940701 is given in Listing 1. By subclassing it, you
create your own change-modules, called “carriers.” The code has
been tested on Smalltalk/V for Macintosh 2.0 and Windows
1.1. It should be easy to port to ather platforms also.

The basic design is to create methods automatically in the
carrier that return the source-code for a given external method.
You modify and test the system methods to be taken along, then
ask the carrier to generate in itself the methods that return their
sources. The method that returns the source-code for #method
of AClass is named #AClassXmethod.

The class Carrier940701 carries one system-change itself, the
method #systemChange of Object. The purpose of #system-
Change is just to make possible the marking of places where the
system has been changed. By looking at its senders you find
those places. When Carrier940701 is #INSTALLED, all Objects
gain the following method:

systemChange

“Called from places where system has been modified. Does nothing. By

looking at my senders you find those places.”

true ifFalse: [self Carrier940701]

"Reference to the carrier of this method "
#systemChange calls “self Carrier940701” to create an explicit
link back to the class that produced its source-code. The method
named after the carrier (#Carrier940701) will be autocompiled
into each target-class modified. Looking at methods named like
carriers, you quickly see which ones have contributed to a given
system-class. The created method in Object is:

Carrier940701

"Autocompiled by Carrier940701 (3/22/94 10:27). By looking at my

senders you find the places it has modified."

true ifFalse: [self Carrier940701].

The changes carried are described by the result of a carrier’s
#systemChanges. Below is that method for Carrier940701. As

2

shown, it specifies a single system-change, the #systemChange
of Object, plus an example of specifying a class method, com-
mented out:

systemChanges

"Return a list of pairs #(class selector) that tell the methods whose

source-code I carry."

TEST: Carrier940701 FREEZE

| aSet |

aSet := Set new.
aSet add: (Array with: Object with: #systemChange) "—-
; add: (Array with: Object class with; #COMMENT) —-"

. "aSet
To make the changes of a carrier have effect, you send it #IN-
STALL. Based on the result of #systemChanges , it decides the
names for the source-code-returning X-methods (in #carrySe-
lectorFor:of:), calls them and compiles their results.

The code-returning methods are automatically generated
from the current sources in the system. This happens when
#FREEZE is called. Now it is possible to modify the sources as
usual with the browser, instead of having to deal with the more
complicated file-out format of source-code inside files.

#FREEZE calls #codeFor:of: to get the current source for a
method, then #myCodeReturning:named: to generate the car-
rier’s own method that will return that source.

APPLYING CARRIERS
To apply system changes effectively, we must detect and resolve
conflicts between change-sets. All dependent changes must be
carried along together. This introduces the problems of multiple
replicants of the same carrier in separate modules, possibly out
of sync if they are versioned.

If two carriers define the same method differently, there
will be a conflict. But because the changes are explicitly de-

‘ ‘ Good object-
oriented style often
means dividing the
responsibilities
among classes so
that robustness and
reuse is maximized. ’,

clared, it is easy to build conflict-checkers, to be used efore the
changes are compiled. The versioning problem is solved by
suffixing the creation date to the names of carrier classes and
methods they 244 to the system. The time-stamp in the names
makes the changes into objects with identity. If others modify
your code, they probably use a new date-stamp also. The end-
result looks technical, which is just fitting in component-based
software industry.

The changes you make are either redefinitions of existing
methods or new methods for existing classes. If possible, use the
latter. There can be many different additions simultaneously, but
only one current version of a (changed) system method.

The Smalltalk Report

Because a carrier’s changes are compiled with an explicit
message, we can first file-in them all, then use arbitrary pro-
grams to activate the relevant ones, in the needed order. A sim-
ple procedure would be: before #INSTALLing a carrier, first in-
stall its superclass. This allows a subclass to modify the changes
of its superclass.

To collect groups of related changes together, we misuse sub-
classing. A change-set consisting of a class and its subclasses can
then be easily filed-out and transfetred to other images. This

suggests we start collecting changes in a hierarchy like:
Carrier940701
StandardChanges940701
ObjectChanges940701
CollectionChanges940701
ST80Changes940701
ST80GUIChanges940701
ST80ViewChanges940701
ST80ControllerChanges940701
§T80CompilerChanges940701
STVmacChanges940701

References

1. Beck, K. It's not just the case, THE SMALLTALK REPORT, 3(3),
1993.

2. Lieberherr, K. J., and I. M Holland, Assuring good style for object-ori-
ented programs, IEEE SOFTWARE, 6(5), 1988.

Panu Viljamaa may be reached via internet at panu@ajk.tele.fi.

CLIE

Now making its debut
as a magazine!

CLIENT/SERVER DEVELOPER is a new publication
committed to helping programmers, developers and tech-
nical managers understand C/S technology. We are now
actively seeking manuscripts on the following:

Operating Systems ® Databases ® Programming Languages ®
Object Technology and Reuse ® C/S Application Design
Methodologies and Tools * Software Engineering Methodolo-
gies » Pre-Packaged C/S Applications ® Business Process Re-
Engineering ® Project Management in a C/S Environment o
Metrics and Testing ® Multimedia

To submit an article or request author guidelines,

contact:
Thomas O’Flaherty, Editor

411 West End Avenue, Suite 2B
New York, NY 10024
Phone: 201.801.0050 Fax: 201.801.0441

Published by SIGS PUBLICATIONS, Inc.

Listing 1.

Source-code for the class-methods of "Carrier940701," in the
"browserformat."

Class definition:

Object
subclass: #Carrier940701
instanceVariableNames:"
classVariableNames: '
poolDictionaries:"

Class-methods of Carrier940701:
INSTALL
"Compile the source code returned by my methods that carry source-code of
external classes. The methads to call depend on my #systemChanges.
TEST:
Carrier940701 INSTALL.
*| changedClass chSelector mySelector sourceToCompile |
self systemChanges
do: [:c |
changedClass :=(c at: 1).
chSelector := (c at: 2).
mySelector := self carrySelectorFor: chSelector
of: changedClass.
sourceToCompile := self perform: mySelector.
(ReadStream on :sourceToCompile) fileIn.
self compileReferenceln : changedClass

]

systemChanges
"Return a list of pairs (class selector) that tell the methods whose source-
code I carry. Note the way a class-method is specified.

TEST:

Carrier940701 FREEZE"
| aSet |

aSet := Set new.

aSet add: (Array with: Object with: #systemChange) "—
; add: (Amay with: Object class with: #COMMENT)
; add: (Amray with: AClass with: #aSelector) —"
. "aSet
carrySelectorFor: aSelector of: aClass
"Return my method-selector that will store the source-code for the method
aSelector of aClass. The result will be <aClass name>X<selector> but in
the names of meta classes the spaces are removed and "class" is replaced
by "Class.” "
aClass isMetaClass
ifTrue: [*(aClass instanceClass name,
#ClassX , aSelector) asSymbol]
ifFalse: [*(aClass name ,
#X , aSelector) asSymbol]

ObjectXsystemChange
"Autocompiled by Camrier940701 (4/5/94 10:36 PM). The string below is in
Smalltalk file-out -format."
! Object methods !
systemChange
"Called from places that have something to do with modifying the system to
mark the place as such."
true ifFalse: [self Carrier940701]
"— Reference to the carrier of this source-code.—"
[

continued on page 16

September 1994

13

Introducing VisualAge

Mark Lorenz

Recently, IBM released VisualAge, its own Smalltalk environ-
ment and GUI builder. For Smalltalk, this is an event worth not-
ing. So, let’s take a look at VisualAge and relate it to the other
major Smalltalk vendors’ products: ParcPlace’s VisualWorks,
Digitalk’s Smalltalk/V and PARTS, and Easel’s Enfin.

WHAT IS VISUALAGE?

