The Smalitalk Report

The International Newsletter for Smalltalk Programmers

March-April 1994 Volume 3 Number 6

POO LS: ools are a Smalltalk language construct for sharing data between
class. Classes that share data using pools are not required to be
hierarchically related. At first blush, pools sound attractive: pools
allow functionally related classes to connect by sharing data.

AN ATTRACTIVE
T However, pools are not without problems. They are poorly

NU ISANCE supported in most Smalltalk implementations and limit reusability. Hence, they

are labeled an attractive nuisance.

What are Pools?

Pools are dictionaries of variables. The variables in a pool are called pool vari-
by Juanita Ewing ables. Each variable has a value that is often a constant, but there is no language

constraint that the variables be constants.

How do you use Pools?

When you define a class, you can instruct the Smalltalk compiler to use pool vari-
able names when compiling instance and class methods. In some Smalltalk imple-
mentations, pool access is inherited by subclasses.

Show me
Contents: Suppose you have a class, called Stream, that is used for reading and writing data.
You also have a pool called CharacterConstants, containing variables that describe
Features/Articles commonly used characters. It would define variables such as Cr, Lf and Tab. You
. . could use the CharacterConstants pool to implement methods for writing format-
1 Pools: An attractive nuisance
by Juanita Ewing ted c?ata to the strez.lm. N
First, let’s examine the Stream class definition:
8 Creating IPF help pangls f.or Object
Smalttalk/V OS/2 applications subclass: #Stream
by Marcos Lam & Susan Mazzara) instanceVariableNames: ‘collection position size'
classVariableNames: "
Columns poolDictionaries: 'CharacterConstants'
15 Smalltalk idioms: In addition to instance variables and class variables, developers can customize the
Where do objects come from? set of pools used by the class. Stream uses one pool, CharacterConstants.
by Kent Beck Next, let’s examine the method nextLine that uses variables from the pool
17 The Best of comp.lang.smalitalk CharacterConstants. Both Cr and Lf are pool variables from CharacterConstants.
Net resources Stream
by Alan Knight nextLine
19 Product Review: "Answer a String consisting of the characters of the receiver up to the next line delimiter."
Reportoire
by Jeff Cantwell & Douglas Camp ln‘s’;:;el 'Self upTo: .
22 Recruitment self peekFor: LE.
~answer

contitiued on page 4

EDITORS’
CORNER

John Pugh

Paul White

ast month, we spoke of the lack of discussion in major publications on the topic of man-
aging object-oriented projects. Another related topic, rarely discussed, is the difficulty
faced by organizations with respect to managing corporate software libraries. Of course,
everyone can see the obvious potential of one “corporate” library managed across the or-
ganization, but very few are seeing it implemented.

We believe that there are some important changes that have to occur before library
reuse will ever be possible on a large scale. First, we as software developers must change
our distrust of software developed by others—the so-called “not invented here” syn-
drome. While we recognize this distrust is often warranted, it is an inhibitor to wide-scale
reuse. Second, we need better tools for browsing our libraries. Today’s tools don’t provide
adequate facilities for searching the library. The implementors feature, for example, is
great if you know the name of the message but doesn’t help with the “I wonder if there's a
message that deals with so-and-so™ queries. Third, the accounting procedures used by
most organizations, in terms of budgeting time and resources, have to be changed. If it is
my job to maintain a piece of software for other groups to reuse, I will require time away
from my regular job to do this. Fourth, we need to better capture the design of the classes
we intend to reuse—it is often difficult to understand the intent of a class without having
up-to-date design information. We feel there are a few Ph.D. dissertations in this area of
“library science” if anyone is interested.

Since we don’t do it often enough, we would like to acknowledge the importance of
our columnists. Their columns are always of the highest quality and cover a wide variety
of interesting and informative topics. We look forward to learning more about Smalltalk
from each column they write, and, from the comments we receive, we know you do too.
This month’s issue features three of our regulars. Juanita Ewing’s “Getting Real” column
discusses the use of PooledDirectories and where users may find some of the hidden
problems. Kent Beck is back this month with a continuation of his “Where do objects
come from?™ series describing the tricky problem of returning more than one object from
a method and the associated maintenance problems. And Alan Knight reports on the
many ways one can obtain Smalltalk-related information from the “information super-
highway” so widely talked about these days.

