
The International Newsletter for Smalltalk Programmers

March-April 1994 Volume 3 Numbar 6
POOLS:

AN AfiRACTIVE

iuIsANcE

by Juanita Ew-ng
Contents:

Features/Articles

1 Pools: An attractive nuisance
by fuanri%Ewng

8 Creating IPF help panels for
SmalltalkN 0S/2 applications
by MarcoaLam &Suasn Mazzara

Columns

15Smalltalk idioms:

Where do objects mme from?
by Kent Beck

17 The Best of comp.lang.smalltalk

Net reaourcee
by Alsn Knight

19Product Review:

Repertoire
by Jeff Cantwell&Douglas Camp

22 Rawudment
❑B
OOISare a Smalltalk language construct for sharing data between

class. Classes that share data using pools are not required to be

hierarchically related. At first blush, pools sound attractive: pools

allow functionally related classes to connect by sharing data.

However, pools are not without problems. They are poorly

supported in most Smalltalk implementations and limit reusability. Hence, they

are labeled an attractive nuisance.

What are Pools?
Pools are dictionaries of variables. The variables in a pool are called pool vari-

ables. Each variable has a value that is ofien a constant, but there is no language

constraint that the variables be constants.

HOW do YOU USS pOOk?

When you define a class, you can instruct the Smalltalk compiler to use pool vari-

able names when compiling instance and class methods, In some Smalltalk imple-

mentations, pool access is inherited by subclasses.

Show me

Suppose you have a class, called Stream, that is used for reading and writing data.

You also have a pool called CharacterConstants, containing variables that describe

commonly used characters, It would define variables such as Cr, Lf and Tab. You

could use the CharacterConstants pool to implement methods for writing format-

ted data to the stream.

First, let’s examine the Stream class definition:

Object
subctass: #Stream
instanceVariableNames:‘coUertionposition size’
classVariableNames:“
poolDictionaries:‘CharaeterConstants’

In addition to instance variables and class variables, developers can customize the

set of pools used by the class. Stream uses one pool, CharacterConstants.

Next, let’s examine the method nextLirte that uses variables from the pool

CharacterConstants, Both Cr and Lf are pool variables from CharacterConstants.

Stream
nextLine

“Answera String consisting of the characters of the receiver up to the nesrtline delimiter.”

I answer I
answer:= self upTo: Cr.
seUpeel@o~ Lf.
‘answer
cowinmt 011pngf4

I’he Smalltalk Report
Edtiors
John Pugh and Paul White

Carleton Umversly & The Obled People

SIGS PLtBLICATfONS

Advisow Board
Tom Atwood, Ob@ Des,gn

Grady Booth, Rational

George Bosworth, Dlgdalk

Brad Cox, Inlormaho. Age Consulting

Adele Goldberg, ParcPlace SysIerns

Tom Love, IBM

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Syslems

Sesha Pratap, CenlerL,ne Su:lware

Cliff Reeves, IBM
1

Bjarne Stroustrup, AT&T ❑ell Labs

Dave Thomas, Object Technology International

THE SMALLTMK REPORT
Editorial Board I
Jim Anderson, O,giialk

Adele Goldberg, Parcplace Sysierns

Reed Phillips, Knowledge Systems Corp.

Mike Taylor, Olgilalk

Dave Thomas, Object Te.hndogy Inlernattonal
!

Columnists I
Kent Beck, First Class SoItware

Juanita Ewing, Dlgilalk

Greg Hendley, Knowledge Systems Corp.

Ed Klimas, Lmea Engineering Inc. I

Alan Knight, The Object People

Eric Smith, Knowledge Systems Corp.

Rebecca Wirfs-Brock, D,gilalh

SIGS Publications Group, inc. I
; Richard P. Friedman

~ Founder & Group Pubhsher

[Art/Production I

I KtistinaJoukhadar, Managing Editor

Susan Cullii, Pilgrim Read, Ltd., Creatwe Dirdon i

Seth J. Bookey, Production Edtor

Andrea Cammarata, Electronic PublishingCoordinator

Margaret Conti, Production Assistant

Circulation
Bruce Shriver, Grculatkon Oirector

K.S. Hawhina, FulMmenl Manager

Markating/Advertising
Shirley San, Director of Sales

Gary Portie, AdvwiiAng Mgr-Ea5t COasllCanada

Hekm N.swling, tilting and Mbit %Ies

Wendy Plumb, Recruitment Adwriising

Serah Hamilton, Manager of Promotionsand Re.searc4

Caren Poher, Pmnmbm Graphic ArrM

Administration
WMamJ. Ryan, Chief Operating Ofhcer

I David Chattarpaul, Acco.nthg Manager

James Amenuvor, Sookkemper

Amy Melsten, Assiskmt to the Publisher

Joanna Lowenetein, Adminislraliva Assistanl

Margherita R. Monck
EDITORS
CORNER

John Aigh P(lffl Whifr

Last month, we spoke of the lack of discussion in major publications on the topic O(man-

aging object-oriented projects. Another rela[ed [epic, rarcl)’ discussed, is the difficu]t~
faced try orgwtizntions with respect to manoging corporritc softw~rc lihrarics. of coorw,

everyone can see the obvious potcntiirl of ooe “corporate” library managed ticross thr or-

gmiratiort, but very few arc seeing it implemcnttd.

Wc believe that there arc some important ch~nges that have to occur Mm-e library

reuse will ever be possible on a krrge scale. First, wc as software developers must change

our distrust of software developed by others—the so-called “not invented here” syn-

drome. While we recognize this distrust is often warranted, it is an inhibitor to wide-scalt

reuse. Second, we need better tools for browsing our libraries. Today’s tools don’t provide

ndequate facilities for searching the library. The implementors feature, for example, is

great if you know the name of the message but doesn’t help with the “I wonder if there’s a

rnessagc that deals with so-and-so” queries. Third, the accounting procedures used by

most organizations, in terms of budgeting time and resources, have to be changed. If it is

my job to maintain a piece of software for other groups to reuse, I will require time away

from my regular job to do this. Fourth, we need to better capture the design of the classes

we intend to reuse—it is often difficult to understand the intent of a class without having

up-to-date design information. We feel there are a few Ph.D. dissertations in this aren of

“library science” if anyone is interested.

Since we don’t do it often enough, wc would like to acknowledge the importance of

our columnists. Their columns are always of the highest quality and cover a wide variety

of interesting and informative topics. We look forward to learning more about Small talk

from each column they write, and, from the comments we receive, we know you do too.

This month’s issue features three of our regulars. Juanita Ewing’s “Getting Real” column

discusses the use of PooledDirectories and where users may find some of the hidden

problems. Kent Beck is back this month with a continuation of his “Where do objects

come from?” series describing the tricky problem of returning more than one object from

a method and the associated maintenance problems. And Alan Knight reports on the

many ways one can obtain Smalltalk-related information from the “information super-

highway” so widely talked about these days.

..—. L--
POSTMASTER SeIId ddrcss chan~esand suh~cripiion order> 10 ‘h Sk!AI I I’.! K NI. IXRBM!, P.lktx 3127, L.mghornc, f?A 19047. For Scrviccun
curreril Suhscripli””s call 215.705.5996,

General Manager

Publishers of JOURNALOF OBJECT-OHIENTED PRO.
GRAMMING. Oe)Ecv MAGAZINE, C++ REPORT, THE
SMALLTALKREPORT,and THE X JOURNAL.

.-

2 THE SMALLTALKREPORT

.,=: ,..,.

“t

e-% kb w9A#-mdQ-s-a-

Some qf the exciting neu.?.featum...

SnMHrdUV dcvck]pcrs Il;li”c come m rcl}- (m \VindfnvBLlildcr Pro, V is ;Iv:lil;ll>lc (m \V”ind(nI.s I’(N S295
Witwknvlluildcr w m ;IIILI 0s:’2 I(m S-195. oLlr sl;lll-

cssmtid tmd for dcvL+)p-
~f?%~ -.

Fflc Edil VlevI Aflan Size QMms .%rmbmk Add
d;lrd Wind(nvI)uildcr 1’ is

ing sophistimtui user inler- still ;I1.:lil;lhlc (m Wind(n\+

[xx%. Tedious hand (’(ding tt)r S 1-!9.95 :md OS/2 [[w

of intcrfxw is rcplxctxl hy S295. WC’ (JfL,r lLlll \.;]lllL.

interwtiw viswd conlposi- tmlc-in [(w (NIr

[i(m. Since irs initial relwse, Wind(nvliuildtir Ull,s[olnc,rs
Wind(wl]uildcr hi[s uqnting 10 m(n,c up 10 Pro.

hcconw the indLMly stm- ‘I”lww pr(dm’ts ;Irc :11.s()

dmd ~,[;l &Wk)PIIMYLr tool”

t’or th~ S111:III[XII07 cnviron-

:Iv:liklhlc in
ENVY ‘/]}LJ[‘l>h])(v ;lIILI

nwvrt. Y(NV OI>jcctshmt ‘1’Kun:’Vr\lcxmqxltihlu l_[n-

hrings yOLI :1 whole rww nul[s, A.s \vi{l] uII (d’ (mr

ILW4 of mp.lbility with
WindoIvIILlildcr Pro! Xuw

products, Wind(nvl!uiklcr
Pro LxmlL’s \vith :130 d;ly

timction:dity mwl p(nvcr money hwk gwlrxntcL’, ILIII

;Ill(mnd in [his next gencr.l- S(mrcc code ;Ind no RLIn-
tion or Winckwlluildcr. ‘1’inw [LTs,

● R:ll)i(l l]]-(][olq>in,q L.;Ip;I-
l)ili~ic,s: With [Ilr ncnv link-

ing c:lp:lhilitics, a devck)p-
cr c.in mpidly prototype” x
functional intcrtkc Yvithout
\vriting ;1 single line of
c(ldc, Linidiu[lons md
Link!vlmus provide :1 po\v-

● “1”(N,Ilhr: [) L’J’L’k)pCr5 L’:m (lul[L’ .s(lphistiL’:ltcd Uxdlxlfx

Iusl Iikc the (mcs in the Willcl(]\vI\LlilCl~’1”I%() (old i[.sl’lt.

(408) 727-3742

Objectsham systems, hlC 5 Town & Country Vilbgc

Fax: (ftOIJ)727-63.24 Suite 735

CnmpuSmve 764.36,1063 %n Jose, CA 95 12S-2026

WndawBuilder and W,ndowE.dder Pm are Iradem.arks of Objectshare Splerns. 1.. All other brand and produd names are reg,slwed uadewadm .1 Ihe,r respdwe compan,es

.— ——— ——. . —.—. — —.——
■ POOLS:AN ATTRACTIVENUISANCE

—— -——.— .— — .- — —.. — .—. —— .— .—
What’s wrong with that?