VisualAge is a complete Smalltalk environment, with all the
corresponding tools including a debugger and browser, plus an
instance-based GUI builder with logic connection capabilities.
The Smalltalk environment is similar to Smalltalk/V, Visual-
Works, and Enfin, The GUI-building is different than any of the
others, but closest to the way PARTS works. VisualAge comes
in a standalone and team version. The team version has ENVY
capabilities built in.

VisualAge lets you develop and utilize visual, nonvisual, and
1BM Smalltalk reusable components to create new applications.

The wisual components include most of the widgets on the
Composition Editor palette, such as push buttons and listboxes.
It also includes the windows and dialogs that you create.

The nonvisual components are the model objects from your
business domain that you create. A few nonvisual components
are supplied by IBM: the Models folder has OrderedCollection,
ObjectFactory (to create instances), and Variable (to hold in-
stances); the Database Functions folder has DatabaseQuery and
StoredProcedure.

The IBM Smalltalk components are the same kind of class-
based objects that you find in Smalltalk/V, ObjectWorks/Small-
talk and Enfin. You can work at the Smalltalk level and later in-
clude IBM Smalltalk components through the Options/Add
patt... menu item on the Composition Editor.

To visually develop applications, you primarily work with
three editors:the Composition Editor, the Script Editor, and the
Public Interface Editor.

THE COMPOSITION EDITOR
The Composition Editor is where you compose your visual and
nonvisual parts into collaborating pieces of the application puz-
zle. Figure 1 shows an example application I built following the
User’s Guide that comes with the product. You see a Road Race
window visual component and two nonvisual components: a
Runner Factory and a Runner Collecton. These were connected
interactively to compose a simple application to record the re-
sults of a race. This application is composed in the containing
visual component RoadRaceView.

Putting the pieces together involves creating instances of the

14

component classes and making service request connections be-
tween them. This can be done programmatically or visually.
Changes to the class affects all the instances in the application.
This is similar to the way PARTS works, but PARTS also allows
local instance scripts to be written for that instance only. Visu-
alWorks and WindowBuilder Pro used in conjunction with
Smalltalk/V facilitate programmatic connections but don’t have
visual connection support.

It is possible, certainly, to use multiple visual pieces to create
an application. See the section “So how do I put an application
together?” for a discussion of how this is done.

THE SCRIPT EDITOR
The Script Editor is where you write IBM Smalltalk code that

2rafreshRunnersList

3 "Refreshes the visual Ust of runners
every lime a runner Is added Lo Lhe
Runners Collection™
] runners sortedRunncrs |
runners := self partAttributeValue:

g (W'Rinner Collectlon' gself).
sortedHunnars = SortadCollection new.
runners do: [:rurmmncer |

soltedRunners add:
(runner askResulrsiring)].
“sortadRunners asUrderedCollection

Figure 2. Script Editor

The Smalltalk Report

will work with the visual editors. Figure 2 shows an example
method from the runner application.

Note the code that reads self partAttributeValue: #(# ‘Runner
Collection’ #self). This gives you a peek into the underlying tech-
niques of working with VisualAge’s visual programming tools.
Interacting with VisualAge-enabled components involves these
indirect references through Dictionary lookups. The editor has
capabilities to help you write this VisualAge-enabled logic: At-
tributes and Actions. These buttons bring up windows that list
the components that are a part of the RoadRaceView (see Fig. 3).

Upon selection, the attributes or actions of the selected com-
ponent are listed. The VisualAge code to get or set the selected
attribute or access the selected action is then inserted at the cur-
sor in the method under construction.

So, what's going on here? VisualAge uses dictionaries to look
up attributes and actions. In the above example, the RoadRace-
View object’s components instance variable is a Dictonary with
one of its keys equal to Runner Collection (see Fig. 4).

THE PUBLIC INTERFACE EDITOR
The Public Interface Editor defines the attributes, events, and
actions that are visible to clients of the component. Figure 5
shows that I have made the refreshRunnersList action a part of
the available public services of the RoadRaceView.

Similarly, T can make attributes available to clients and
define event notifications as attributes are changed in my com-

wa UL
f B

Window
‘Label
‘Text

Labell
‘Label2
-Text2
Label3
Labeld
List
Push Button
Runner Factory

Runngr Coligotion:

iDictionary(an AbtShellView(#Window) an Abt

eventDependents
parentPart

abtisDestroyed i
primaryPart I
attributeConnectlons [

InstancelnterfaceSpe:
parentView

|2 AbtPartWrapper (OrderedCollection())

#Runner Collection
#Runner Factory
#Window

=

Figure 4. Looking up components.

September 1994

ponent. Each of these appear in the component’s connect menu
on the Composition Editor.

SO HOW DO | PUT AN APPLICATION TOGETHER?

'We've seen the editors available to define and connect visual and
nonvisual objects together. One application view object, such as

the RoadRaceView, will normally have one window and possibly

‘ VisualAge lets you develop and
utilize visual, nonvisual, and
IBM Smalltalk reusable
components to creafe new

applications. ,’

one or more popup dialogs. An application will normally have
multiple windows though. To make these windows work together,
we need to make sure that we work with the same instance objects
across our view components. We can do this two ways:

* put the instance in a variable from the palette in one view
and make that part of the public interface for the view object
(from the second view)

» start up the second view with the component as a parameter.

The following code will accomplish this feat:
SecondViewClass newPart
valueOfAttributeNamed: #variableName ifAbsent: [*nil]
put: (self partAttributeValue: #(#partName #self));
openWidget.

CONCLUSION

At this point, the verdict is out on how well VisualAge will do
compared to the other Smalltalk environments in the race to
meet customers’ needs. There are certainly challenges ahead for
IBM, which they are working on for the next release. Two major
ones are the runtime size, which is larger than it should be for
the standalone version (the team version includes a packager that
lets you drop in minimum size from 3+MB to 1.3MB according
to IBM), and the lack of source code, which is less than the other
Smalltalk environments. There are also smaller nuisances, such as
the fact that keyboard clipboard actions don’t work as advertised

Figure 5. Public Interface Editor.

15

on the menubar, dialogs that prompt for information don't give
you a list to choose from, and global message selector searches
list nonmethod symbols with no differentiation.

Despite these first release drawbacks, it is possible to do a
lot in a little time in VisualAge. The environment has more
classes than any of its competitors, including multiple database,
communications, and multimedia widgets. IBM is also fostering
a components industry around VisualAge, so you can expect to
see more and more widgets available for the palettes in the fu-
ture. I can relate an example of the productivity that can be
achieved from a personal consulting effort. I recently worked
with a large company in the finance industry using VisualAge.
In less than a week, we held some rapid modeling sessions to
discover the right objects for their business, and implemented
the first scenario script using VisualAge. The scenario involved
building a self-validating GUI and interfacing with a SQL
Server database.”

Acknowledgement

Thanks to Cynthia McCrickard in the VisualAge support group
at IBM Cary for the sample code to pass parameters between
view objects as well as for useful review comments.

Mark Lorenz is Founder and President of Hatteras Software, Inc., a
company that specializes in helping other companies use object technology
effectively. He welcomes questions and comments via e-mail at
71214.3120@compuserve.com or phonemail at 919.851.0993.

* In a future article, I'll present same tips for accessing databases from VisualAge.