Tora Ry N S i

Ture SMarrtark Rerort (ISSN# 1056-7976) is published Y times a year, every month except for the Mar/Apr, July/Aug, and Nuv/Dec com-
bined issues. Published by s1GS Publications Inc., 388 Broadway, New York, NY 10012 112.37.1.0640. &) Copyright 1994 by 1G5 Publications.
All rights reserved. Repmduulun of this marerial h\ clectronic transmission, Xerox or any other method will be treated as a willful violation of
the US Copyright Law and is Hatly prohibited. Material may he reproduced with express permission from the publisher.,

Mailed First Class. Canada Post International Publications Mail Product Sales Agreement No. 290386, Subscriplion rates 1 vear (9 issues): do-
mestic, $79; Foreign and Canada, $94; Single copy price, $8.

POSTMASTER: Send address changes and subscriplion orders to: Tur: Smatitark Riponr, P.Bux 2027, Langhorne, PA 19047, For service on
currenl subscriptions call 215.785.5996.

T'o submit articles, please send electronic files an disk to the Editors at 509-885 Meadowlands Drive, Ottawa, Ontario K2C IN2, Canada, or
via Internet to pugh@ses.carleton.ca Preferred formats for hruru are Mac or DOS EPS. TIF, or GIF lormats. Always send a paper copy of your
manuscript, including camera-ready copies of your figures tlaser output is fine).

PRINTED IN THE UNITED STATES.

The Smalitalk Report
Editors

John Pugh and Paul White
Carleton Universily & The Object People

SIGS PuBLICATIONS
Advisory Board

Tom Atwood, Objecl Design

. Grady Booch, Rational

" George Bosworth, Digilalk

Brad Cox. Intermation Age Consulting
Adele Goldberg, ParcPtace Syslems
Tom Love, 1BM

Bertrand Meyer, ISE

* Meilir Page-Jones. Wayland Syslems
Sesha Pratap, CenlerLine Soflware
Cliff Reeves, IBM

Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

THE SMALLTALK REPORT

Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digilalk

Dave Thomas, Object Technology International

Columnists

Kent Beck, First Class Soltware

Juanita Ewing, Digilalk

i Greg Hendley, Knowledge Systems Corp.
Ed Klimas, Linea Engineering Inc.
Alan Knight, The Object People
Eric Smith, Knowledge Systems Corp.

| Rebecca Wirls-Brock, Digilalk

| .

SIGS Publications Group, Inc.
Richard P. Friedman
Founder & Group Publisher

Art/Production
Kristina Joukhadar, Managing Editor

Seth J. Bookey, Produclion Editor

Margaret Conti, Produclion Assistant
Circulation

Bruee Shriver, Girculation Director

K.S. Hawkins, Fuliimenl Manager
Marketing/Advertising

Shirley Sax, Director of Sales

Gary Portie, Advertising Mgr—East Coasl/Canada
Helen Newling, Advertising and Exhibit Sales
Wendy Plumb, Recruitmeni Advertising

Sarah Hamilton, Manager of Promotions and Research
Caren Polner, Promalions Graphic Arlisl
Administration

William J. Ryan, Chief Operating Officer

David Chatterpaul, Accounling Manager
James Amenuvor, Bookkeeper

Amy Melsten, Assisiant to the Publisher
Joanna Lowenstein, Adminisiralive Assistanl

Margherita R. Monck
General Manager

Susan Culligan, Pilgrim Road, Ltd., Creatwe Direction |,

Andrea Cammarata, Elecironic Publishing Cunrdlnalor

Dy

PUNLIC AVLTONS

Publizhers of JourRNAL OF OBIECT-ORIENTED PRO-
GRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, and THE X JOURNAL.

2

THE SMALLTALK REPORT

OBJECT
SWHISAS

INC.