Nothing’s wrong so far. Now let’s try some important opera-

tions like defining a new pool. The traditional way to define a

new pool in Smalltalk is to create a global variable whose value

must be a dictionary. Then the user must populate the dictio-

nary with keys that will be interpreted as variable names when

the dictionary is used as a pool. Some implementations of

Smalltalk require the keys in the dictionary to be Strings, oth-

ers require Symbols. The code to create a pool looks like this:

“Declarethe variable”
Smalkalkak #MyUIConstantsput nil.

“Createthe dictionary.”
MyUIConstants:=Dicbonarynew.

‘Populate”
MyUIConstantsat: ‘BackgroundColor’puk ColorpaIeYellow.
MyUIConstantsat: ‘ForegrocrndColor’pub Colorbhce.
MyUIConstantsak TextColor’puk Colorblack.
MyUIConstarrtsah TextHighlightColor’puti ColordarkYellow.

How do you use that pool?

In this example, we created a pool called MyUIConstants, and

filled it with color values. Now we can use this pool in the

definition of the class TextWidge~

Widget
subclass: #TextWidget
instanceVariableNames:‘contents’
classVariableNamex”
poolllitionaries: ‘MyUIConstants’

Why did we use a dictionary to define a pool?

You’ll notice that creating a pool didn’t involve any expressions

of the form SmalltaUr createPooUiamed#MyUIConstants. In-

stead, we create a global variable and set its value to a dictionary.

Historically, pools were never formally defined as first-class

elements of the Smalltalk language. There is no syntax for

defining pools or pool variables. Instead, the exact implemen-

tation of the pool language constructs known and relied upon

by developers. This isn’t a good idea because it prevents ven-

dors from improving the implementation of pools—future

versions of Smalltalk may not even use dictionaries to imple -

ment pools. It also makes it difficult for developers to move

their code to different Smalltalk platforms that have a different

implementation of pools. The worst thing, though, is that de-

velopers write code that treat pools as dictionaries.

What problems result from treating pools as dictionaries?

Because pools are globals and available from every method,

and their implementation is known, developers are very

tempted to write code like this:

MyUIConstantsat: TextColor’iftibsent:[”cril]

The problem with this code is that the compiler does not

detect it as a pool variable reference. It is just a message send

to a global variable. Thus, the Smalltalk programming envi-
———

4

ronment cannot reason about this expression as a pool vari-

able reference.

This type of reasoning would be important if you were de-

signing your program, and were considering eliminating the

pool variable TextColor. If you asked the programming envi-

ronment to search for all references to the pool variable Text-

Color, it would not find this one.

Another problem related to the public implementation of

pools and the availability of a pool in the global name scope, is

inappropriate access of pool variables. Pool variables can be ac-

cessed in any method, not just methods in classes that define

usage of the pool. If the pool is treated like a dictionary, you

can send it a message to access its contents, which are pool

variables. For example, the expression ColorConstants ah ‘Clr-

Blue> provides access to the pool variable ClrBlue.

66
In a standard Smalltalk

development environment,

there is no way to store pools

in source form. 99

How do I store pools?

A source form of a Smalltalk application is more than just a

rarely used archiving artifact. It is a necessity for serious devel-

opers. For a more complete discussion on the benefits of stor-

ing source, see my SMALLTALKREPORT column on “How to

Manage Source Without Tools, ” (Volume 2, Number 3).

The typical way developers create a source form of their ap-

plication is by filing classes out of an image. When developers

file classes in and out of an image, they encounter another

problem with pools. A class that references a pool can file out

without a problem, but its pools are not filed out. Because

pools are shared between classes, it would be inappropriate to

file them out with any single class. Instead, pools should be in-

dependently stored in source form.

In a standard Smalltalk development environment, there is

no way to store pools in source form. Most Smalltalk environ-

ments don’t even define a source form.* The pools must be

present, however, when you file your class back in.

What lessons have developers learned?

If developers have defined and used pools before, they have

learned to save the code they used to create the pool, and exe-

cute it again to recreate pools when rebuilding their develop-

ment environment. This is typically some workspace code, and

it is usually saved in a file.

To rebuild their development environment, developers

must manually track which classes require which pools, and re-

build their development environment with a combination of

source code to recreate classes and executable code to recreate
—— .——. —. —. ——— —.— —... —.—

THE SMALLTALKREPORT

Coding Documentation

Without

A

salt mkh

Now! Automatic Documentation
For SmalltaIWVDevelopment Teams — With Synopsis

Development Time Savings

Synopsis produces high quality class documentation

automatically. With the combination of Synopsis and
SmalMkfV, you can eliminate the lag between the

I

1

production of code and the availability of documentation.

Synopsis for SmalltalldV

+ DocumentsClasses Automatically

+ Provides Class Summaries and Source Code Listings

. Builds Class or Subsystem Encyclopedias

+ Publishes Documentation on Word Processors

● Packages Encyclopedia Files for Distribution Products Supported:
* Supports Personalized Documentation and DigitzdlcSmalltallc/V

Coding Conventions OTI ENVY/Developer for Smalltalk/V
Windows: $295 0SL2 $395

Dan Shafer, Graphic User Interfaces, Inc.:

“EveIY serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make documentation %09 Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-S47-2221 Fax 919-847-0650

With
Synopsis

A A

Si911 Fhlah
global and pools.

Developers have also learned to write their pool definition

code carefully because pool definition code is fragile. If you over-

write an existing pool by creating a new dictionary, any existing

code using pool variables will be disconnected from the pool.

Changes to the pool will not be tracked by the compiled code.

Suppose you have a class, TextWidget, that uses the pool

MyUIConstants. The method initialize uses two pool variables,

TextColor and TextHighlightColor.

TextWidget
~ke

“Initializethe receiver for standard look and feel.”

self setTextColor:TextColor.

self setHighlightColocTextHighlightColor

You can redefine the pool with this expression:

Smalkallrak #MyUIConstantsput Dictionarynew.

But, the redefinition breaks the connection between the pool

and existing references from methods. This is because you have

created a new pool that happens to have the same name as the

old pool. You are not redefining the old pool. Even if you pop-

ulate the new dictionary with identical variables you cannot re-

establish the connections

MyUIConstantsat: ‘BackgroundColor’put:Colorblack.
MyUICorrstantsat: ‘ForegroundColofpuk Colorblue.
MyUIConstarrtsat: ‘TerrtCotor’pub Colorwhite.
MyUIConstantsati ‘TextHighlightColor’put: Colorgreen.
MAIICH-APRIL 1994
The original value of TextColor was black. In the new pool

MyUIConstants, its value is white. The initialize method still

contains a reference to the old pool variable TextColor, and ini-

tializes TextWidgets to have the a black text color. Examining

the source of the method gives no clue about the current state

of the compiled code. Recompiling the method will allow the

compiler to rebind the reference.

To avoid redefining existing pools, developers usually place

conditionals around pool creation expressions (requiring fur-

ther assumptions about the implementation of pools):

(Smalhdlr inchrdesKey #MyUIConstants)
iffalse: [Smalltalkah #MyUIConstantsput: Dictionarynew]

Accidental pool redefinition is another reason why it is danger-

ous to allow the implementation of pools to be known.

What impact do pools have on reusability?

Pools have a negative impact on the sacred cow of Smalltalk,

reusability. Let’s examine our definition of pools again: a con-

struct for sharing data between classes. In other words, pools

contain data and do not define behavior. The two main mecha-

nisms for reuse in Smalltalk are inheritance and polymorphism.

Both are focused on behavior. They rely on behavior functioning

on encapsulated data–exactly the opposite of what pools provide.

Let’s look at an example with the pool MyUIConstants. The

class TextWidget uses the pool to access user interface con-

stants. The method initialize is implemented as follows:
.-. _.—-—

5

IkIrM%Jget
isWalize

“InitiUze the receiver for standardlook and feel.”

self aetTextColoKTextColor.
self setHighlightColorTeztHighlightColor

Suppose we make a variation of TextWldget that has a different

highlight color. We don’t want to change the original class, so

we create a subclass of TextWidget that uses the MyUIConstants

pool. And, we add a new pool variable to represent the new

highlight color, called MarkupTerrtHighlightColor.

MyUIConstantsat ‘MarkupTefiHighLightColor’puk ColordarkYellow.

Because the inherited initialize method contains a direct refer-

ence to the pool variable, we are forced to override the entire

initialize method instead of just overriding the color

specification for text highlight. Here is the new initialize

method for the subclass

MarkupTextWidget
iniuauze

“INtilize the receiver t%rmark up look and t%eL”

sell setTextColoc TextColor.
self aetHighJightColorMarkupTextHighlightColor

A better way to write this code is to isolate and encapsulate ref-

erences to the constants in this method. Then subclasses can

override the encapsulating methods if necessary. Remember

though, that these constants are used in several classes. It may

be better, depending on the usage, it the constants are encap-

sulated in methods from a stand-alone class.
6

■ Pint-s: AN AttraCtiVe NUISANCE
. . —. — .

A new class, WidgetUIConstants,

could function as the encapsulator for

all user interface constants. It would

respond to messages like foreground-

Color and textHighlightColor. Straight-

forward use of this class would look

like this:

i’ektWidget
widgett3nstantClasa

“Returnthe class containinguser inters%ce
constants.”

‘WidgetIJJConstants

initilize
“Initialize the receiver for mark up 10ok

and feel.”

selfsetTextColo~sellwidgetConztantClass
textColor.

setisetHighlightColonselfwidgetConstant
ClasstextHighlightColor

A new subclass of WidgetUIConstants

could contain the variations appropri-

ate for the subclass MarkupTextWidget.

MarkupTextWidget now needs to over-

ride the specification of the user inter-

face constants class, but does not need

to override the initialize method.

MarkupTextWidget
widgetConstantClass

“Retom the class containing user interface constants.”

“MarkupWidgetUIConstants

This example illustrates that it is not straightforward to

override references to pool variables in a subclass. The over-

ride usually results in multiple methods that specify the same

constants, which leads to maintenance problems. This is typ-

ical of the extensibility problems found in cases of direct

variable references.

The added benefit of a stand-alone class alternative is that

the class can be stored in source form and managed by ordi-

nary Smalltalk tools. It can also be subclasses to provide varia-

tions of the constants. Pools have neither of these capabilities.

Bottom Line
Behavior is better than data. Smalltalk reuse mechanisms work

on behavior.