16

Carriers
continued from page 13

compileReferenceln: aClass
"Compile into aClass a method with the same selector as my name to serve
as a reference back to me."
| sc browserCode |
browserCode := (self name , '
"Autocompiled by ', self name printString, ' ',
(Date dateAndTimeNow) printString, '
By looking at my senders you find the places
modified by it."
true ifFalse: [self Carrier940701
"The root of it all"].
l)-
sc:={'
1!, aClass name , ' methods !
', (browserCode) , '
[N
L]) R
~ (ReadStream on: sc) fileIn
FREEZE
"Produce/autocompile my source-code-returning methods named
<Classname>X<methodName>.
TEST: Carrier940701 FREEZE."
| changedClass changedSource chSelector mySelector carryCode |
self systemChanges
do: [:c |
changedClass :=(c at: 1).
chSelector == (c at: 2).
changedSource := self codeFor: chSelector
of: changedClass.
mySelector := self carrySelectorFor: chSelector
of: changedClass.
carryCode := self myCodeReturning: changedSource
named: mySelector.
(ReadStream on: carryCode) fileIn .

]

codeFor: aSelector of: aClass
"Return a string of existing source-code in filein-format as it will appear
inside another filein -format (note the double exclamation marks with no
space in between them)."
I\(I
11, aClass name, ' methods !!
', (aClass sourceCodeAt: aSelector), '
o

b

myCodeReturning: aString named: aSelector

"Produce and return source-code for my method aSelector that will return
aString."

| aComment browserCode |

aComment :="'

"Autocompiled by ', self name, ' ', (Date dateAndTimeNow printString),".

The string below is in Smalltalk file-out -format."

browserCode := aSelector, aComment, ', aString printString.
I\(I

1", self name, ' class methads !

!, browserCode, '

11

)

The Smalltalk Report

Product Report

Arbor Help System V2.0

Douglas Camp

rbor Intelligent Systerns has just started shipping ver-

sion 2.0 of the Arbor Help Systemn (hereafter referred

to as AHS), a class library for adding context-sensitive
on-line help to VisualWorks applications. AHS is designed to
allow anyone (not just developers) to easily create and edit help
text in an application under development or in a running appli-
cation. AHS provides two types of help, a status line facility and
a hypertext outline browser.

VERSIONS

AHS 2.0 is available for any platform for which PPS Visual-
Works 1.0 is available. Full source code as well as partial source
code versions are available. Single image as well as ENVY/Man-
ager versions are available.

DOCUMENTATION

AHS includes a well-written, concise (65-page) manual. The first
line of the manual notes that, in keeping with the company's fo-
cus on on-line help, the manual was deliberately kept short . In
lieu of a large, printed manual, several demo applications are pro-
vided. The manual appears sufficient for most purposes, and you
can browse the methods in the demonstration and other classes,
however many of these classes are sparsely commented. Three
months of free support and upgrades are included.

INSTALLATION

Installation is straightforward, especially for an ENVY applica-
tion. I installed AHS on a 486/25 with 16-M RAM, under Win-
dows 3.1 using ENVY/Manager in single-user mode, in about an
hour. Using ENVY slightly complicates the process, however
AHS supplies a diskette with the help system in ENVY applica-
tion format, ready to import into your repository.

After unzipping the AHS application you import it into your
ENVY library. Next, file in a .st file containing changes to system
methods. This modifies 11 classes scattered throughout the Vi-
sualWorksBase and WindowSystem applications. The Menu-
Tracker subclasses for each widget look policy are modified, as
well as the controllers for the basic VisualWorks/ObjectWorks
widgets. Some of these modifications are very extensive. For ex-
ample, the MenuTracker>>startUpAt:KeepOpenIfin: method
grows from an already large 33 lines to around 140 lines nested
too deeply to understand easily.

USING AHS
AHS provides two types of help—real-time and full outline.

September 1994

Real-time help 1s a “status line” facility, while full outline help is
a hypertext driven text outline browser.

REALTIME HELP

Real-time help is very much like the status lines often found in
Microsoft Windows applications—when the user points at a
widget with the mouse (no mouse click is required), the help
text associated with the widget is displayed in a status line area
(a VisualWorks subcanvas).

Adding real-time help to a new or existing VisualWorks can-
vas is very easy. First, make the super class of the canvas AHS
HelpApplicationModel (which is a subclass of the standard Ap-
plicationModel). Next, either create a subcanvas of your own in
which to display the help text, or you can use a default subcan-
vas spec supplied with AHS. If you choose to create your own
subcanvas, all that is necessary is to add an InputBox with the id
#helpText. Optionally, you can add a CheckBox with an id of
#helpFlag—if the check box is checked, help will be displayed in
the InputBox, otherwise no help text is displayed.

Any widget for which you want to provide help text must
have an Id property. The id is part of the key used to lookup the
help text. The help text itself is held in a class instance variable of
the canvas class. The other element of the key describes the wid-
get state, one of #(#default #on #disabled). This means you can

! provide the user of an application with specific help text based on

the current state of the widget (the #on state is applicable only to
radio buttons and check boxes). Any widget, including the menu
bar, can have help text. Also, individual elements in the menu
bar, or in selection lists, can also have their own help text.

Full outline help
Full outline help provides a hierarchical text outline browser that
is activated by typing F1 while the mouse cursor is over a widget.
The full outline help browser is again reminiscent of the help
system found in Microsoft Windows. The top pane lists help
topics, which can be nested to form outlines. Topics can be col-
lapsed/expanded to show the subtopics they contain. The bot-
tom pane displays the help text associated with the selected
topic. Any widget can be linked to an outline topic. Also, the
canvas itself can provide a default help topic for all widgets on
the canvas. Users navigate through help text in the full outline
browser either by selecting topics and subtopics, or by activating
hyperlinks embedded in the help text.

Navigating through hyperlinks
AHS supports four different kinds of hyperlink: Hypertext links

17

Product report |

jump to another topic when clicked. Hypergraphic links open a
new window which displays a graphic. Glossary links open a
small modal dialog near the linked text that (typically) contains a
definition of the linked text. Finally there is something called a
HyperCam link. The HyperCam link is used in conjunction with
another product from AIS called ArborCam. ArborCam is a tool
for capturing and displaying “screen movies.” The idea is that
when a user clicks a HyperCam link, a screen movie is displayed,
perhaps demonstrating some action in detail. We don’t have Ar-
borCar, and so can’t comment on its usability with AHS.

The implementation of hyperlinks in AHS is very nice. Dis-
tinct visual feedback is provided for each kind of link (e.g., hy-
pertext appears in green and is underlined, the cursor also
changes to a hand icon when over the link). Creating a hyper-
link is a simple point-and-shoot operation: while in edit mode,
you simply type text into the bottom pane of the full outline
browser, select the text to be hyperlinked, then select the type of
link from the operate menu.

Creating help text—The help editor
Help text is entered and edited for real-time help, and links to
outlines established for full outline help, via the help editor. One
of the most interesting features of the AHS is that the help edi-
tor can be activated, and new help text or outlines created, either
while the canvas class is under development (i.e., open in the
UlPainter) or while the application is actually running. This
means that developers can focus on application development
and allow other team members (technical writers, prototype
users, interface designers, etc.), who perhaps don’t even know
Smalltalk, to add help to a VisualWorks application. Being able
to add help text to an application while it's running is a very
natural and productive way to develop on-line help. As you use
the application, places in the process that may require help text
are readily identified, and it’s easier to develop that text as you
interact with the running application. In a sense, AHS extends
the flexibility, immediate feedback, and ease of use of the Srnall-
talk environment itself to the task of creating on-line help.
When an application and its help text are comnplete, the abil-
ity to modify help text can be turned off in the run-time image.

Ingtani Feadback for the Ussy
Vin e Ao

=
tha uer L] Outfins Welp
e window. —l
Move the curecr over difreat parts of the page sad ratice $o% T Finld Widgrin
e dwip ol ghasa yoo (rotrmt fredbacs,
Help Is St -Spacific l;l Cretn
Iitforent hole becd can bo dsplyed or whigeis Uthey weon, Mol Sywtara Feuturas
it o chesbied. Try
chackbax o clel o btk to dlastle B wed rdics horve the ckp bt emgy 10 gt
Fetip bind changes i refie the new stals, [Canteod-acristiva
Jobn et et
briuiive cuire hoyp
€2 Ofafetusion! (10w s
By O Radie Bulton 2 1 bawys o F1] """"""""—’

[OW| This ia The defeg e for She checkbam.
p)

wil diapley

Figure 1. Realtime help.