Smalltalk/V developers have come o rely on

!
WINDOWBUILDER I’RO |

The New Power in Smalltalk/V Interface Development

WindowBuilder ProsV is availuble on Windows for $295

WindowBuilder as an

WMWW

and 08:2 for $4935. Our stan-

essential tool for develop-
ing sophisticated user inter-
faces. Tedious hand coding

EII: £d|l yl?w ﬂ.llgn Slze Qpllnns Sunpbonk Add

dard WindowBuilder v is
still available on Windows
tor $149.95 and 0572 lor

of interfaces is replaced by
interactive visual composi-

$295. We olfer Tull value
- trade-in for our

tion. Since its initial release,
WindowBuilder has

[WindowBuilder customers
- wanting Lo move up o Pro,

become the industry stan-

These products are also

dard GUI development tool
for the Smalltalk/V environ-
ment. Now Objectshare

L availuble in
L ENVY </ Dereloper and
Teams vV compatible for-

hrings you a whole new

nuits. As with all of our

level of capability with
WindowDBuilder Pro! New

E products, WindowBuilder
Pro comes with a 30 day

| HEEELJB’ tian

functionality and power ie: | detaultStyle

ProgrammerName

money back guarantee, full
source code and no Run-

abound in this next gencera-
T

B L

Time fees.

tion of WindowRBuilder.

Some of the exciting neu.’_/‘éozz‘ures. .

e Compensitelunes: Create custom controls as composites
of other controls, treated as
a single object. allowing the
developer higher leverage
ol reusable widgets.
CompositePanes can be
usced repeatedly and

are Class based. they can be casily sub-

hecause they
classed: changes in a CompositePane are reflected any-

where they are used.

e Morphing: Allows the developer to quickly change

malltalk s [rom one type of control Tsins o
WindowBuilder to another, allowing for | = smaiaik
powerful “what-if " style | = WindowBuitder
4 visual development. The | Other

Rexibility allowed by
morphing will greatly enhance productivity.

* ScrapBook: Another new feature o leverage visual
component reuse, Scr;lpl!()()ks provide a mechanism for
developers to quickly
store and retrieve pre-
deflined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents. organizecd

Chaglen: s:lm:u_-,:

[umcus | same: o0 L Choeel

{adin Buftans
ety

into chapters and pugc

* Rapid Protonvping cipa-
bilities: With the new link-
ing capabilitics, a develop-
er cun rapidly prototype a

Select a ViewMonger Clnss:
DizkBrowser
FilcFinder

|FrecDrewing

-GraphlcsDemn " |Sibli .
functional interface without | jemtde Opens the weicctzd
‘s . . . MDISysmm window as a child af
writing « single line of MDITimnszript the cumrenl window.
{PolyganView : e

code. LinkButons and

erful mechanism for linking

T:::"""": st M"—'I windows together and speci-
il tying flow of control.
i Y| ActionButtons and
| ActionMenues provide a

mechanism for developers to
altach, ereate, and reuse
actions without having 10 write code. These leatures
greatly enhance productivity during protowyping.

= ToolBar: Developers can Create sophisticated oolbars

AREEEEE

just like the ones in the WindowBuilder Pro ool itselt.

o Other new features include: enhanced duplication and
cutspaste functions, size and position indicators,
cnhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and field level validation. and much more...

Allows developers to casily integrate
architecture.

o Add-in Manager:
extensions into WindowBuilder Pro's open

Catch the excitement. go Pro!
Call Objectshare for more information.

(408) 727-3742

5 Town & Country Village
Suite 735

Objectshare Systems, Inc
Fax: (408) 727-632

Puzzle15

Cox] oot |

LinkMenus provide a pow-

WindawBuilder and

Pro are of Obj e Sy

. Inc. All other brand and producl names are regislered 1r

CompuServe 76436,1063 San Jose, CA 95128-2026

ol their respecl

What's wrong with that?

Nothing’s wrong so far. Now let’s try some important opera-
tions like defining a new pool. The traditional way to define a
new pool in Smalltalk is to create a global variable whose value
must be a dictionary. Then the user must populate the dictio-
nary with keys that will be interpreted as variable names when
the dictionary is used as a pool. Some implementations of
Smalltalk require the keys in the dictionary to be Strings, oth-
ers require Symbols. The code to create a pool looks like this:

"Declare the variable"
Smalltalk at: #MyUIConstants put: nil.

"Create the dictionary."
MyUIConstants := Dictionary new.

"Populate"

MyUlIConstants at: 'BackgroundColor' put: Color paleYellow.
MyUlIConstants at: 'ForegroundColor' put: Color blue.
MyUIConstants at: TextColor' put: Color black.
MyUIConstants at: TextHighlightColor' put: Color darkYellow.