Because pools are data, avoid pools whenever possible. In-

stead, create a class that encapsulates the data in the pool and

replace existing pool variable references with messages. Your

code reuse and ability to store your application in source form

will improve. Send your feedback on this discussion to

juanita@Migitalk.com. ❑

Juanita Ewing isa xeniorstaj”memberofDigitalkProfessionalSer-vi”ces,

921 SW Washington,Suite3J2, Portland,OR 97205,503.242.0725.
THE SMALLTALSCREPORT

Creatingthosenew clientondserverapplications

would be for more rewordingif you could reuse

existing code insteod of rewriting it. And now

tfsot gool becomesreoli~ with oblectmriented

programming. [speciolly when you con rely

on VisuolWorks”’, the PorcPloce Smolltolkw

Applications Development environment that

creotes applications that ore instantly portable

betweenWindows,0S/2, Macintoshond UNIX.

True 00P, it providesa robust set of taols to

build sophisticated graphical opplicotions with

occessto o wide vorie~ af relationaldatabases.

Fully armed with superior flexibility, dynamic

compilationfor impressiveperformanceand the

world’s largest set of tried and tested class

hrries,viitiisdfrorrr -

h deprmmtandback.Cdl1-800-75%7272

ext.400for oar SOManf%clc.Yatrls8ewhys4

many forwdld@ htlrrle 1000 Comparrim

have selectedVisuafWarksfor client and server

development. And stopped rewriting histary.

CREATING IPF HELP

PANELSFOR

SMALLTALIW 0S/2

APPLICATION

by Marcos Lam and Susan Mazzara

Part 1 of this articlediscussedlPF and some of its requirements that

play an important role in linking help panels to a Smalltalk appli-

cation. Part 11explains Dip”talk’simplementation of itshelp classes

and some enhancements and extensionsyou can make to them.
❑
igitalk’s Smalltalk/V for 0S/2 provides two

classes for linking IPF help panels to a Smalltalk

application PMHelpLibraryDLL and HelpManager.
PMHelpLibr~DLL wrappers all six APIs provided

by the system dynamic link library called HELP-

MGR.DL which provides the”interface to IPF. HelpManager

models IPF and is the class that Smalltalk applications interact

with to access IPF.

As explained in Part I of this article (THE SMALLTALKRE-

PORT, Vol. 3, No.5), IPF interfaces with applications through a

help subtable. Help subtables store control IDs (identifiers for

menus, menu items, subpanes, and so on) and associate help

panel resource IDs with each control, A resource ID is one of

the IDs that you tag in a help panel header to identify it for on-

line help requests and internal hypertext or hypergraphic links.

When an application receives a help request it passes the con-

trol identifier to IPF, IPF looks at the help subtable to deter-

mine the corresponding help panel resource ID and then dis-

plays the panel tagged with that resource ID.

Chapter 8 of the SMALLTALK/V FOII0S/2 PROGRAMMING

REFERENCE, “Help Manager,” makes no mention of help subta-

bles.’ Indeed, HelpManager always passes an empty help subtable

to IPF whenever a help instance is to be created. The manual

recommends that applications use menu titles, window titles,

and menu item selectors as IDs (id=) for help panels. It does not

recommend using resource IDs, which IPF expects in order to

find the correct help panel. So how does IPF decide which help

panel to display when it receives a help request? Since it does not

have a help subtable to refer to, it always sends the HM_HELP-

SLJBITEM_NOT_FOUNDmessage in response to a help request. Ap-

plicationWindow >> hmHelpsubitemNoff ound:with: uses the two

parameters passed into determine the name of the control, or

selector. In the case of a menu item, that you have requested

help for. It then sends IPF a message to display the help panel by

the same name. This process is illustrated in Figure 1.
8

TAGGING HELP PANELS

To create help panels that suit this process of interacting with

IPF, Digitalk prescribes the following ways of tagging your

help panels:

Extended Help
To create an extended help panel for a window or dialog, you

give it an instance of HelpManager and then tag the extended

help panel with resource ID 1. The code that creates an in-

stance of HelpManager for a view looks like this

HelpMamgerfon seti tiView
title ‘Help’
file: ‘bbrary.hlp’

In the message #for:tit\e:file:, the title is how you place a title on

the coverpage for your help panels. The file name points to your

compiled help library. The #for5itle:file: creation method sends

HelpManager the message #forWe:filedia\ogs:aboutDlgClass:.

for alt%rdowtitle: Nn’ng file: aFileNamedialogs: aCollert”on
aboutDlgClass:ulroutll[g

“se~new
pszTutorialName:“
phtHelpTable:nil
hmodHelpTableModule:NI
helpWindowTitle:aString
pszHelpLibraryName:aFileName
applWindowaWindow
aboutDlgCkss:aboutt)lg
tielp 1
keysHelp 2
dialogs: aColIechon.

In this message, HelpManager has the value for the extended

help panel resource ID hard coded to 1 and the keys help panel

resource ID hard coded to 2. To get an extended help panel or

keys help panel to work according to Digitalks requirements,

you have to tag them as shown here.

:hl res=l.Panel Title
:hl res=2.Keys Help

Menus and Menu Items

HelpManager’s support for IPF bypasses IPF’s help subtables.

As shown in the previous illustration, when IPF receives a help

request for a menu or menu item and cannot find the control

ID in a help subtable, IPF notifies the application. The applica-

tion, in turn, sends IPF an alternate help panel ID, To provide

these alternate IDs, you tag help panels for menus and menu

items as follows.

Menus:

:hl id=’-MenuTitle’.HelpPanelTitle

Menu items:

:hl id=merruTtemSelector.HelpPanelTitle

Were Digitalk to follow lPF’s requirements, these help panels

would be tagged as follows.
THE SMALLTALKREPORT

Menus

:hl res=2000.Help Panel Title

Menu items:

:hl res=2001 .HelpPanelTitle

DRAWBACKS OF HelpManager

The advantage of HelpManager’s technique of interacting with

IPF is that you are not burdened with determining control IDs

and passing them to IPF, but the drawbacks are numerous:

. A multiview application can have only one extended help

panel, since all resource IDs must be unique.

. Menus and menu items in the same main window must

have unique labels.

. A popup menu must have the exact same items as its title

bar menu counterpart.

“ It is not possible to provide help for popup menus on a

window that does not have a title bar.

- This technique conflicts with IPF’s requirements for exter-

nal hypertext and hypergraphic links.

Extended help for multiview applications

HelpManager’s implementation of extended help requires you to

place the help panels for each window in a separate library beause

each extended help panel must have the resource ID of 1 and re-

source IDs within a library must be unique. But suppose you have

an application with outboard windows that relate to the main

window or control the contents of the main window. In a mail or-

der application, for example, you may have one main window for

processing orders. From this window you can open other win-

dows for processing customer information and maintaining your

inventory database. Such an application is illustrated in Figure 2.

To provide on-line help for this application, you would have

to write three separate help libraries and use external hypertext

or hypergraphic links among them to retrieve information. But

if a user is working in the order processor, for example, and

asks for extended help, he or she cannot display a comprehen-

sive table of contents for the entire application, because the

table of contents is compiled within each separate library,

For a multiwindow application, such as this order process-

ing application, having each window documented in a separate

help library means not having a single place (such as a table of

contents) where users can look for an overview of the tool and

see what other tools are a part of i t. This restriction makes in-

formation retrieval difficult and reduces the usefulness of on-

line help systems.

Unique menu names
What if your application needs to reuse menu names? What if

the mail order application, for example, has two menus, one

called Orders and one called Accounts, and each has a submenu

called Open? How do you tag the help panel for the Open sub-

menus (Figure 3)?
MARCH–APIUL ~994
According to Digitalk guidelines, you tag the help panel for

each menu as follows:

:hl id=’-Open’.OpeningOrders
:hl id=’-Open’.OpeningAccounts

When you attempt to compile these help panels, IPF returns a

compiler error, because identifiers must be unique. To solve

this problem, you must either rename one of the submenus or

write one help panel that is vague enough to suffice for both

menus. This requirement makes it impossible to maintain con-

sistency in naming conventions in the interface.

Popup menus

When there is a help request for a popup menu or its items,

ApplicationWindow >> hnrHelpsubiternNoffound: with uses the

identifier of the menu or menu item to determine its counter-

part in the title bar menu. The help request is processed as if it

were for a menu or menu item in the title bar menu. This ap-

proach has the following drawbacks:

. A popup menu must have a counterpart in the title bar

menu.

. A popup menu must have the exact same items as its title

bar menu counterpart (text pane popup menu).

CUA ’91 guidelines provide for windows without title bar

menus. If you want to apply these guidelines to your applica-

tion, it is not possible to provide help for popup menus on a

window that does not have a title bar menu. These guidelines

also provide for users to customize popup menus.] But in Dig-

italks implementation of HelpManager, if a user changes a

popup menu so that it no longer matches its title bar menu

counterpart, you can no longer provide help for it.

Hypertext and Hypergraphic Links

Another drawback to HelpManager’s support for menu and

menu-item help requests is that it conflicts with external links.

To link to a help panel from another help library, you tag the

heading with a “global” attribute, as follows:

:hl res=2000 id=2000 global.HelpPanelTitle

When you add this attribute to the help panel for a menu or

menu item, IPF enforces its rule that the resource IDs (res=) are

to be used for internal access to the help panel and IDs (id=) are

to be used for external access. If you try to ask for a global help

panel by its ID from any other source besides an external hy-

pertext or hypergraphic link, IPF cannot find the panel.

Since HelpManager bypasses help subtables, which associate
. .

aPPllcatlon resources with IPF resource IDs, and uses HA to

get help for a menu or menu item, you cannot make both a

context-sensitive help request and an external link for a panel.

ENHANCEMENTS AND EXTENSIONS TO HelpManager

Extended help

With a simple extension to HelpManager, you can code a
9

■ CREATINGIPF HELPPANELSFORSMALLTALKAI0S/2 APPLICATIONS
—— —. —.— —. —. —
.—— —.

.—— —

HelpManagervariableSubclass:#MyHelpManager
instanceVariableNames:“
classVariableNames:“
poolDictionaries:
‘PMHelpConstantsPMConstants’ !