18

MEMORY CONSIDERATIONS

Help text can be stored in the image (real-time help only), ina
flat file (full outline help only), or in a Versant or Gemstone ob-
ject database. If your application included lots of real-time help
text that was stored in the image the memory requirements
could become significant. In this case, AHS provides behavior
that the developer can use to selectively load/unload portions of
the help text dictionary into memory on demand. There is also
some provision for minimizing the memory footprint of de-
ployed applications containing AHS. A list of classes that can
safely be stripped from a runtime image is included.

PRICING

The full source version of AHS sells for $1395. Each license enti-
tles the user to use AHS on one system at a time, and to distribute
applications developed using AHS free of runtime fees (except of
course the PPS VisualWorks runtime fee) provided the ability to
edit help text within the running application has been tumed off.

OTHER FEATURES

AHS contains several other interesting features that are new in
version 2.0: Internationalization of help text is supported. For ex-
ample, you can implement all help text in Spanish and English,

continued on page 28

The Arbor Nelp Systesn provides o fiedile e efficiert maans bo add caried-senstive halp |
Smallaik from ParcPiace Systems.
The help aystem iz designed ao thel team mambers do not need bo leam Smaltelk in order 10 add
heip lo an sppioation. This sows bechnical writers, testars, human inlerface designers and
ather non-p team o diredlly in the of the help
eyatem, giving more lime for to refine the code,

9se afsn the follawing sublopica

O Dinabled Topic Name: lmmmhmwm —I
@ [Link To Outiine|

P Grarview of the Help System
Resl-Tims Halp

Full Outfine Help
Editing Help Informetion

. =S

fvi,':]] fink the widgel to an outine entry
b d

Figure 3. The help editor.

The Smalltalk Report

The best of comp.lang.smalltalk

Performance
tips

ALAN KNIGHT

his is the first of a two-part series of articles on optimiz-

ing performance in Smalltalk, It’s very easy to write an

inefficient Smalltalk program, and easy to blame the lan-
guage for the resulting inefficiency rather than spend a little time
tuning it. While optimizing performance is a large and complex
topic, I hope this can present a few general principles and hints
for those seeking to improve the response time of their applica-
tions. The discussion from which most of these posts are taken
started with a question from Bill Punch (punch@cps.msu.edu)
who writes:

I don’t want to start an argument about why Smalltalk is
slow/fast or other languages are slower/faster. My question is
this: If you write a ST program, and it isn’t as fast as you
would have liked, what tips, tricks-of-the-trade, advice etc.
can the ST community offer to make systems go faster?

We have written a small-medium size ST program (12,000
lines, if that means anything) that runs a bit slowly. We
rewrote it, started caching results, and using other “algorith-
mic” approaches to get more speed (and shrunk the code at
the same time), but it is still a bit slow. We'd like to go faster
but we've exhausted our “algorithmic” approaches. Are there
things in Smalltalk we should do/avoid to get improved per-

formance?

BASIC PRINCIPLES

The most important principle of performance optimization is to
optimize in the right places. It only makes sense to tune the code
where it will make a difference to the overall performance of your
application. In most applications, a great deal of the running
time is spent in a relatively small amount of code. Exactly which
code depends enormously on your application, and to a lesser ex-
tent on the version of Smalltalk and the operating system.

Use a Prafiler

How do you find the performance-critical sections in your ap-
plication? Simple. Use a profiler. These are available from a vari-
ety of sources. As far as I know, they all work in roughly the

Alan Knight is a consultant with The Object People. He can he reached at

613.225.8812, or by e-mail as knight -+ acm.arg.

September 1994

same way. You provide a block of Smalltalk code, which is run in
a separate process. The profiler runs another process, and peri-
odically interrupts the process being profiled, taking a snapshot
of the stack. Most can show either the calling sequence or the
total time spent in a particular method. For the most part, they
are quite simple to use. Jan Steinman (jan.bytesmiths@acm.org)
provides a couple of tips.

It’s a sampling technique, so it is necessary to make certain
you have enough samples, or else you end up with aliasing
artifacts. Make sure you loop lo#s of times in the profile. Be
aware that lengthy primitives may “pile up” the time on ei-
ther side of a sample. In general, the bottom few lines should
show most of the time in primitives, or at least most of the
time should be in base methods. If not, you have a target for
tuning.

For a good introduction to the uses of profilers (and lots of other
great articles, on performance tuning and programming in gen-
eral) see Jon Bentley'’s books PRoGRAMMING PEARLS and More
ProcrammiNg PeanLs (Addison-Wesley, 1SBN 0-201-10331-
1, and 0-201-11889-0 respectively).

Don't over-optimize

Performance optimization is a good thing, but too much of a
good thing can be bad for you in the long run. Some kinds of
optimizations are almost always good because they are the kind
of things that we normally strive for in programming. The algo-
rithmie improvements described in the original question usually
fall into this category because they also can make the code
cleaner and simpler. On the other hand, some optimizations re-
duce encapsulation, hinder maintenance, and generally make
you do things you would otherwise consider bad practice. They
are still worth using, but should be employed carefully, with the
realization that you are trading maintainability for speed. They
should definitely be avoided early in the development process.
Many of the most powerful optimizations come from exploiting
knowledge of the application’s structure. If we are guaranteed
that some circumstance cannot possibly occur, we can often
make dramatic simplifications and speed optimizations by ex-
ploiting that knowledge. The danger here is that next month’s
addition to the list of requirements may be the ability to handle
exactly that circumstance.

Avoid recomputing

Many applications compute the same values repeatedly. A very
comumon optimization is to cache values that are repeatedly
computed, trading space for speed. This can be implemented by
storing dictionaries of values in a class variable. This is particu-
larly valuable when there are relatively few values that are expen-

sive to compute.

Know what's expensive

Smalltalk allows you to program at a high level of abstraction.
It’s easy to write code quickly, using the most convenient opera-
tions rather than the most efficient. For performance optimiza-
tion it’s vital to understand the costs and trade-offs of different
operations. This detailed knowledge of the standard class library

19

The best of comp.lang.smalltalk

and how to achieve the best performance with it is an important
part of the toolkit of expert Smalltalk programmers.

Collactions

The Collection hierarchy is widely used in almost all programs,
and wise use of it is vital to writing fast Smalltalk code. There
are several issues that can often snag beginners.

Growth
The most basic collection in Smalltalk is an array. It's fixed-size
and is accessed by indexing. It’s also the fastest collection to ac-
cess. Fixed sizes are inconvenient, though, and it's much more
common to use OrderedCollection, which supports a number of
additional operations. The most important is add:, which ap-
pends an object to the collection, growing the collection to ac-
commodate it if necessary. This growing process is surprisingly
efficient. Peter Epstein (peter@objectime.on.ca) writes:
Adding an item at the end of an OrderedCollection is amor-
tized O(1) (in other words, adding n items at the end requires
O(n) time) since no shifting is needed and growing is done by
a percentage rather than a constant number of slots.

For those unfamiliar with terms like “amortized O(1),” here’s a
brief explanation. OrderedCollections are ordinanly implemented
using an array that is at least as large as the number of elements in
the collection. There may be additional space, in anticipation of
elements being added later. Adding one element to an OrderedCol-
lection that is full may require quite a bit of work (it allocates a
new, larger collection and then copies all of the elements into it)
but this expensive operation is guaranteed to happen rarely. Since
the number of extra spaces allocated is propottional to the size of
the collection, over a sequence of operations the average cost of
each is still small, regardless of the size of the collection.