How do you use that pool?
In this example, we created a pool called MyUIConstants, and
filled it with color values. Now we can use this pool in the
definition of the class TextWidget:
Widget
subclass: #TextWidget
instanceVariableNames: 'contents'

classVariableNames: "
pooltDictionaries: 'MyUIConstants’

Why did we use a dictionary to define a pool?
You'll notice that creating a pool didn’t involve any expressions
of the form Smalltalk createPoolNamed: #MyUIConstants. In-
stead, we create a global variable and set its value to a dictionary.
Historically, pools were never formally defined as first-class
elements of the Smalltalk language. There is no syntax for
defining pools or pool variables. Instead, the exact implemen-
tation of the pool language constructs known and relied upon
by developers. This isn't a good idea because it prevents ven-
dors from improving the implementation of pools—future
versions of Smalltalk may not even use dictionaries to imple-
ment pools. It also makes it difficult for developers to move
their code to different Smalltalk platforms that have a different
implementation of pools. The worst thing, though, is that de-
velopers write code that treat pools as dictionaries.

What problems result from treating pools as dictionaries?
Because pools are globals and available from every method,
and their implementation is known, developers are very
tempted to write code like this:

MyUIConstants at: TextColor' ifAbsent:[*nil]

The problem with this code is that the compiler does not
detect it as a pool variable reference. It is just a message send
to a global variable. Thus, the Smalltalk programming envi-

m POOLS: AN ATTRACTIVE NUISANCE

ronment cannot reason about this expression as a pool vari-
able reference.

This type of reasoning would be important if you were de-
signing your program, and were considering eliminating the
pool variable TextColor. If you asked the programming envi-
ronment to search for all references to the pool variable Text-
Color, it would not find this one.

Another problem related to the public implementation of
pools and the availability of a pool in the global name scope, is
inappropriate access of pool variables. Pool variables can be ac-
cessed in any method, not just methods in classes that define
usage of the pool. If the pool is treated like a dictionary, you
can send it a message to access its contents, which are pool
variables. For example, the expression ColorConstants at: ‘Clr-
Blue’ provides access to the pool variable ClrBlue.

66

In a standard Smalltalk
development environment,
there is no way to store pools
in source form.

9

How do | store pools?

A source form of a Smalltalk application is more than just a
rarely used archiving artifact. It is a necessity for serious devel-
opers. For a more complete discussion on the benefits of stor-
ing source, see my SMALLTALK REPORT column on “How to
Manage Source Without Tools, “ (Volume 2, Number 3).

The typical way developers create a source form of their ap-
plication is by filing classes out of an image. When developers
file classes in and out of an image, they encounter another
problem with pools. A class that references a pool can file out
without a problem, but its pools are not filed out. Because
pools are shared between classes, it would be inappropriate to
file them out with any single class. Instead, pools should be in-
dependently stored in source form.

In a standard Smalltalk development environment, there is
no way to store pools in source form. Most Smalltalk environ-
ments don't even define a source form.* The pools must be
present, however, when you file your class back in.

What lessons have developers learned?

If developers have defined and used pools before, they have
learned to save the code they used to create the pool, and exe-
cute it again to recreate pools when rebuilding their develop-
ment environment. This is typically some workspace code, and
it is usually saved in a file.

To rebuild their development environment, developers
must manually track which classes require which pools, and re-
build their development environment with a combination of
source code to recreate classes and executable code to recreate

4

THE SMALLTALK REPORT

Now! Automatic

Documentation

For Smalltalk/V Development Teams — With Synopsis

Synopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

+ Documents Classes Automatically

+ Provides Class Summaries and Source Code Listings
+ Builds Class or Subsystem Encyclopedias

+ Publishes Documentation on Word Processors

« Packages Encyclopedia Files for Distribution

¢ Supports Personalized Documentation and
Coding Conventions

Dan Shefer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

Development Time Savings

Coding

Documentation

Without
Synopsis

With
Synopsis

Products Supported:
Digitalk Smalltalk/V
OTI ENVY/Developer for Smalltalk/V
Windows: $295 0OS/2: $395

Sy Synopsis Software
8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

global and pools.