!MyHelpManagerclass methods !

foc aWindowtitle: aString file: aFileName
dialogs: aCollectionaboutDlgClass:aboutDlg
extendedHelpParceUD:anIntegerl
keysHelpPaneUD:anInteger2

“seti new
pszTutorialName:“
phtHelpTable:nil
hmodHelpTableModule:NI
helpWindovil’itle:aStriwg
pszHelpLibraryNameaFileName
app\WindmwaWindow
aboutDlgClass:aboutDlg
extHelp: ardntegerl
keysHelp:anInteger2
dialogs: aColleciion.!

for aWindmvtitle: ashing file: aFileNameextendedHelpPaneUD:atintegerl
keysHelpPaneUD:anInteger2

“self for: aWindowtitle: aString file: aFileNamedialogs: #()
~boutDlgClass:nil extendedHelpPaneUD:anIntegerl
keyzHelpPaneUD:anInteger2 ! !

!MyHelpMacragermethods !

~ppIicationWindow

“applicationWindow!

mrildHelpManager

I al a2 helptibrasyhelpTableshelpTablehe\pSubTableI
helpLibraq:= PMHelpLibraryDLLopen.
helpLibraryisInteger”Anerror has occurred?

ifl’rue: [MessageBoxirrforrrc‘Libraryfile not found.’
title: ‘PMHelpLibrayDLL’.

‘self].
selfpmHelpLibraryhelpLibracy.
addresses:= Set new.
helpTableModulenotNil

ifTrue [
helphdt

phtHelpTableId:helpTableI~
hmrrdHelpTableModrrle:helpTableModrrle]

ifFalse: [
helpSubTable:=selfhelpSubtableWrscture.
helpTables:= OrderedCoUecSionnew.
helpTables

add ((SelfDelirredStructurenamed: ‘HEIFMiBLE’)
idAppWlndow(PMWindowLibrzuy

quesyWindowUShorkapplicationWindowhameWindow
asParameter

index
QwaId);

phstHelpSubTable:(adrhesses add
(MemoryBlockAddress

copyToNonSmalMkMemory
helpSubTableasParameter)) asParameter;

idExtPanel: extHelpPanelId),
dialogs do: [:id I
—

10
helpTablesadd: ((SelfDefinedStructurenamed: ‘HELPTABLE)
idAppWindowid;
phstHelpSubTable:(addresses add:

(PMAddress
copyToNonSmaWalkMemory:helpSubTableasParameter))

asParameter;
idExtPanekid)].

helpTable:= ByteArraynew.
helpTablesdo: [:ht j

helpTable:= helpTable,ht contents].
helpTable:= helpTable,((SelfDefinedStructure

named: ‘HELPTABLE) contents).
helpInit phtHelpTable:(addresses add:

MemoryBlockAdtiezs
copyToNonSmalkalkMemoryhelpTable)) asParameter] .

al := MemoryBlockAd&ess
copyToNonSmalMlrMemory:helpWindov/Me asParameter .

a2 := MemoryBlocMddress
copyToNonSmalltallrMemocyheipLibraryPathasParameter.

helpInit
pszHelpWindowTitle:al asPuameter;
pszHelpLibraryName:a2 asParameter.

helpInstance := seLfpmHelpLibrary
createHelpInstance: PMhab
pHelpInitihelpInit asParameter.

al free. a2 tlee,
self pmHelpLibraryassociateHe\pInstance:helpInstance

hwndApp:applicationWindowhandle.!

destroyHelpInstance

pmHelpLibrarynotNil
ifhue: [
pmHelpLibrarydeztroyHelpInstance:helpInstance.
pmHelpLibrayclose.
addresses do: [:a I a free]].

helpInstance := pmHelpLibrary:= niL !

displayHelp:id

‘id isString
ifhue: [(PMWindowLibrarysendMsg:helpInstance

msg: HmDisplayHelp
mplStructi id asParameter
mp2: HmPanelname) asPMIcmgasBoolean]

iiTalse: [(PMWindowLibrarysendMsg:helpInstance
msg: HmDiaplayHelp
mpl: id
mp2: HmpanekypeNrsmber) asPMLmrgasBoolean] !

helpSubtable

I answerhelpSubtableI
answer:= OrderedCollectionwith: 2.
helpSubtable:= (self applicationWlndowrespondsTo:#helpSubtable)

iflhre: [self applicationWindowhelpSubtable]
ifpake: [IdentityDictionay new].

helpSubtableassociationsDo: [association I
answer

add: association key;
add association vahre],

“answer
add O;
add: O;
yourself!

helpSubtableStructure

I answerhelpSubtableI
helpSubtable:= self helpSubtable.
uw.wer:= PMSInrcturenew helpSubtablesize ● 2.

—— ———.———.—.
THE SMALLTALKREPORT

— ..---- .—
1 to: helpSubtablesize do: [:indesr I
answer uShortAtOfFset(index - 1) ● 2

put: (helpSubtableah index)].
“answer!

pcnlielplibrary

“pmHelpLibrary!

pmHelpLibraqcaPMHelpLibraryDLL

pnrHelpLibracy:=aPMHelpLibraryDLL!!

!ViewManagermethods !
helpSubtable

‘Dictionary new!

provideOnlineHelp
Provide onlinehelp. Dekurltis to do nothing. ~ically subclassesover-

ridethis to insbntiate HelpMamger.”
!!

!TopPanemethods !
helpSubtable

aself ownerhelpSubtable!!

!ApplicationWindowmethods !
aUPopupMenus

‘(self aUChildrencoUect: [:subPane I subPanepopupMenu])
selecL [:each I each notNil]! !

!Menumethods !
buildPopupIn:aWindow

popupisNil
ifTrue: [

popup:= MenuWhrdownew.
((aWindowmainWindowmenuWindowaUMenussize 2)

+ ((aWindowmainWindowaUlopupMenus
indexOF (aWindowmainWindowaUYopupMenus

detect: [:menu I menu title= self title]
~one:[]))*4))

timesRepeak [POPUPaUMenus
add: (self class new title: ‘Dummy’;yourseLf)].

popupaddMenu:self.
popupbuildWindowaWmdow] !

isDummy

‘self title = ‘Dummy’!

popUpAt:apoint in: aWindow
“Popupthe receiver menu at aPoint in aWhrdow. Answerthe action b~

MenuWindow.”

self buildPopupIrraWindow.
popuppopUpAtiaPoint in: aWindow.
“popup! !

!MenuWmdmvmethods !
lUMenus

aalllienus! !
h’i.4ncH-ArJnrL 1994
!TopPanemethods !
aUPopups

‘(self aUChildrencollect [:scrbPane I subPanepopup])
sele& [:each I each notNil] !

getMenuItemID:aStrircg

I isPopupmenuItemNamemenuNamesreadStreamspec
topLeveU4enuI
readstream:= ReadStreamONa.string.
izPopup:= readStreampeek == $A

ifTrue: [readStreamupTo: $“.
true]

ifFalse: [false].
menoNames:= (readSheam upTo: $*)

azArrayOfSubstringsDelimitedBy$>.
menuItemNacne:= readStreamupToEnd.
toplevel.lien u:=izPopup

ifhue: [self aUPopups
deteti [:each I each title= menuNamesfirst] ifNone: []]

ifFalse: [self menu’htled menuNamesfist].

koplevellienu isNil
ifhue: [-1]
ifFaLse:[spec := memshnes asOrderedCoUection

removeFirst; yourself.
menuItenrNamenotEmpty

ifhue: [spec add: menuItemName].
spec isEmpty

iPhcse: [topLevelMenuid]
iffalse: [topLevelMenugetItemIDFromFuUSpec:spec]] ! !

!Menumethods !
getItemFromFuUSpec:aCoUection

I index label submenu I
label:= aCoUefion first.
index := self getIndex: label ifAbsenk [].

‘index i.sNil
ifllcre [self hasSubMenu

iPTnre: [
submenu:= self subMenus

detecb [:each I each title= label] ifNone: [].
submenuisNil

ifTrue: [nil]
ifFalse: [aCollectionsize== 1

ifhue: [submenu]
iffalse: [submenugetItemFromFcrUSpec:

(aCollectioncopyFrorn 2 to: aCoUefion size
iffalse: [nil]]

ifFalse: [aCollectionsize== 1
iPTroe: [items ab index]
iffalse: [(selectors at: index) gefftemFromFuUSpec:

(aCoUefion copyFrorn 2 to aCoUectionsize)]] !

111

getItenrIDFromFuUSpec:specification

I item I
;tem:= ‘selfgetItemFromFuUSpec:(specification isshing

ifTrue: [specification asArrayOfSubstcirrgs]
ifFalse: [specification]).

“item isNil
ifllrce: [-1]
ifFaLsw[item id] ! !
11

■ CREATtNGIPF HELPPANELSFORSMALLTALK/V0S/2 APPLICATIONS

—. ..— .— —— —._ —..——

specific help panel resource ID

when you create an instance of

HelpManager for a window or

dialog. The extension, shown in

Listing 1, alters the HelpManager

creation method #for: title: file: di-

alogs:aboutDlgClass: to add two

new arguments: the extended help

panel resource ID and the keys

help panel resource ID.

This method is sent to Help-

Mamger by the #for:title:file: ex-

tendedHelpPaneUD: KeysHelpPan-

eUD: method, shown below

HelpManager
for self mainView
title: ‘HelpLibraryTitle’
file: ‘Iibrary.hlp’
entendedHelpPaneUD:2000
keysHelpPaneUD:2010

~—— —— .—

——_

By allowing you to code the resource ID of your extended help

panel and keys help panel, you can create as many of them as-

you need and place all help panels for an application in a single

help library. This enables you to have a single source for on-

line help with a comprehensive table of contents. With this ex-

tension, each window in the mail order application, for exam-

ple, can be compiled in a single help library so that you can see,

simply by looking at the table of contents, what kind of infor-

mation is available for each tool.

Help subtables

Sending a help subtable to IPF to find help panels for menus

and menu items can solve the problem that HelpManager has

with external hypertext links and the problem with reusing

menu names. The following is an example of a help subtable

for the mail order application menus previously illustrated

‘IdentityDictionary new
at 512 put 2000;
ak 768 puti 2001;
at: 769 puti 2002;
at 770 put: 2003;
at 1024 put: 2004;
at: 12.90 pub 2005;
ak 1281 put: 2006;
ah 1262 put: 2007;
yourself

In this IdentityDictionary, the index is the unique ID for each

menu or menu item. The value is the resource ID for the help

panel that explains the menu or menu item. Using this help

subtable, you can tag the help panels for these menus as follows:

:hl res=2000.The OrdersMenu
:hl res=2001.OpeningOrders
:hl res=2002.0pening NewOrders
:hl res=2003.OpeningBack Orders
:hl res=2004.The Accounts Menu

Figure 1
12
..— —. —.. — —— .—. —.. .

—..—. —. — —

~wRequestAnotherPanel

Help Subtable

control 10 Rewrce 10

—.

——

——

——

—.