Even though adding to OrderedCollections is relatively
efficient, it still has a cost. Jan Steinman writes:

Ifa collection never needs to grow, make it an Array. (Do the
same thing if it grows to a certain point, then becomes essen-
tially read-only.) If it rerefy needs to grow, make it an Array
anyway, and copy it each time, or consider streaming it.

If a collection does need to grow, it’s often useful to guess at its
size. The default size of an OrderedCollection is usually around a
dozen elements. If you have a pretty good idea that a collection
will hold hundreds of elements, use OrderedCollection new: 500
rather than OrderedCollection new. If you're right, you'll save
several grow operations, and if you're wrong you only waste a bit
of space. Overestimating may also be a good idea if you're not
quite sure what the system code does.

This becomes even more important with other kinds of col-
lections. When an OrderedCollection grows, it only needs to
copy a bunch of object pointers. Sets and Dictionaries are
hashed, and must rehash all of their elements when they grow.

In extreme cases, growing collections can be a major factor
in application performance. Andy Choi (andyc@hprnlac.

rose.hp.com) writes:

20

Using the VisualWorks APOK time profiler, we've found that in
one of our applications, up to 70% of the time was spent adding el-
ements to collections... We've found that in general, growing col-
lections is one of the most time consuming parts of VW.

Use the right collection for the job

There are many collection classes to choose from, and the choice
can affect performance substantially. We've seen that Ordered-
Collections are reasonably efficient using operations like at:,
at:put:, and addLast:. There are many other operations that are
not at all efficient, requiring a linear search or moving many of
the elements in the collection. These are operations like
addFirst:, indexOf:, add:before:, after:, and removeIndex:. If you
find yourself using operations like this on large collections, con-
sider changing your representation.

SortedCollections are like OrderedCollection, but maintain
their elements in sorted order. They therefore behave much like
OrderedCollections except that it is very slow to add objects
(since they must re-sort). If you must add objects to a SortedCol-
lection, try to group them together and use addAll:, which adds
several elements but does only one sort.

Sets, Bags, and Dictionaries are collections implemented as
hash tables, and as such don’t maintain an order for their ele-
ments. They are only a little less efficient for iterating than se~
quenceable collections but are much more efficient for inserting,
deleting and testing membership. IdentityDictionaries (and
IdentitySets) can be used for greater efficiency in some situa-
tions, but you must be careful that an identity-based collection is
really what you want. It’s also important to ensure that the ob-
jects used as keys have a good hash function. These issues, and
others associated with hashed collections were discussed in de-
tail in The SMALLTALK REPORT, 2(8).

It’s not necessary to confine yourself to the collections avail-
able in the base image. A radically different collection imple-
mentation may be ideal for your application, making it worth
the extra effort of finding an implementation (hint: refer to
some of my previous columns on freely available “goodies”) or of
implementing it yourself. This is particularly likely to be useful if
you have very large collections or very sophisticated operations.
David Siegel (dsiegel@panix.com) writes:

Another approach is to build data structures that grow incre-

mentally (like self-balancing trees) rather than Dictionaries.

This approach is a win for large data structures (I've seen

crossover between 5,000 and 50,000 elements, depending on

the problem and the data structure).

If you don't need to iterate, the best solution may be not to use an
explicit collection at all. Eliot Miranda (eliot@ircam.fr) writes:

Another approach might be to make membership a property
of the objects themselves, rather than implement it by plac-
ing them in a collection.For example, posit you have a set of
objects S, and wish to implement subsets §, and §,, so that an
objectin S can be in either S, or §;, in both S, and S or neither.
Ifit’s possible to add an instance variable to all objects in S then
membership of S, or 8, could be recorded in this instance vari-
able. The implementation can be hidden behind an interface
such as isInS,, isInS, , joinS, leaveS, , etc.

The Smallitalk Report

Objekt-orientiertes Programmieren

JOO0P '95

M U N CH E N

Movmg Forward W|th Object Technoloqy

[January 30- febrary 31905
~ Munich Sheraton, Germany

FEATURING

C++ World

FoR INFoRMATION ON EXMIBITING OR ATTENDING OOP"95 FeATURING (++ World CONTACT:

(Inthe USA) SIGS Conferences, Inc......v. 212.262.7515..F. 212.262.1518
(In Germany) SIGS (onferences GmbH.....v. 089.951.9517...F. 089.951.9125

Don't Miss Ge
Most Attendec
Object Technology
& C++ (onferencel

Here's What Prominent

German Publications Said
About 00P'9L...

“OOP ’94: A lot of new
exhibitors with new
products...”

—Computerwoche, Nr. 7,
February 18, 1994

“For companies who want to
give further education to their
employees by participating in
a conference or who are
making important buying
decisions...it is the only
alternative.”

—iX Magazin, March, 1994

“The most important thing for
the attendees was the quantity
and the quality of the talks
and the seminars... It was a
positive experience in contrast
to mass-events like Cebit. ..
For software developers it is
recommended to visit this
conference”

—mc Magazin fur
Computerpraxis; Jan. 1994

Sponsored by:

‘ =4 REPORT wm"
OBJIECT presented by:

9 Muitiusar
Mutitasking
Magazin CONFERENCES

Objects
Everywhere!

Why settle for hybrid implementations when
you can have the real thing? JumpStart is the
leading provider of solutions and training
programs for pure object systems using
Smalitallc and the GemStone®™ ODBMS. We
also specialize in deploying IBM Smalltall¢t™
and VisualAge®™ applications.

Ask about our Corporate Educators Program.

Manufacturing

Process Control
Network Management
Pharmaceutical
Client-Server IS Systems

Certified Service Partners with:

Concatenation

Of course, collections don't grow unless things are being added
to them. If we can reduce the number of unnecessary appends
we also will get significant savings. One major source of unnec-
essary collection operations is copying collections, particularly
strings. The biggest culprit is the comma operator “,” which
concatenates two strings. It’s very common to see code like:

Transcript show: 'My favorite variable = ', myFavoriteVariable printString,

‘at step ', stepNumber printString; cr.
There’s nothing inherently wrong with this kind of code. It does
what it’s supposed to, it’s easy to write, easy to understand, and
debugging code doesn’t have to run fast anyway. However, if
your application uses this type of code a lot, you should be aware
what's going on to execute this. First of all, printString is imple-
mented as something like:

| aStream |

aStream := WriteStream on: String new.

self printOn: aStream.

~aStream contents.

For each call to printString, we're creating a stream, printing the
object on it, then copying the contents and discarding the
stream. The stream will almost certainly have to grow the string
at least once.

So, to execute the previous debugging statement we create
and discard two streams, copying their contents and then per-
forming three successive concatenations, each of which allocates
a new string and copies both of its arguments into it.

For small strings, and small numbers of strings this ineffi-
ciency is not a big problem, and may be worth it for the conve-

22

nience of the code. If necessary, however, this can be written
much more efficiently (if less compactly) as

| aStream |

aStream := WriteStream on: (String new: 100).

aStream nextPutAll: 'My favorite variable =",

myFavoriteVariable printOn: aStream.

aStream nextPutAll: ' at step ‘.

stepNumber printOn: aStream,

Transcript show: aStream contents; cr.

It’s also possible to improve on this if you're willing to go out of
the realm of reasonable code transformations and into efficiency
hacks. The Stream>>contents message normally copies its con-
tents. If you know you're not going to modify the contents, you
may be able to access the collection being streamed over directly,

4k

We’ve found that in one of our
applications up to 70% of the time was
spent adding elements to collections.

77

saving a copy. If you're writing to the Transcript, you can treat it
as a stream and use nextPutAll: repeatedly (in some versions you
have to add a few extra methods in order to treat the Transcript
as a WriteStream). Only do a show: on the last operation, since
that will force a screen update, which is much slower than any
reasonable number of string operations.