Developers have also learned to write their pool definition
code carefully because pool definition code is fragile. If you over-
write an existing pool by creating a new dictionary, any existing
code using pool variables will be disconnected from the pool.
Changes to the pool will not be tracked by the compiled code.

Suppose you have a class, TextWidget, that uses the pool
MyUIConstants. The method initialize uses two pool variables,
TextColor and TextHighlightColor.

TextWidget

initialize

"Initialize the receiver for standard look and feel."

self setTextColor: TextColor.

self setHighlightColor: TextHighlightColor

You can redefine the pool with this expression:
Smalltalk at: #MyUIConstants put: Dictionary new.

But, the redefinition breaks the connection between the pool
and existing references from methods. This is because you have
created a new pool that happens to have the same name as the
old pool. You are not redefining the old pool. Even if you pop-
ulate the new dictionary with identical variables you cannot re-
establish the connections:

MyUIConstants at: 'BackgroundColor' put:Color black.
MyUIConstants at: 'ForegroundColor' put: Color blue.
MyUIConstants at: ‘TextColor' put: Color white.
MyUIConstants at: ‘TextHighlightColor' put: Color green.

The original value of TextColor was black. In the new pool
MyUIConstants, its value is white. The initialize method still
contains a reference to the old pool variable TextColor, and ini-
tializes TextWidgets to have the a black text color. Examining
the source of the method gives no clue about the current state
of the compiled code. Recompiling the method will allow the
compiler to rebind the reference.

To avoid redefining existing pools, developers usually place
conditionals around pool creation expressions (requiring fur-
ther assumptions about the implementation of pools):

(Smalltalk includesKey: #MyUIConstants)
ifFalse: [Smalltalk at: #MyUIConstants put: Diconary new]

Accidental pool redefinition is another reason why it is danger-
ous to allow the implementation of pools to be known.

What impact do pools have on reusability?
Pools have a negative impact on the sacred cow of Smalltalk,
reusability. Let’s examine our definition of pools again: a con-
struct for sharing data between classes. In other words, pools
contain data and do not define behavior. The two main mecha-
nisms for reuse in Smalltalk are inheritance and polymorphism.
Both are focused on behavior. They rely on behavior functioning
on encapsulated data—exactly the opposite of what pools provide.
Let’s look at an example with the pool MyUIConstants. The
class TextWidget uses the pool to access user interface con-
stants. The method initialize is implemented as follows:

MARCH-APHIL 1994

Transitioning to Smalltalk technology?

Introducing Smalltalk to your organization?

Travel with the team that knows the way...

The Object People

“Your Smalltalk Experts”

Smalltatk for Cobol Prograrn
* Analysis & Design
* Project Management
* In-House & Open Courses

The Object People Inc. 509-885 Meadow
Telephone: (613) 225-8812 FAX: (613)

Smafitat/V and PARTS are registered trademarks of Digitalk, inc.
Objectworks and VisuaiWorks are trademarks of ParcPlace Sy Inc.

m PooLs: AN ATTRACTIVE NUISANCE

A new class, WidgetUIConstants,
could function as the encapsulator for
all user interface constants. It would
respond to messages like foreground-
Color and textHighlightColor. Straight-
forward use of this class would look
like this:

TextWidget

widgetConstantClass

"Return the class containing user interface
constants.”

~WidgetUIConstants

initialize
"Initialize the receiver for mark up look
and feel."

self setTextColor: self widgetConstantClass
textColor.

self setHighlightColor: self widgetConstant
ClasstextHighlightColor

A new subclass of WidgetUIConstants

could contain the variations appropri-
ate for the subclass MarkupTextWidget.
MarkupTextWidget now needs to over-
ride the specification of the user inter-

|

TextWidget
"Initialize the receiver for standard look and feel.”

self setTextColor: TextColor.

self setHighlightColor: TextHighlightColor
Suppose we make a variation of TextWidget that has a different
highlight color. We don’t want to change the original class, so
we create a subclass of TextWidget that uses the MyUIConstants
pool. And, we add a new pool variable to represent the new
highlight color, called MarkupTextHighlightColor.

MyUIConstants at: 'MarkupTextHighlightColor' put: Color darkYellow.