——

. Processing help requests with an empty help subtable.

J No Entry

.—
:hl res=2005.0pening Accounts
:hl res=2006.OperringNewAccounts
:hl res=2007.0pening CurrentAccounts

Since this technique does not interfere with lPF external hy-

pertext links, you can also code each of these help panels with

the ID and global attributes to enable other help libraries to

link to them, as shown in this example:

:hl res=ZO07id=2007 globaLOpeningCurrentAccounts

We have created a subclass of HelpManager, called MyHelpMan-

ager, and extended ViewManager and TopPane to support help

subtables. The code for these extensions is listed in Lkting 1.

help for Popup Menus
Digitalk assigns all popup menus the ID 513 (see Menu>>

buildWindow:). As a result, whether you use a help subtable or

Digitalk’s approach to providing help, you cannot provide cor-

rect help for two or more popup menus within the same win-

dow. There are several possible solutions to this problem and

each is discussed with its advantages and disadvantages in the

following sections:

.

.

.

Guarantee that the popup menu has the same ID as the cor-

responding menu on the title bar menu.

Guarantee that all popup and title bar menus have

unique IDs.

Calculate menu and menu item IDs automatically.

Matching IDs Since a popup menu otlen corresponds to one

of the menus in the title bar menu, one way to solve the prob-

lem is to make the popup menu and its items have the same

IDs as their counterparts in the title bar menu. However, as

mentioned previously, you may not always want a popup

menu to correspond exactly to a title bar menu or you may not

want to include a title bar menu at all.

Unique IDs Another approach is to guarantee unique IDs for
THE SMALLTALKREPORT

.——.— .——

all popup menus and their submenus within the same main

window. To guarantee unique IDs, We have modified the

method Menu >> popUpAkin: and written four new methods,

shown in Listing 2. This code represents a noninvasive solution

to this problem. Although it may not be technically elegant, it

works well with minimum changes to the base image.

Calculating IDs To manually calculate the ID of menu and

menu items to build the help subtable is tedious and error

prone. TopPane and Menu are extended to accept a string

which specifies a menu or menu item and answers its ID. Four

methods have been added to automatically calculate menu

item lDs and are shown in Listing 3. This approach works for

pull-down and pop-up menus. In the sample application illus-

trated in Figure 3, you can create a dictionary as follows:

“Dictionarynew
at ‘Orders’puk 2000;
ak ‘Orders>Open’puk 2001;
at: ‘Orders>Open*New’put 2002;
ah ‘OrdersXlpen*BackOrders’pub 2003;
ab ‘Accounts’pub 2004;
at ‘Accounts>Open’puk 2005;
afi ‘Accoun&Open*New’pub 2006;
ati ‘Accounts>Open*Current’put: 2007;
ah ‘~Ordera’put: 2000;
at: “’Orders>Open’puk 2001;
ak ‘AOrders>Open*New’put: 2002;
ati ‘AOrders~Open*BackOrders’put: 2003;
ak “’Accounts’pub 2004;
a~ ‘AAccounts>Open’pub 2005;
ati ‘“Accounts>Open*New’put: 2006;
ah ‘“Accounts>Open*Current’puk 2007;
yourself

The strings that include a carat define popup menus and their

submenus and menu items.

Using this approach you do not have to calculate the menu

or menu item IDs. If a menu item is repositioned within the

same menu, there is no need to reconstruct the help subtable.

This solution gives you the best of both worlds: it conforms to

IPF’s requirements to use a help subtable to associate an appli-

cation resource with a help panel, and it relieves you of the

burden of calculating control IDs, which is one of the goals of

Digitalk’s implementation of HelpManager.

Destroying help instances

As explained in par-t 1 of this article, an application must de-

stroy help instances upon closing windows Smalltalk/V for

0S/2 does not destroy help instances. The method Application-

Wiztdow >> closeView is supposed to destroy its help instance.

ApplicationWindow keeps its help instance in the properties dic-

tionary. In the middle of closeView, ApplicationWindow sends

the message super close to Window. Among the things that Win-

dow >> close does is to nil the properties dictionary. Since the

message to destroy the help instance is at the end of closeView,

by the time it executes, it can no longer access the help instance.

As a result, it does not destroy its help instance. You can ad-

dress this problem by moving the code that destroys the help

instance to execute before the message super close,
MARCH–APRIL 1994
.— _ —._ —._ ._. _ .._. _____ ._
—. .— —

Orders Accounts

r
Figure 2. Esample of a multiwindow application

HELPFUL HELP

The enhancements described here can make your on-line help

panels easier to retrieve and easier to navigate through. Of

course, no amount of programming can guarantee well-writ-

ten help, but by making it easier to obtain context-sensitive

help and create hypertext and hypergraphic links among help

panels, you can place more information before your users. The

more information you can give users about your application,

the more you can reduce the frustration that leads them to seek

help in the first place. IEl

References

1. SMALLTALK V FOROS/z PROGRAMMING REFERENCE, Digitalk in-

corporated, 1992, p. 161.

2. COMMON USER ACCESSADVANCED INTERFACEDESIGNREFERENCE

(SC34-4290-00) (1991). International Business Machines Corpora-

tion, First Edition, Armonk, NY.

.—. ..— — -.

Marcos Lam is a member of the technical stafl and Susan Maz-

zara is a technical writer at Knowledge Systems Corporation.