On the general subject of streaming, Jan Steinman writes:

Streaming is more efficient the larger the number of items
you want to concatenate. My rule of thumb is that I use
streamns whenever I need to concatenate three or more
Strings, especially if I know about how big the result will be,
or if any of them needs to be sent #printString. At least in
PPS ST-80, #nextPut: is a primitive, and #nextPutAll: is lit-
tle or no more expensive than an ordinary copy, leading one
to intuit that two concatenated Strings is close to break-
even, and any over that is a win for streaming.

A big win is to pre-allocate your stream. If you know your
TextView will have about a thousand characters, using

(String new: 1000)

writeStream means you have a grand total of two copies per
Character, no matter how many little bits and pieces you're
putting together: once to put them on the Stream, once to
take them off. In general, try to make it slightly bigger than
the most likely result size.
That's all for collections. In the next column, I'll look at some
hints regarding blocks, numbers, special classes and messages,
graphics operations and some miscellaneous tips. @

The Smalltalk Report

Smalltalk Idioms

Using
patterns:
Finishing
the design

B efore 1 begin, I'd like to comment on the code in the

KENT BECK

June issue by Bill Cole and Tim Howard. I loved the

simplifications to VisualWorks’ ApplicationModel com-
ponent protocol. I use them now whenever I can. I did have a
bone to pick with their programming style, though.

1 didn't like it that many of their methods would take either a
Symbol or a Collection of Symbols as arguments. There are at
least two conflicting forces at work here. The first is the desire
for simplicity, to add as few selectors as possible. I certainly ap-
preciate simplicity. I have too many selectors memorized as it is.
However, a method that takes either one or many arguments is a
violation of a more important principle-clarity of expression.
While their simple examples of usage weren't confusing, down
the road I think it is much clearer all around to have two flavors
of the message, one that takes a single argument and one that
takes a callection. Here is the kind of thing that has happened
to me in similar situations.

First 1 start out with code like this:

self hide: #okay.

Then I realize I have the same symbol in many different meth-
ods, so I factor this into two methods:

self hide: self hiddenButtons.

hiddenButtons
~tokay
Later on, I find self hide: self hiddenButtons and say, “Oh, great.
I can iterate through all the hidden buttons.” So I write:

self hiddenButtons do: [:each | ...]

Boom! Not only does my code not work as expected, the error
occurs somewhere deep inside the block, because Symbols re-
spond to do: just fine, but the loop variable each gets settoa
Character instead of a Symbol.

Ient Beclc has heen discovering Smalltall idioms for eight years at Telctronix, Ap-
ple Computer, and MasPar Computer. He is the founder ol First Class Selware,
which develops and distributes reengineering praducts for Smalltalle. He can be

reached at First Class Software, P.O. Bax 226, Boulder Creel, CA 95006-0226, or
at 408.338.4649 (phone), 408,338 3666 (lax), 707611216 (Compuserve).

September 1994

As I said, I prefer to have two variants of the message, in this
case hide: aSymbol and hideAll: aCollection. This strategy gains
in clarity, but doesn't it lose simplicity? Not really, because 1
know that if I have a message, foo:, which takes a single argu-
ment, if I have a version that takes multiple arguments it is al-
ways called fooAlL:. I don't have to remember two messages, just
one message and one rule that applies to all messages.

I don’t claim any originality in this. I'm just copying the col-
lection protocol, which has add: and addAll:. I have found that
applying the same pattern consistently leaves me with code that
is easy to read and use, even months or years after I first wrote it.

INTRODUCTION

In the previous column we began exploring what it would be
like to use patterns. I mentioned three ways I've found to use
patterns: as documentation for designers, as documentation for
reusers, and as a design aid. I started presenting an example in-
tended to simulate the use of patterns in design.

The example problem is to design the objects to run a televi-
sion with a remote control. We had applied three patterns—
Objects from the User's World, Objectified Library, and Event,

to come up with five objects:

Television
» change channels

RemoteContral
* translate user input into commands
* read keyboard events

Keyboard
* create events from keystrokes

Event
To change a channel, the Keyboard creates an Event, which is
read by the RemoteContyol and interpreted to send a message to
change the channel to the Television.

In this column we'll finish the design by showing how the
objects get divided between the address space in the remote con-
trol’s processor and the address space in the television set.

HALF DBJECT

There is one common approach to giving an object a presence in
more than one address space. I call it Remote Proxy. In it, you
put the full object in one address space, and you put a minimal
object in all the others. The minimal object, the remote proxy,
only has enough information to forward any message it receives
across the network to the real object. This pattern relies on most
of the processing being done in one address space, and only re-
quests for processing originating from other address spaces.

In our example, the object that I want to make accessible in
both address spaces is the RemoteControl (you might also dis-
tribute the Television, but there are other good reasons we'll get
into later for not distributing the Television). Looking at its re-
sponsibilities, one of them, “read keyboard events,” has to take
place in the remote control. The other, “translate user input into
commands,” needs to take place in the television so the com-
mands can be executed. We cannot use Remote Proxy to distrib-

23

Smalltalk Idioms

ute the RemoteControl, because the processing is balanced be-
tween the two address spaces.

Here is a second pattern for distributing objects I learned on
a telecom consulting assignment:

Half Object
How can you distribute an object that has substantial processing
responsibilities in more than one address space?

The usual pattern for distributing objects is Remote Proxy,
which puts a minimal stub object, the proxy, in all but one of the
address spaces. Messages to the stubs are forwarded to the “real”
object. This works well for “client/server”-style interactions,
where there is little dialog between the sender of the message
and the receiver. When the object maintains an active role in
more than address space, though, it leads to excessive communi-
cation overhead. No matter where you put the object, many of
its messages are remote.

Another case where Remote Proxy is not appropriate is where
part of the functionality of an object is implemented in a system
that you do not control. To maintain a legacy, you may not be
able to concentrate all of the processing in a single address space.

Giving an object a presence in more than one address space
leads to its own set of problems. You must maintain the object’s
identity, even across communication failures or system recovery.
You must keep the parts of object synchronized if there is dupli-
cate information. You must also design the split between the
parts of the object to minimize long-distance communications.

Even with these drawbacks, where necessary, splitting an
object across address spaces is a reasonable design decision.

Therefore:

Split one conceptual object across address spaces. For symmetrical
splits (where the same code is running in all address spaces),
prepend "Half* to the object’s name. For asymmetrical splits,
prepend a word describing the address space to each objects’ name.

Once you have divided the object, you will need to design a pro-
tocol to go between the parts.

Here’s how we'll use Half Object on RemoteControl. We put
the responsibility for reading keyboard events in remote control,
and call it RemoteRemoteControl. We put the responsibility for
mapping input to commands in the television, and call it Televi-
sionRemoteControl. As is often the case with names generated
blindly (or it may be a weakness in the above pattern), these
names don't read well. We'll simplify themn to RemoteControl
and TelevisionControl.

RemoteControl
* read keyboard events

TelevisionControl
* map user input to commands

DESIGNING THE PROTOCOL

Notice that Half Object has a little coda that reminds us that we
need to design a protocol to go between the two halves of the
RemoteControl. Many patterns don't solve a whole problem by

24

themselves. Solving one problem leads to others, and so on until
you have running code (heck, until the product finally dies).
How do we design the protocol?

The problem statement in the last issue specified that we
were given a library for infrared communications. We can use
Objectified Library to make this into an object, InfraredStream.