Because the inherited initialize method contains a direct refer-
ence to the pool variable, we are forced to override the entire
initialize method instead of just overriding the color
specification for text highlight. Here is the new initialize
methad for the subclass:

MarkupTextWidget

initialize

"Initialize the receiver for mark up look and feel"

self setTextColor: TextColor.
self setHighlightColor: MarkupTextHighlightColor

A better way to write this code is to isolate and encapsulate ref-
erences to the constants in this method. Then subclasses can
override the encapsulating methods if necessary. Remember
though, that these constants are used in several classes. [t may
be better, depending on the usage, it the constants are encap-
sulated in methods from a stand-alone class.

face constants class, but does not need
to override the initialize method.
MarkupTextWidget

widgetConstantClass
"Return the class containing user interface constants."

~MarkupWidgetUIConstants

This example illustrates that it is not straightforward to
override references to pool variables in a subclass. The over-
ride usually results in multiple methods that specify the same
constants, which leads to maintenance problems. This is typ-
ical of the extensibility problems found in cases of direct
variable references.

The added benefit of a stand-alone class alternative is that
the class can be stored in source form and managed by ordi-
nary Smalltalk tools. It can also be subclassed to provide varia-
tions of the constants. Pools have neither of these capabilities.

Bottomn Line
Behavior is better than data. Smalltalk reuse mechanisms work
on behavior.

Because pools are data, avoid pools whenever possible. In-
stead, create a class that encapsulates the data in the pool and
replace existing pool variable references with messages. Your
code reuse and ability to store your application in source form
will improve. Send your feedback on this discussion to
juanita@digitalk.com. B
Juanita Ewing is a senior staff member of Digitalk Professional Setvices,
921 SW Washington, Suite 312, Portland, OR 97205, 503.242.0725.

6

THE SMALLTALK REPORT

(reating those new client and server applications
would be for more rewarding if you could reuse
existing code insteod of rewrifing it. And now

that goal becomes reality with object-oriented

programming. Especially when you can rely

on VisualWorks™ the ParcPlace Smalltalk™
Applications Development Environment that
creates applicafions that are instantly portable
between Windows, 0S/2, Macintosh and UNIX.
True QOP, it provides a robust set of tools fo
build sophisticated graphical applications with
access fo o wide variely of relational databases.
Fully armed with superior flexibility, dynamic
compilation for impressive performance and the

world’s lorgest set of tried and tested class

lbvorie, VisvolWorks i sculoble from enferprise.

fo depariment ond bock. Call 1-800-759-7272

ext. 400 for owr Solution Pack. You'll see why so |

many forward-looking Forfune 1000 companias
have selected VisualWorks for cliant and server

development. And stopped rewriting history.

VisualWorks

ParcPlace®

Sidearks wed e tng rade s

ol e el daren

DEVELOPERS WHO DO NOT

REMEMBER HISTORY ARE

CONDEMNED TO REWRITE IT.

CREATING IPF HELP
PANELS FOR

SMALLTALK/V OS/2
APPLICATION

by Marcos Lam and Susan Mazzara

Part I of this article discussed IPF and some of its requirements that
play an important role in linking help panels to a Smalltalk appli-
cation. Part Il explains Digitalk’s implementation of its help classes
and some enhancements and extensions you can make to them.

igitalk’s Smalltalk/V for OS/2 provides two
classes for linking IPF help panels to a Smalltalk
application: PMHelpLibraryDLL and HelpManager.
PMHelpLibraryDLL wrappers all six APIs provided
by the system dynamic link library called HELP-
MGR.DLL, which provides the interface to IPF. HelpManager
models IPF and is the class that Smalltalk applications interact
with to access IPF.

As explained in Part I of this article (THE SMALLTALK RE-
PORT, Vol. 3, No.5), IPF interfaces with applications through a
help subtable. Help subtables store control IDs (identifiers for
menus, menu items, subpanes, and so on) and associate help
panel resource IDs with each control. A resource ID is one of
the IDs that you tag in a help panel header to identify it for on-
line help requests and internal hypertext or hypergraphic links.
When an application receives a help request it passes the con-
trol identifier to IPF. IPF looks at the help subtable to deter-
mine the corresponding help panel resource ID and then dis-
plays the panel tagged with that resource ID.