Both have worked on the development team for CoDesign, a

Smalltalk development environment that integrates design and

code. They can be contacted at Knowledge Systems Corporation,

114 MacKenan Drive, Cary, NC 27511, 919.48 J.4000.

p
Accounts

+ New

Back order

Figure 3. Duplicate submenu names.
13

A SIGS Publication

Report on
-L-1

ras& lo ~ W-”...-...-..-2

-~-w-&-.–14.-.---.--..-..14

~-~~ - ,----~

~~~~a=adm-JB

MsaM&&7A&m?Elim NeEmry b,.,. ”,.,........dl

- --~

H8wh TM?-a mmdAm+= Ob@& ................._ .......24

UdwmdTmiir&vlE?&@w%+tm-.32
m%-l?ch&J& P ml~ Ttiaon
O18gnmtaoow

Object Analysis
& Design

Your first step for
planning and building
object–based software

systems.

The Report on Object Analysis& Des&n (ROAD)
is a new hi-monthly (6x), advertising-free journal, which
focuses on language-independent, architectural concerns
about object-oriented analysis, design and modeling. Each
issue provides you with in-depth articles addressing tie
complex questions related to the system architecture prior
to when language issues are addressed, including...

- the fundamental issues related to object modeling
- notational schemes for representing A&D models
- the processes for performing OOA or OOD
- revisions and updates of various design methods
– comprehensive comparisons of OOA&D approaches

- specifications on which method to use, and when
– expert reports on the tools currently available

And much more,

u cliu and mail or fax

;
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

i

For software developers :
and project leaders ~
either currently working ~
on an OT project, or ~
moving toward that :
goal.

1
:
1

Platform and system :
independent, ROAD is ~
written for all levels of :
project complexity. ~

1I

ROAD’s ditor, Dr. Richard Wiener, has
assembled the kading international authori-
ties as reglda.rcoh.unnMs. Regular columns,
written by the very creators of the most pop-
ular methods, include...

Nancy Wilkenson
An Informal Approach

~------’ ------------------------ ---

YeS–Enter my subscription to
ROAD at the pre-publication rate This is the Iwawl raw Offered!

N1. —_

marked belo;: “
lNdIll~

~ Individual 1 Year (6 issues) $%J $74 Title

A %\\ll~GS CtF 25% (3FF THE BASIC Address
INDIVIDUAL RATE!

~ Institutional 1 Year (6 issues)W $174 City

You SAVE $25! State/Province

METHOD OF PAYMENT Zip/Postal Code

D Check enclosed, payable to ROAD Country
(in U.S. dollars,drawn on a U.S. bank)

D Charge my P: F:
Q Visa Q MasterCard u AmEx

RETURN TO
Accr# ROAD, P.O. ~X 2027,
Em Langhome, PA 19047-9027

Fax 215-7B5-6073 Phone 215-785-5996



.— ..- .— — —

MALLTALK IDIOMS Kent Beck

Where
Part 2

do objects come from?
= REVOUSLY, [ talked about how objects could be cre-

l? ated from the states of objects that acted like finite state

machines (the objects from States pattern). 1’11con-

tinue on the theme of where objects come from for this and

several issues.

I won’t be saying much about the conventional source of

objects, the user’s world, There are lots of books that will tell

you how to find those objects. Instead, I’ll focus on finding

new objects in running programs.

In all programming, many of the most important design in-

sights don’t come until afier a program has been deployed for

awhile. Smalltalk is unique in that it is possible to fold those

insights back into the program. Polymorphism, in particular, is

invaluable for introducing new objects without disturbing err-

isting ones. Unlike programs written in more conventional

languages, Smalltalk programs can get better and better, and

easier to extend over time. Such programs tend to spin-off

reusable pieces, as well, which multiplies their value.

Ward Cunningham is a pioneer of this technique, which he

calls episodic desijw. In an episodic design process, design

doesn’t happen all at once, as in the barnacle-encrusted water-

fall model. Instead, design happens in episodes, whenever you

understand an issue well enough to know that your previous

design is limited in some way.

To avoid overdesigning, design episodes are typically trig-

gered by the desire to add a new feature. Some features seem to

slide right in with little effort. Others must be forced in at the

cost of violating good design. When encountering the latter, an

episodic designer will first “make a place” for the feature by

fixing the design so it’s easy to add.

Design episodes typically consist of finding new objects,

new responsibilities, or new collaborations. New objects often

come about to add degrees of freedom to your program. For

example, you may have thought initially that interest calcula-

tion was a simple computation, so it was buried in a method in

FinanciaUnstmment. In adding new functionality, you realize

there are many different ways to calculate interest, so you need

an InterestCalculator, which a FimnciaUnstrument collaborates

with to compute interest. Then you can add new InterestCalcu-

Iators without disturbing the rest of the design.

When creating new objects, you might think a flash of in-

sight is required to discover them. Not so. While some objects

come out of the blue, most can be found in the program itself.
MARCH-APIUL1994
The next couple of columns will errplore where you can find

some of these derived objects. This month’s pattern helps you

find objects you just didn’t quite want to create when you

found them in the first place. The programming “conve-

nience” it represents is particularly common in former LISP

programmers, but I’ve seen it come from C and assembly lan-

guage hacks, too.

PATTERN: OBJECTS FROM COLLECTIONS

Problem

Collections where two or more methods in the same or differ-

ent objects have to agree on a fixed set of indexes are a main te-

nance headache (the same observation applies to Associations

or Points being used to represent a duple). The programming

environment doesn’t help you find where all these implicitly

meaningful indexes are used. If you have such a collection,

how can you make it easy to maintain?

Constraint

“ Simplicity. The reason such collections arise in the first

place is because creating classes is a fairly heavyweight activ-

ity. You have to find the right name (System of Names) for

the class, then you have to find the right name for the mes-

sages, then you have use the programming environment to

define it. Once it’s there, you have to document and main-

tain it. Where you can’t imagine the object being used any-

where else, like returning two values from a method, you

aren’t likely to bother.

“ Readability. The problem with simply using collections in-

stead of an object is that even in the small it fails to convey

the intent of the code. A good example from the Visual-

Works 1.0 image is Browse_spawnEdits: from:. It creates a

three-element array with the text to edit, the start of the se-

lection, and the end of the selection. This array gets passed

through two intermediate methods before it is finally torn

apart in Elrowserc~assXetTextViw.fromTextState: and turned

into messages for the newly created text editor. Reading the

code, the only clue you have to the contents of the array is

the names of the temporaries in the latter method.

~ Maintainability. Closely allied with readability is the issue

of how hard the code is to maintain. If I wanted to add a
15



■ SMALLTALKIDIOMS
fourth element to the array in the above example, perhaps

for a special font for the selection, I would probably go to

Browse-spawnEdits: from: and Browserclass>setTextViewfrom-

TextState: and make the change. However, this would break

the debugger, which also spawns edits. This hidden multi-

ple update problem is the best reason for making collec-

tions into objects.

Solution
Create a new class. Give it the same number of instance vari-

ables as the size of the collection. Name the variables according

to what goes in them.

Example

To simplilj the above example, let’s say you wanted to be able

to spawn a text editor. TextEditor has a method textState:,

which takes as a parameter a three-element array

TextEditorXextState: anAsray
self teti. (anAwayat 1).

self selectFrom: (anArrayak 2) to: (anArrayak 3)

Ourbrowseruses this method

MyBrowsePspawrrEdits

I array I
array:= Array

with: self text
—— —.

16
with self selectionStart

with. self selectionStop.

TextEditoropen textState: array

Both methods are now vulnerable to change in the other. By

creating an object from the collection, we solve this problem:

TerrtState
variables: text selecsionstart selectionStop

TextState class>text: aString selectFrom:starthrteger to: stopInteger
“self new

setTexLaString
selectionStark startInteger
selectionStop: stopInteger

TerrtState>setText:aString selectionSta~ startInteger seleclionStop:
stopInteger

text := a.%ing.
selectionStart:= startInteger.
selectionStop := stopInteger

Then we can use a TextState in the TextEditor

TextEditorXextState: aTextState
self text: aTextStatetext.
self selectFrorn aTextStatesele&onStart to: aTextState

selectionStop

And create it in MyBrowser:

MyBrowse~textState
‘Text.State

text: seLftext
selectionStark self selectionstart
selectionStop: self selectionStop

MyBrowser>spawr-iEdits
TeztEditoropen textState: self textState

The result is code that is slightly more complicated, but

much easier to read and maintain. The beauty of Objects

from Collections is not just in the immediate results. The new

objects ofien become the home of important behavior in

their own right. Code that lived uneasily in one of the objects

that understood the format of the array can now live crsm -

fortably in the new object. Also, the new object becomes a

new degree of freedom in the system. If there are a variety of

ways the information can be structured or used, you can cap-

ture that variety in a family of objects all responding to the

new object’s protocol.

In the next issue, we will examine two more patterns for

creating objects from code Objects from Variables and Objects

from Methods. H

Kent Beck has been discovering Smalltalk idioms for eight years at

Tektroni~ Apple Computer, and MasPar Computer. He is also

the founder of First Class Software, which develops and dis-
tributes reengineeringproducts for Smalltalk. He can be reached

at First Class Software, P,O. Box 226, Boulder Creek, CA 95006-

0226,408.338.4649 (voice], 408.338.3666 (fa), or 70761,1216

on CompuSewe.
THE SMALLTALKREPORT



. .-

HE BEST OF comp.lang.smalltalk

Net resources

.-

Alan Knight
T
his month we move away a little from USENET discus-

sions and talk about some of the Smalltalk resources

that you can access from your computer. There are

many such resources, and they may be available over ilp, email,

or direct modem connections.

VENDOR RESOURCES

Software companies usually provide some sort of on-line sup-

port. This comes in a variety of forms, and is normally de-

scribed in the documentation. Most of the Smalltalk vendors

have some sort of email access.

Digitalk has a vendor forum on CompuServe, which is

where most of their support activity seems to take place. They

do have Internet email, though, and can be reached at

info@digita.lk. corn.

ParcPlace has a bulletin board called ParcBench, which can

be reached at 415.691.6716. They also have Internet email, and

can be reached at info@parcplace. corn.

QKS, makers of SmalltalkAgents, can be reached at

info@qks.com.

m SITES
I discussed anonymous ftp archive sites for Smalltalk in my

very first column, but that was almost two years ago, so I think

it’s worth repeating the information for new readers. Anony-

mous tlp means that you connect through fip and use “anony-

mous” as a username and your email address as a password.

Two main archives have large amounts of Smalltalk code.

“ st.cs.uiuc.edu (University of Illinois, Internet ID

128.174.241.10)

I mushroom. cs.man.ac.uk (University of Manchester, Inter-

net ID 130.88.13.70)

These two sites have a “mirroring” arrangement, so they both

have exactly the same files available, although they are orga-

nized a bit differently. Transfers will probably be faster if you

use the site closest to you.

As with any freely distributed sofhvare, be careful of copy-

right restrictions, particularly “copyleft” if you plan on distrib-

uting this as part of commercial code. Files collected by the

Manchester library (which is a subset of those available from

the Manchester site) are often copylefted unless otherwise

specified.
MARCH-APRIL 1994
Other sites
A number of other sites also have files of interest to Smalltalkers.

.

.

.

.

GNU Smalltalk (see THE SMALLTAI.KREPORT 1[8 ] ) is avail-

able from most of the many archives that carry GNU

sofiware. The reference site is prep. ai.mit.edu, but that site

is heavily loaded, so it’s best to look elsewhere.

A Little Smalltalk is Tim Budd’s UNIX implementation of a

subset of Smalltalk. It’s available from cs.orst.edu (or by an

email server that can be reached by sending a message with

the text “send guide” to almanac@cs.orst. edu). A Little

Smalltalk is described in the Addison-Wesley book of the

same name. An extended version, which inchrdes graphical