InfraredStream

* read and write bytes
This takes care of how the bytes will get transmitted, but there
is still a big gap between “the two halves of the object need a
protocol” and “read and write bytes.” There are two parts to this
question: what gets sent between the RemoteControl and the
TelevisionControl, and how does it get formatted. Fortunately,
the answer to the first question is easy- Events. Once a Televi-
sionControl gets ahold of an Event, it knows what to do. Now
we're left with the problem of how to format Events. What we
need is an object whose responsibility is to read and write
Events, bridging the gap between what the RemoteControl and
TelevisionControl need, and what the InfraredStream provides.
Here is a pattern I use fairly often for this:

Formatting Stream
How should you translate objects to and from lower level repre-
sentations, like characters or bytes?

One simple solution is to have the object that needs to read
or write another object do the formatting. This has the advan-
tage of simplicity, as you don't need to introduce any new objects
and you don't need to add to the behavior of the object being
formatted. However, this means that the object doing the for-
matting has to know the details of the object being formatted,
making it less flexible. Also, if one object wants to write and a
different kind of object wants to read, you are stuck either with
two copies of the formatting code to synchronize, or you have to
waste inheritance on sharing the formatting code.

Another solution, more idiomatically object, is to have the ob-

~ Ject being read and written do the formatting. This insulates the

reading and writing objects from all the details of what object is
being read or written, and centralizes the formatting code. How-
ever, you may not have authority to change the object being read
and written, or you may want to have multiple formats. Therefore:

Create a stream for the objects you wish to read and write. The
name of the stream is the kind of object being written concate-
nated with Stream, The external protoce! is next for reading the
next object, nextPut: anObject for writing an object, and atEnd to
test whether there are any objects for reading. Create the stream on
a lower level stream.

Using Formatting Stream on our problem causes us to create
EventStream, which we will create on an InfraredStream. This
gives us the flexibility to change the transport mechanism (Eth-
ernetTV?), or the format of the events without affecting either
the RemoteControl or the TelevisionControl.

Tying it together

Let’s follow a scenario all the way through from the user push-

ing a button on the remote control to the channel changing.
continued on page 28

The Smalltalk Report

Your best tools for object-oriented
software development...

o] pq,oﬁu:.m p

, F nepgiun handling

cn S e Sy

OPEN S5YSTEMS

Pr&gmmmmg

Hin L+t

Helnnri danman
desiy idensling

Objecnlying IT
I
A

How 1o find
qo0d objects

The manager’s guide to implementing object Written for programmers and developers Informs C++ developers on how to get the
technology. The “point of entry” for software using OOP techniques, International in most out of the language. Ideas and techniques
management infusing objects into their work scope. Code intensive, practical, technical. for increasing your productivity with C++.
environment. Filled with how-to advice, usable Breakthrough peer-reviewed papers and Code-intensive, functional tips and tricks for
strategies, and real world experiences. invited columns. Now in its 7th year. C++ users on all levels and platforms.

Addresses language-indepen-

Filled with “how-to” advice dent, architectural concerns
for Smalltalk users at all about 0-O analysis, design and
levels and in all dialects. modeling. Platform and system
The best way for Smalltalk independent, ROAD is written
programmers to maximize the for software developers and
language’s potential, project leaders.
PUBLICATIONS
I e |
o&é Yes, | want my subscription to the following publications to begin Name E

! immediately. If not completely satisfied, | may cancel at any time Title !
I and receive a full refund of the unused portion. 1
!) _ _ Company !
10 Object Magazu?e {1year, QiSSUBS) . .v.vveieneeiiiiieraennes $39 Address !
1o JOOP (1year, 9isSUBS) . ..o ieet it vt ienenenenans $59 ci !
1 OC++Report (1year,9issues)ocviieiiniiiiiinenenenn $69 ity 1

o The Smalftalk Report (1year, 9issues) $79 Province/State_____ Postal Code/Zip II

T ROAD (1vear, BiSSUBs)voeeueieieii i e, $99 Country

TOTAL

Method of Payment: Phane Fax

2 Bill me, Attn: Return this coupon by mail or fax, or call to start your subscriptions.

C Check Enclosed (Payable to S/GS Publications) Mail: SIGS Publications, Inc, P.O. Box 2027, Langhorne, PA 19047

oCharge My: o Visa c MasterCard o American Express Fax: 215-785-6073

Card# Exp Phone: 215-785-5996

. Important: Nan-U.S. orders must be prepaid. Please add $35 per subscription year for air
Slgnature service. Checks must be in U.S. dollars drawn on a U.S, bank.

Product Announcements

Product Announcements are not reviews.
They are abstracted from press releases provided by
vendors, and no endorsement is implied.

Vendors interested in being included in this feature
should send press releases to THE SMALLTALK REPORT,
Product Announcements Dept., 885 Meadowlands Dr. #509,
Ottawa, ON K2C 3N2, Canada,
613.225.8812 (v), 613.225,5943 (f).

KnowledgeWare and Digitalk Ship
PARTS Wrapper for ADW

KnowledgeWare Inc. and Digitalk Inc. have announced that they
have begun shipping a client/server link between Knowledge-
Ware's Application Development Workbench (ADW) and Dig-
italk’s PARTS.

The PARTS Wrapper for ADW makes the ADW/Planning and
Analysis models of business requirements available as components
for quick assembly into applications, which is done using Digitalk’s
object-oriented PARTS assembly and reuse toolset. Developers can
reuse and combine models of business requirements developed
with ADW, and assemble them with other new or legacy applica-
tion components into enterprise applications.

The PARTS Wrapper for ADW creates Smalltalk classes that re-
late to the entities in ADW business models, and methods that im-
plement the attributes and relationships of those entities. The result-
ing Smalltalk objects are used in PARTS Workbench to create fully
functional client/server applications based on business requirements
identified in ADW. Also, methods contained in SQL statements for
database access are automatically created from information contained
in ADW data models. These methods are automatically maintained
as the business model changes. Automatic SQL generation and
maintenance eliminates hours of manual effort for developers.

The PARTS Workbench also allows developers to combine
the reusable objects created from ADW/Planning and Analysis
models and assemble them with other new or legacy application
components for enterprise applications.

KnowledgeWare, 404.231.3510, ext. 235 (v).
Digitalk, 5 Hutton Center Dr., 11th floor, Santa Ana, CA
92707, 714.513.3000 (v), 714.513.3100 (f).

Servio Announces GemStone Version 4.0
Servio Corporation, a major supplier of advanced database and
development technology, has announced GemStone Version 4.0
and in the process set the stage for deployment of large-scale
commercial applications based on object technology.

In developing GemStone Version 4.0, Servio worked closely
with its major customers to determine their application require-
ments and to incorporate those requirements into GemStone. It
provides a transparent link to the Smalltalk programming language
coupled with an underlying ODBMS architecture that meets cor-
porate MIS’s definition of a “production quality” multiuser database
management systemn for heterogeneous distributed computing en-
vironments. GemStone Version 4.0 also supports applications
written in C or C++ and has tools for integrating legacy data.

The major enhancements in GemStone Version 4.0 include
the addition of a shared memory architecture, transaction pro-

26

cessing and 1/0O optimization, improved concurrency, improved
operational support for 24-hours-a-day, seven-days-per week
operations, and new facilities for administration and tuning of
GemStone databases in production environments.

Servio Corp., 408.879.6214 (v).

Softlab and Digitalk Integrate Product

Softlab and Digitalk, Inc., announced a long-term partnership
agreement under which Softlab will provide a comprehensive re-
development solution by integrating Digitalk’s PARTS into
Softlab’s Maestro II product line. Softlab also has signed a
worldwide non-exclusive agreement to market and distribute
PARTS along with its own Maestro II products.

By combining strengths, Softlab and Digitalk are able to pro-
vide a migration path to bring legacy systems to the desktop in
an integrated LAN workgroup environment. The combination of
products allows users to identify reusable components of existing
legacy systems using Maestro II and then use Digitalk’s PARTS
Wrapper technology to create GUI-based desktop applications.