Chapter 8 of the SMALLTALK/V FOR OS/2 PROGRAMMING
RereERENCE, “Help Manager,” makes no mention of help subta-
bles.! Indeed, HelpManager always passes an empty help subtable
to IPF whenever a help instance is to be created. The manual
recommends that applications use menu titles, window titles,
and menu item selectors as IDs (id=) for help panels. It does not
recommend using resource IDs, which IPF expects in order to
find the correct help panel. So how does IPF decide which help
panel to display when it receives a help request? Since it does not
have a help subtable to refer to, it always sends the HM_HELP-
SUBITEM_NOT_FOUND message in response to a help request. Ap-
plicationWindow >> hmHelpsubitemNotFound:with: uses the two
parameters passed in to determine the name of the control, or
selector. In the case of a menu item, that you have requested
help for. It then sends IPF a message to display the help panel by
the same name. This process is illustrated in Figure 1.

TAGGING HELP PANELS

To create help panels that suit this process of interacting with
IPF, Digitalk prescribes the following ways of tagging your
help panels:

Extended Help

To create an extended help panel for a window or dialog, you
give it an instance of HelpManager and then tag the extended
help panel with resource ID 1. The code that creates an in-
stance of HelpManager for a view looks like this:

HelpManager for: self mainView
title: 'Help'
file: library.hlp'

In the message #for:title:file:, the title is how you place a title on
the coverpage for your help panels. The file name points to your
compiled help library. The #for:title:file: creation method sends
HelpManager the message #for:title:file:dialogs:aboutDlgClass:.

for: aWindow title: aString file: aFileName dialogs: aCollection
aboutDlgClass: aboutDlg
~self new
pszTutorialName: "
phtHelpTable: nil
hmodHelpTableModule: nil
helpWindowTitle: aString
pszHelplibraryName: aFileName
applWindow: aWindow
aboutDlgClass: aboutDlg
extHelp: 1
keysHelp: 2
dialogs: aCollection.

In this message, HelpManager has the value for the extended
help panel resource ID hard coded to 1 and the keys help panel
resource ID hard coded to 2. To get an extended help panel or
keys help panel to work according to Digitalk’s requirements,
you have to tag them as shown here.

:h1 res=1.Panel Title
:h1 res=2.Keys Help

Menus and Menu ltems

HelpManager’s support for IPF bypasses IPF's help subtables.
As shown in the previous illustration, when IPF receives a help
request for a menu or menu item and cannot find the control
ID in a help subtable, IPF notifies the application. The applica-
tion, in turn, sends IPF an alternate help panel ID. To provide
these alternate IDs, you tag help panels for menus and menu
items as follows.

Menus:

:h1 id=""Menu Title’ Help Panel Title
Menu items:
:h1 id=menultemSelector.Help Panel Title

Were Digitalk to follow IPF’s requirements, these help panels
would be tagged as follows.

8

THE SMALLTALK REPORT

Menus:
:h1 1es=2000.Help Panel Title
Menu items:

:h1 res=2001.Help Panel Title

DRAWBACKS OF HelpManager

The advantage of HelpManager’s technique of interacting with
IPF is that you are not burdened with determining control IDs
and passing them to IPF, but the drawbacks are numerous:

« A multiview application can have only one extended help
panel, since all resource IDs must be unique.

* Menus and menu items in the same main window must
have unique labels.

* A popup menu must have the exact same itemns as its title
bar menu counterpart.

+ It is not possible to provide help for popup menus on a
window that does not have a title bar.

- This technique conflicts with IPF's requirements for exter-
nal hypertext and hypergraphic links.

Extended help for multiview applications

HelpManager's implementation of extended help requires you to
place the help panels for each window in a separate library because
each extended help panel must have the resource ID of 1 and re-
source IDs within a library must be unique. But suppose you have
an application with outboard windows that relate to the main
window or control the contents of the main window. In a mail or-
der application, for example, you may have one main window for
processing orders. From this window you can open other win-
dows for processing customer information and maintaining your
inventory database. Such an application is illustrated in Figure 2.

To provide on-line help for this application, you would have
to write three separate help libraries and use external hypertext
or hypergraphic links among them to retrieve information. But
if a user is working in the order processor, for example, and
asks for extended help, he or she cannot display a comprehen-
sive table of contents for the entire application, because the
table of contents is compiled within each separate library.