support for the X Window System, is available from

beach. rockwell.com.

The comp.lang.smalltalk frequently asked questions (FAQ)

list and an archive of discussions from the smallmusic mail-

ing list is available from xcf.berkeley.edu.

QKS has recently started an ftp site for Smalltalk Agents ma-

terial at pineapple, qks.com ( 192.55.204.66).

email

ftp sites are very convenient if you have tlp access, but most of

the world doesn’t. Those with Internet email access (note that

many commercial on-line services can send and receive Inter-

net mail), can use the Manchester and Illinois Smalltalk

archives through email servers.

To reach the Manchester archives, send a message of the form

To: goodies-lib@cs.rnan.ac.ulr
SubjecLhelp;index

You should receive an explanation of how to use the archives

and a fairly informative listing of what’s available along with a

summary. If you need to communicate with a human, try

lib-manager@cs. man.ac.uk.

To access the University of Illinois archives, send

To: archive-server@t.cs. uiuc.edu
Subjeck<Doesn’tmatte~
path youmarne@your.Intemet. address
help
17



■ THE BEST OF COMP.LANG.SMALLTALK
This will send a help file. To also receive a complete listing, send

To: archive-server@st.cs.uiuc.edu
Subject: <Doesn’tmatte~
mchivershar
encoder uuencode
help
encodedsendls-Ut.Z

The listing doesn’t have the nice explanations you get from the

Manchester archive (although the Manchester catalogue is

available as one of the files). The listing will also come as a

uuencoded, compressed file.

SMALLTALKMAILING LIST

One of the most valuable network resources is comp.lang.-

smalltalk itself. There’s a lot of junk to sort through, but there’s

also a large community of knowledgeable Smalhalk users, many

of whom normally charge a lot of money for the kind of advice

they give over USENET.

66 I’d like to be able to point you to

some good file dialog code (for Pare

Place), but I don’t know of any. 9

Unfortunately, not everyone can receive USENET news. For

those who would like to, but who have only email access, there

is a mailing list that echoes postings in comp.lang.smalltalk.

The list is maintained by Joerg Rade (jradel@@vdg.de), and de-

scribed as follows:

Info-CLS (formerly Smalk) is a mailing list which is bidirec-

tionally gatewayed with comp.lang.smalltalk (via NET-

NEWS@AUVM.BitNet). Every posting to c.1.s (with distrib-

ution options usa or world) gets distributed to all

subscribers of Info-CLS, and vice versa every mailing to

Info-CL3 gets posted to c.I.s.

In order to get subscribed, send a mail message to the

Iistserv (LISTSERV@vm.gmd.de), containing SUBSCRIBE

Info-CLS name@node.net.world Your F. Name or drop me

a note.

A knowledgeable group of Smalltalk users is a wonderful thing,

but the delay involved in getting an answer can be very painful.

This is particularly true when the question has been asked be-

fore and you could get an answer very quickly if you only had

an archive of old messages to search through. Luckily, there is

such an archive:

There is a mailarchive associated with Info-CLS; that is,

every posting/mailing gets archived and can be keyword

searched by email. To search the archive, which started some-

where around September ’92, send a mail message to
18
LISTSERV@vm.gmd.de

containing somethinglike:

//
DatabaseSearch DD=Rules
//Rules DD*
Search type &checking in lliFO-CLS
index
print

/’

as the body part of the message. For details on more fine-grained

retrievals,,read the document that is obtainable by sending

GECLISTDBMEMO

as the body part of a mail message to the listserv.

A FEW GOODIES

That’s all the general network resources that I’m aware of at the

moment. If you know of others that you think should be men-

tioned, please tell me about it. In the remaining space, I’ll

briefly mention some of the Smalltalk source code available

from the Manchester and Illinois SmaIltalk archives. These bits

of code are often referred to as “goodies, ” As with all freely

available code, you need to exercise some care. The code may

be of very good quality, or it may not. It is almost certainly not

maintained, so it maybe out of date. In most cases, it will not

have been tested on a very wide variety of different machines.

Basically, you will probably want somebody who knows what

they’re doing to look the code over. You also need to beware of

copyright restrictions, as I mentioned in the ftp section.

Object debugging
This is described in great detail in the July-August 1993 issue of

THE SMALLTALKREPORT (Debugging Objects, by Bob Hinkle,

Vicki Jones and Ralph E. Johnson 2[9] ), so 1 won’t say much

except to recommend it. It works with ParcPlace Smalltalk and

uses instance-specific behavior to provide enhanced debugging

facilities. In particular, it lets you set breakpoints (real break-

points) on methods in individual objects (e.g., halt when add:
is invoked for thisparticular OrderedCollection). This is really,

really nice. It does make some very deep system changes, which

is scary, but I think it’s well worth it. To my mind, the biggest

drawback is that it doesn’ t coexist well with ENVY/Developer

(as of version 1.42), I have an idea of how to make it work, but

it’s pretty sneaky, and I’m not using ENVY right now, so I

haven’t tested it.

FileNavigator

It’s very annoying that ParcPlace Smalltalk (including Visual-

Works) still doesn’t have any kind of a file selection dialog. We

have a system that is supposedly good for writing graphical user

interfaces, and the standard way to get a file name is still

DialogViewrequest: ‘Entelfile name and path’.

Forget using shortcuts like “-’”.

co!ltinued on page21
THE SMALLTALKREPORT



~“’’”’”--”’”’’”’””””--
Repertoire

JefiCantwell t+ Douglas Camp
smalltalk is a highly productive development environment

that excels at object modeling—building the underlying

‘object-model’ (the M in MVC) part of applications.

However, Smalltalk also has some definite low productivity

shortcomings. For example, until SmaUtalk GUI builders ar-

rived, it was often true that you could build the model portion

of an application at a blindingly fast rate then spent countless

tedious hours hand-coding your interface. Other problems re-

main. What is needed is for third-party tool developers to step

in and produce extensions to the ST environment that address

these problems.

Fortunately, although the number of third-party tools now

available for VisualWorks is fairly small, some exciting new

products are beginning to appear. If you’re on the ParcPlace

mailing list, you probably recently received a large envelope

auspiciously labeled “Essential Extensions For VisualWorks”.

Inside was a brochure describing Repertoire, a new query and

reporting tool from Synergistic Solutions, Inc. You may also

have learned about Repertoire at 00PSLA ’93. We’ve been

part of the Repertoire beta test group and recently began using

release 1.0. In this article we’ll outline what Repertoire is, what

you can do with it, and briefly describe some of our experi-

ences using it.

WHAT IS REPERTOIRE?

Repertoire is a set of ObjectWorks applications for doing data-

base queries and creating reports. Using Repertoire, developers

can quickly and easily create queries and reports on any data

which can be accessed from within VisualWorks. The Reper-

toire toolset is extensive, including several database browsers

(Schema, QBE (Query-By-Example) and Free Form browsers),

tools for defining data sources and filters, a WYSIWYG report

designer, a caUable runtime reporting engine, and a ‘librarian’

application for managing access to aU this functionality in a
multi-user environment. Repertoire took are accessed via an

iconic launcher, shown in Figure 1.

I Synergistic Solutions, Repertoire Et1993 [ T I A

II!lmmmk!!!!lm
Lbrarian Flier Leycut SC)@ Executii Td bX

Figure 1. F!epm’toire’s Ieunchsr.
MARCH-ASIRIL 1994
FEATURES

One of the first things you notice about Repertoire is that it

contains a lot of functionality. The User’s Manual is just over

400 pages, and the full-blown Development version of Reper-

toire contains more than 400 new classes, more than 9000 new

methods, and increases the size of an Envy image by about

2.5M, and about 1.8M for a standalone VkualWorks image.

(Note that these numbers are for the full-blown I)evelopment

version. Repertoire is available in three flavors Development,

Standard, and Embedded Execution.). Some of Repertoire’s

major features

. Full integration with VisualWorks. Standalone image and

ENVY versions available.

I Concurrent access to any accessible data sources, including

SQL relational databases, object-oriented databases, PC

databases via ODBC, and any Smalltalk object in the image.

(Some drivers must be purchased separately.)

“ An excellent WYSIWYG report designer which supports

different text sizes and fonts, event driven formatting and a

sophisticated macro language for formatting and control.

“ Access control provided by the Librarian tool through user-

name and password restrictions.

. Reuse is encouraged—all reporting elements can be stored

in a central repository and reused.

“ Device independent output—print drivers are included

for Postscript, Windows Metafile, HP PCL and ASCII out-

put. (This feature alone could bean excellent third party

add on. You mean I don’t have to have a postscript

printer? WOW!)

WHAT DOES REPERTOIRE DO?

To get a feel for how developers actuaUy use Repertoire, let’s

work through the design of a simple report to show which of

our customers have balances which exceed their credit limits.

Before a report can be created, a data source must be

defined. The source is the connection to the raw data provided

by the database driver. Note that this is a one time process—

once a source is defined, the Repertoire user can reuse it in

other reports. Defining a source is a simple process—popup a

short dialog and supply a name for the component, a password
19



■ PRODUCT REVIEW
—
.—

and username for the database (if required), and select the dri-

ver type (e.g. Sybase) from a list.

After the Repertoire environment is configured (creating

users, defining sources, etc.), creating a report in Repertoire is a

3-step process that creates discrete, reusable components de-

velop any scripts necessary to prompt users for variable data at

runtime, develop filters for selecting only the data of interest,

and define the report layout. (Many times only the report lay-

out will need to be created because the other components may

already exist and can be reused. ) When these steps are com-

plete, the report can be executed at any time—from the Reper-

toire environment, or from your VisualWorks application code.

1.

2.

3.

Sm”pt(s). Scripts are primarily used as short dialogs to

prompt users for variable values at runtime. Clicking the

Scripts icon on the launcher brings up the Script creation

tool. Defining a script is a simple, fill-in-the-blanks

process: name the component, provide variable values and

prompts, and select the variable type (e.g. String, Boolean,

Date). For this simple example we don’t need any scripts.

Filter(s). Filters determine which data is selected from the

data sources. Filters can use SQL for databases which sup-

port it (e.g. Sybase, Oracle, ODBC); filters can also use

Smalltalk code, the Repertoire macro language, or custom

data source specific language. For example, a filter to re-

trieve all the customers whose balance exceeds their credit

limit (for an SQL data source) might look like Figure 2.

Layout. The Layout Designer is where Repertoire really

shines. This tool uses a “spreadsheet metaphor’’—the de-

sign space is broken into columns and rows, and individ-

ual elements of the report are added much as you would

type data into a spreadsheet. Once added to the layout, you

can drag elements around with the mouse to fine tune the

look of the report, A layout for our customer report might

look like Figure 3.

Different fonts, typestyles and sizes can be applied to each ele-

ment of the report. AI1the functionality you’d expect to find in

a good report designer is here, including header/footer sections,

multilevel grouping, conditional formatting, and a macro lan-

guage. An especially nice feature is the ability to define a “row

variable” as a Smalltalk object (done in the filter definition).

This means that instead of working with report data as simple

relational rows, the actual ST object (and all of its behaviors)

are available to the report at runtime.

Once the layout is started, reports can be executed and the

results viewed immediately from the layout designer-this fa-

cilitates easy, incremental report testing and design. Reports

can also be executed from Smalltalk code, meaning you can

embed calls to the report engine anywhere in your application.

It’s a simple process in VisualWorks to create a new canvas,

paint a button on it, and call the report engine in the button

action method.

The Layout Designer is the key feature of Repertoire. This
20
~le Edit ~ool tjelp

“me e ‘we’ I ‘“’”S 1