A product of the relationship is an integrated link, which will
be called the PARTS Wrapper for Maestro II. It will enable devel-
opers to identify reusable components of mainframe applications
that can be migrated to client/server environments in Digitalk’s
fully object-oriented PARTS Workbench. This automatic map-
ping eliminates hours of manual effort for developers and results
in a rapid, visual development of object-oriented applications. By
utilizing PARTS Wrapper technology to integrate Maestro II and
PARTS , organizations now can have a smooth migration path
from mainframes to object-oriented client/server architectures.

Softlab’s Maestro II solution is an application maintenance
and redevelopment environment that allows large teams of users
to easily maintain mainframe legacy systems and identify exist-
ing mainframe components that are candidates for reuse in
client/server or other architectures.

Softlab, 404.668.8856 (v).
Digitalk, 5 Hutton Center Dr., 11th floor, Santa Ana, CA
92707, 714.513.3000 (v), 714.513.3100 (f).

ParcPlace Announces

VisualWorks ReportWriter

ParcPlace Systems, Inc. has announced VisualWorks Re-
portWiriter release 1.0, an extension to its VisualWorks product
line. ReportWriter is a client—server database reporting tool that
allows corporate developers to visually create sophisticated re-
ports without Smalltalk or database programming. Reports can
be built using a point—click approach, then deployed on Win-
dows, OS/2, Macintosh, and UNIX platforms.

ParcPlace’s visual layout approach let's you create simple and
complex reports while providing developers with full control over
WYSIWYG report presentation. VisualWorks ReportWriter also
provides MIS departments with concurrent access to a wide
range of data sources including SQL relational databases like
Sybase and Oracle.

ParcPlace licensed VisualWorks ReportWriter from Synergenics
Solutions, Inc. ReportWriter was developed by Synergenics Solu-
tions using ParcPlace’s VisualWorks client/server development tool.
ParcPlace Systems, Inc., 408.720.7514 (v} snichols@parc-
place.com (email)

The Smalltalk Report

For

information

advertising in the
Recruitment Section,

contact
Michael W. Peck

at 212.242.7447

The American Funds Group is one of the most
successful mutual fund organizations in the world.
Since 1931, we have provided our shareholders with
consistently superior investment results and out-
standing service. Share in the continued growth of
our Norfolk, VA Office.

We have been a financial industry leader in Small-
talk development for over 5 years. We are currently
developing a large client server based customer serv-
ice system. This application is being created using
the latest object oriented methods and is in the be-
ginning stages of development. Ideal candidates will
have the opportunity to be a part of the design team
whose responsibilities will include these initial
phases of development.

We offer a competitive salary and excellent
benefits package including:

® Medical, dental and vision care coverage
e Educational assistance
® An outstanding company-paid retirement plan

Positions are currently available for:

Programmer Analysts

Electronic Dala Systems Corporation, the world
leader in applying information technology, currently
has opportunities in New York, London and Tokyo
for experienced OOP professionals. Qualified
Programmer Andlyst candidates must have hands-on
experience with Smalltalk. Experience with UNIX
and exposure to the Securities Indusiry preferred.

EDS offers salaries commensurate with experience
and excellent benefits. If you are interested in further 1
developing your professional skills working with an

industry leader, mail your resume to:

EDS Staffing, Dept. 2410

1251 Avenue of the Americas EDS
415t Floor

New York, NY 10020

EDS is an equal opportunity employer, m/F/d/v.
EDS is a registered mark of Electronic Data Systems Corporalion.

This positon requires 2 to 5 years of Smalltalk ex-
erience including OOA and OOD. Job responsi-
ilities will include leading in the overall design

and creation of class and object hierarchies.

Object Oriented Supervisor
In this position you will supervise a team of 5 to 6
Smalltalk developers. Five years experience manag-
ing client server development is required for this po-

"gition. Ideal candidates must have at least one year of

object oriented experience including OOA and OOD
methodologies.

In this position, you will develop GUI based client
server applications. At least one year of Smalltalk ex-
perience 1s required.

If you are interested in applying for any of the
positions listed above, please send your resume
and salary history to:

The American Funds Group
(Please specify position)

5300 Robin Hood Road
Norfolk, Virginia 23513

EQUAL OPPORTUNITY EMPLOYER

Product Report

continued from page 18

then allow the user to switch between languages throughout the
application with one button click. Many of the AHS classes (e.g.
scrollable input fields, text outline classes, notebook widgets)
have been redesigned so that they can be more readily reused in
your own applications. Also, the full outline browser has been en-
hanced to support glossaries, a history list, and text searches.

Summary

The AHS is a well designed, very useful framework for adding on-
line help to VisualWorks applications. The real-time and full out-
line help facilities integrate well into the VisualWorks environ-
ment, and the ability to easily allow nondevelopers to create and
edit help text in a running application is very nice. For a demo disk
or further information on the AHS contact Robert Royce at Arbor
Intelligent Systems, 313.996.4238, or roycer@umcc.umich.edu. G

Acknowledgments
The author would like to thank Sivaram Hariharan of Knowl-

edge Systems Corporation for assistance with this report.

Doug Camp is a Senior Member of the Development Services Staff at
Knowledge Systems Corporation. He can be reached at 919.677.1116 or
dcamp@hsceary.com.

Smalltalk Idioms

continued from page 24

In the remote control:

1. the user presses a key

2. the Keyboard creates an Event for the key press

3. the RemoteControl reads the Event, and write it on its
EventStream

4. the EventStream writes the Event on the InfraredStream

5. the InfraredStream transmits the bytes

Then in the television:

6. the InfraredStream reads the bytes

7. the EventStream reads the bytes and creates an Event

8. the TelevisionControl reads the Event, decodes it, and sends
the “channel: anInteger” message to the Television

9. the channel changes

This design still leaves many decisions fuzzy. Exactly what con-
trol structures are being used to read and write? Polling or inter-
rupt driven> How would the system work with a more compli-
cated, realistic keyboard that has many different kinds of keys?

When I have a design this close, I like to build a prototype
that has all of the pieces in place, but none of them finished. I
sometimes call this a “spike.” In the next issue I'll present the ar-
chitectural prototype for the remote control television in literate
programming style. @

Call for
Smalltalk

R E P O R T

is seeking expert reports, tutorials,
and technical papers. Articles should
be instructive, product-neutral,
and technical.

THE SMALLTALK REPORT

855 Meadowlands Dr. #509, Ottawa, ON K2C 3N2
613.225.8812 (v), 613.225.5943 (f)
streport@objectpeople.on.ca

Editorial topics include:

Applications Tools
o Commercial, engineering & scientific opplica- @ User interfuce builders
lions o Obiject editors

o Applications frameworks

* Project managemenl

© Verfical {application) and horizontal (system)
dlass libraries

® Portability issues

o Obiject library management

Project management

Submit papers, discuss story ideas,or request * Rapid prototyping ® Persistent abjects and dutabases
Writers’ Guidelines from: ® Version management © Distributed Smalttalk issues
John Pugh and Paul White, Editors * Applicalion management * Performance issues
© Team organization © Typing

o Organizing for reuse
® Iniroducing Smallialk into an organization

Writers

o Application development lools
® Project management lools
® CASE lools

Language issues
© |nherilance

o User interface paradigms
* (oncurrency

© Melalevel programming

(Competitive stipend paid)

28

The Smalltalk Report

	By Article Title
	Arbor Help System V2.0
	Introducing VisualAge
	Managing system changes with carriers
	Name space in Smalltalk/V for Win32
	Performance Tips
	Using Patterns: Finishing the design

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Camp, Douglas
	Knight, Alan
	Lorenz, Mark
	Viljamaa, Panu

	By Topic
	comp.lang.smalltalk
	Product Review
	Smalltalk idioms