Description Retrieve al customers wlwse ba!ancs exceeds credti imiL

I

‘owvar’ab’e~ ‘ourceb-
Rowclass

~
Select name, balance, credt_Nm@frun customers wtere (credii_hmit * balance) M

~
Figure 2. An enample of e Repertoire Filter.

tool alone enormously simplifies the ofien tedious and time-

consuming task of report design.

EXPERIENCE REPORT
We’ve used Repertoire to create several custom Smalltalk class

reports for use as development aids, and to prototype reports

for our major application (a financial/banking system). We’ve

used the Smalltalk image, ODBC, BOSS and ASCII files as

data sources.

Overall, our experiences with Repertoire have been very

positive, and we plan to use Repertoire for the reporting com-

ponent of our VisualWorks applications. However, there are

some problems. Unexplained walkbacks do occur occasion-

ally—in a development environment, or for strictly in-house

systems, this isn’t a major problem (what developer isn’t used

to seeing walkbacks?). However, if you planned to deploy appli-

cations with Repertoire embedded, it might be a concern.

Many of the problems we encounter area function of the com-

plexity of the environmen~ When you layer Repertoire on Vi-

sualWorks on Envy, small things (like a class variable not get-

ting properly initialized) can cause annoying, time consuming

problems. Other problems and concerns with this release:

“ Installation can be difficult. Again, this is a function of the

environment (VisualWorks/Envy). We’ve spent many

hours reinstalling the application, trying to resolve obscure

load problems.

I_1P9
le

1 1(

llbelam+zel*l I. 2 1 . ...3 . 4 s

IIiia= =BBAIANCE =RLnLul 1_uhiF

II1 Rpt Smry Total cuslomers: =cmml[StJAMEl
1 P9 Frnter

●I I

Figure 3. An enample 01 a Repertoire Report.
THE SMALLTALKREPORT



. ——. —.— ————
■ THE BEST OF CO MP.LANG.SMALLTALK
——— ———_— .—. ..— — ——. — —
coutimie({from pflgc18

MAnCH-APIUL 1994
People doing serious development have the privilege of writ-

ing their own file dialog, which isn’ t that easy to do well, given

the bizarre behavior of some Filename operations.

I’d like to be able to point you to some good file dialog code,

but I don’t know of any. The best I can do is the FileNavigator

goodie, which is a start, even though it’s trying to solve a differ-

ent problem. FileNatigator is an improved version of the stan -

dard FileBrowser, written by Carl lMcConnell

(mcconnel@cs.uiuc. edu). He describes it as follows:

FileNavigator provides the same functionality as

FileBrowser, but with an easier-to-use select-and-click inter-

face reminiscent of a Macintosh fde dialog box.

He also warns that

I’ve only tested FileNavigator on the Macintosh, so although

it’s supposed to be portable, minor problems may crop up

on other platforms.

fi For those who have only email ac-

cess, there is a mailing list that echoes

postings in comp.lang.smalltalk. 9

I did experience some problems when 1 tried this out under

MS-Windows VisualWorks, but I think they wouldn’t be hard

to fix. I didn’t think it was very reminiscent of a Mac file dialog,

but it was an improvement on the FileBrowser, and could be a

good source of ideas for other file-manipulation tools.

Importing Eliiappael Images

Applications often need pictures, and they otlen need to import

those pictures from some external source, in one of many in-

compatible image formats. You can display it on the screen, then

manually import it using IrnagefromUser, but that takes a lot of

time. There are a few goodies available for dealing with this prob-

lem. One is PNMImport, by Frerk Meyer (frerk@telematik.infer-

matik.uni-karlsruhe.de). The file-in describes it as follow~

PNMImport adds methods for importing Portable

aNyMaps (PNM) as of Jef Poskanzer’s pbmplus package.

With the help of his package or the xv program you can im-

port ANY bitmap you like into your Smalltalk image.

The pbmplus package, which is available by fkp from many

sources, converts a wide variety of image formats to and from

the formats that PNMImport reads. As far as I know, these

tools are only available on UNIX platforms, but it’s possible

they’ve been ported or that other programs can produce

these formats. ❑

Alan Knight isone of The ObjectPeople.He can be renched at

613.225.8812, or by email as knightt?acm.org.
“ Some features simply don’t work well. For example, Reper-

toire comes with some handy ready-to-run class reports,

however these occasionally fail without any immediately ob-

vious reason.

“ Context sensitive help is available, but there is a very small

number of help topics, and these are in general not as useful

as one would hope.

. Repertoire inherits some problems from VkualWorks-for

example, Windows 3.x/VisualWorks users occasionally see

“ghost” popup menus left behind when a parent window

closes, which usually cause a walkback.

- We’ve no experience attempting to strip/whittle an image

containing Repertoire, and we have some concerns about

image size. However, all our experience has been with the

full-blown Development version—adding the Embedded

Execution version of Repertoire may have a much smaller

impact on the image.

Although we have had some problems with Repertoire, SS1

technical support (in the form of email, faxes and phone con-

versations with Bill Reynolds, the president of SS1 and chief de-

veloper of Repertoire) has been excellent. The company has

been extremely responsive, otlen solving our problems imme-

diately or within just a few hours,

NOTES ON THE EVALUATION ENVIRONMENT

For the record, we’ve tested Repertoire only in our environ-

ment: VisualWorks (standalone and Envy) running under

Windows 3,1 on 486/66 systemswith 16 meg of memory-our

development platforms.

SUMMARY
Repertoire 1.0 is impressive in scope, functionality and design.

When developers first see the WYSIWYG report designer, and

begin to understand just how much time it can save, the re-

sponse is very positive. However, this is version 1.O—some bugs

haven’t been worked out and the product needs refinement. In

their favor, SS1 has been supporting Small talk since 1989 (with

already successful products such as Smalltalk/LAN and

Smalltalk/SQL) and we expect future versions will resolve these

problems. In the meantime, if your application requires report-

ing, you should strongly consider using Repertoire. Perhaps

even more exciting, and important for SmaIltalk, the language

that has been touted as the MIS sotlware development tool of

the 90’s finally has a third party tool that speaks directly to MIS

sofhvare needs in a powerful way.

For further information on Repertoire contact SS1 at

908.422.0450 or via email at 70233.20 17@compuserve.com. ❑

]eflCantwell is the Vice President of Research and Development,

and Douglas Camp is a Sof7wareDeveloper for Private Business,

Inc. They can be reached at Box 1603, Brentwood, TN, 37024,
(615) 790-0484. Jefls email address is cantwe114%anderbilt.edu,

Doug’s is 7401 7.2614 @compuserve.com.
21



Technology Consulting, Inc. is a dynamic and
rapidly growing Software Development Firm
with challenging aaaignments. We are a
leader in client-server systems integration and
application outsourcing. We have immediate
openings to support exclusive client projects
and our state-of-the-art regional development
center.

CLIENT SERVER - SMALLTALK, C, C++,
VISUAL BASICIC++, ORACLE, SYBASE,
POWERBUILDER

TCI offers competiie salaries, attractive
benefits, and relocation assistance. For
consideration, send resume or call:
1800Meidingsr Tovwr, Louisville, KY 40202
(502) 589-3110

Member NACCB FAX 502-589-3107

As a lea&r mIheOabvey01Otqec-Oienled!@en
InlegranonSwwIcesSHL .sys!emhwse mwes you k

eqzkre shalkmgmg anduniqueo~flumhes wilhlr
ourorgamzalion SMALLTALK Oppcntunmes exisl m

Mmnaapdw. Allanla. Boulder. Rale!gh and NY, la

Teehnical Archilacls. Projecl Managers, Seniol

Sofhvare Oevelopera and Soltwara Engimeers.

We seek chentrseive~.ob.tm.orienledpmlessicmak
wilh inqxessiveifduslrycrademalswho share OUI
wrldwida sormnilmanl10excellenceTheseresulls-
orientedirdonnalmnprolessionakmusl Ihtive on
chatlengmat-dpossessemeplionalIechmcalskills
aswanesbusinessadkisorye~rmnce

For Cmaklara(in send your resume in mnhdence10.
Miille Ha@an OepI. Sk4i1394

SHL Syelemhouse

9S0 South Wimsr Pafi Drive, .%le 3u0

C-lbaq. Fbrda 337o7

1.BOO.769,W04 or Fax 407.767,5309

(EIIra Fine k40de)

~

SHLSYSTEMHOUSE

Provides objective G authoritative coverage on Iangszsge
advances,usagetips. project management advice, AfiD

techniques,and insightful applications.

~ Yes.I would like [o subscribe [o THE SMAUTALK REPORT.

U I year (9 issues):

LI Domestic d Individual $79.00 ~ Institutional $119,00
Cl Overseas: ~ Individual $94.00 U Institutional $1]4.00

U 2 yearn (18 issues):
~ Domestic ~ Individual $148.00 LI lns[itutiorsal $228.00
U Overseas: ‘U Individual $178.00 Cl Institutional $258.00

Methostof Payment
~ Check enclosed (payable IO THI SPIALLTALKREPORT)
~ Bill me
~ Charge my i Visa ~ MasterCard ‘~ AmEn

Card No.
Exp. Date

Signature

Name

Address

Title Company

City State

Country Zip

Phone

To order, return this form with payment to

The Smalltalk Report, P.O. Box 2027, Lanrghorne, PA 19047

Fax: 215.788.6073 Phone: 215.7E15.5996

I

We currently have numerous

~ opportunities requiring 1+

years experience with:

❑ SMALLTALK

❑ Object Oriented Design

m (-3s/2

SMALLTALK

Perq-tanent c

. .._. -.— ——___

rDESIGNERSAND DEVELOPERS

~ We Currently Have Numerous Contract and
3pportunHiesAvailable for Smalltalk

[ ‘ I%essionals in Various Re~ions of the Country,

Salient Corporation...

I

-. . dk Professionals Specializing in the
Placement of Smalltalk Professionals

t
[ For more information, please send or FAXyour resumes to:

Salient Corporatbn

\

316 S. Omar Ave.,.Suite B.
LosAngeles, California 9K113.

I Voice: (213) 680-4001 FAX f213) 680-4030



FORCE-FIT RELATIONAL TECHNOLOGY

AND YOU COULD REALLY HIT IT BIG.

Maybe you’re beating your head against the relational you can stora Smalltalk objects directly in the

database wall - trying to intagrate your Smalltalk dstabase. We maka your development tima more

applications with an FIDBMS. Mayba you’re spending productive and your object applications more efficient.

all your time debugging SQL calls instead OFbuilding Laarn for yourself by calling us today for a

graat applications, Dr mayba you’ve hit tha relational copy of “Dbject or Relational? A Guide for

performance wall bacause you’ra wasting too much Salecting Database Technology: Aftar all, the

processing tima on object decomposition and decomposition. baat way to deal

Servio’” has a battar way. With our high-performance with an obstacle SERWO
GemStone” object database managemant systam, is to avoid it in

OBJECT TECHNOLOGY

the first place. FO~ THE REAL WO~LO

Call 1800-243-9369 for a free copy of “Objactor Relational?AGuide for Selecting Database Technology!’
SemioIS a trademati and GemSmne is a registered t$ademarkcd%wo Corporation



Not long ago, clientLserve
development required massive
amounts of time, money and
expertise to combine different
and complex technologies,

~ Now Digitalk
PARTS PARTS; a rapid

application
development
too/ set, /ets yoh
easily integrate
your software
assets into

clien~server applications.
PARTS is the only object-

oriented technology that lets
you leverage your legacy code
and the knowledge of your
current staff.

Only PARTS products /et
you take existing code - writtefi
in Smalltal~ COBOL, C, SQL
and other languages – and wra~
it into components or “parts;
Which can then be virtually R%!ihand ask about our

Sflt7DDed together visually. -The result svstems like C/CS, COBOL, APPC PARTS Workbench
Evaluation Kit.

9.> . .1” ‘is srnooth-r;nnin~ clien~server a_nd SOM. And PARTS lets you

category ca//ing it “the defini-
tive visua/ development tool’.’

And InfoWorld ranked
PARTS the #1 component-
based too/ for visua/ develop-
ment. Info World’s Stewart
A/sop adds: “There’s nothing
/ike it on the PC. ”

To make large teams pro-
ductive, PARTS also supports
group development and version
control. Plus PARTS has a hosi
of graphical power tools to give
you all the power of objects-
without the /earning curve.

And PARTS is from
Digitalk. The company that’s
been providing object-oriented
tools to the Fortune 500 longer
than anyone else in the wor/d-
with over 125,000 users.

Call 800-531-2344 X 610

applications in a-fraction of the develop on both 0S/2 and ‘Windows.

E

With minimum ‘ ‘“.. ‘ ‘“

usual time. For a fraction of the effort, you ‘// learn why -

usua/ cost. PARTS is the maximum

PARTS supports all popular Only months ago, PC WEEK
,,.,~~e

solution for clienffserver

SQL databases like Sybase, Oracle awarded PARTS Workbench the integration.

and DB2. Plus legacy or late model highest rating ever in the 0S/2

did 1A.mmdsmmmok 00 L


	By Article Title
	Creating IPF help panels for Smalltalk/V 0S/2 applications 
	Net resources
	Pools: An attractive nuisance 
	Reportoire
	Where do objects come from?

	By Author Name
	Beck, Kent
	Camp, Douglas
	Cantwell, Jeff
	Ewing, Juanita
	Knight, Alan
	Lam, Marcos
	Mazzara, Susan

	By Topic
	comp.lang.smalltalk
	Product Review
	Smalltalk idioms