For a multiwindow application, such as this order process-
ing application, having each window documented in a separate
help library means not having a single place (such as a table of
contents) where users can look for an overview of the tool and
see what other tools are a part of it. This restriction makes in-
formation retrieval difficult and reduces the usefulness of on-
line help systems.

Unique menu names

What if your application needs to reuse menu names? What if
the mail order application, for example, has two menus, one
called Orders and one called Accounts, and each has a submenu
called Open? How do you tag the help panel for the Open sub-
menus (Figure 3)?

According to Digitalk guidelines, you tag the help panel for
each menu as follows:

:h1 id='"Open'.Opening Orders
:h1 id=""0Open'.0Opening Accounts

When you attempt to compile these help panels, IPF returns a
compiler error, because identifiers must be unique. To solve
this problem, you must either rename one of the submenus or
write one help panel that is vague enough to suffice for both
menus. This requirement makes it impossible to maintain con
sistency in naming conventions in the interface.

Popup menus

When there is a help request for a popup menu or its items,
ApplicationWindow >> hmHelpsubitemNotFound:with: uses the
identifier of the menu or menu item to determine its counter-
part in the title bar menu. The help request is processed as if it
were for a menu or menu item in the title bar menu. This ap-
proach has the following drawbacks:

* A popup menu must have a counterpart in the title bar
menu.

* A popup menu must have the exact same itemns as its title
bar menu counterpart (text pane popup menu).

CUA ‘91 guidelines provide for windows without title bar
menus. If you want to apply these guidelines to your applica-
tion, it is not possible to provide help for popup menus on a
window that does not have a title bar menu. These guidelines
also provide for users to customize popup menus.! But in Dig-
italk’s implementation of HelpManager, if a user changes a
popup menu so that it no longer matches its title bar menu
counterpart, you can no longer provide help for it.

Hypertext and Hypergraphic Links

Another drawback to HelpManager’s support for menu and
menu-item help requests is that it conflicts with external links.
To link to a help panel from another help library, you tag the
heading with a “global” attribute, as follows:

:h1 res=2000 id=2000 global.Help Panel Title

When you add this attribute to the help panel for a menu or
menu item, IPF enforces its rule that the resource IDs (res=) are
to be used for internal access to the help panel and IDs (id=) are
to be used for external access. If you try to ask for a global help
panel by its ID from any other source besides an external hy-
pertext or hypergraphic link, IPF cannot find the panel.

Since HelpManager bypasses help subtables, which associate
application resources with IPF resource IDs, and uses IDs to
get help for a menu or menu item, you cannot make both a
context-sensitive help request and an external link for a panel.

ENHANCEMENTS AND EXTENSIONS TO HelpManager
Extended help
With a simple extension to HelpManager, you can code a

MARCH-APRIL 1994

m CREATING IPF HELP PANELS FOR SMALLTALK/V OS/2 APPLICATIONS

Listing 1

HelpManager variableSubclass: #MyHelpManager
instanceVariableNames: "
classVariableNames: "
poolDictionaries:
'PMHelpConstants PMConstants ' !

IMyHelpManager class methods !

for: aWindow title: aString file: aFileName
dialogs: aCollection aboutDlgClass: aboutDlg
extendedHelpPanellD: anIntegerl
keysHelpPanelID: anInteger2

~self new
pszTutorialName: "
phtHelpTable: nil
hmodHelpTableModule: nil
helpWindowTitle: aString
pszHelpLibraryName: aFileName
applWindow: aWindow
aboutDlgClass: aboutDlg
extHelp: anIntegerl
keysHelp: anInteger?
dialogs: aCollection.!

for: aWindow title: aString file: aFileName extendedHelpPanelID: anInteger1
keysHelpPanelID: anInteger2

~self for: aWindow title: aString file: aFileName dialogs: #()
aboutDlgClass: nil extendedHelpPanellD: anInteger1
keysHelpPanelID: anInteger2! !

'MyHelpManager methods !

applicationWindow
~applicationWindow!

buildHelpManager

| a1 a2 helpLibrary helpTables helpTable helpSubTable |
helpLibrary := PMHelpLibraryDLL open.
helpLibrary isInteger"An error has occurred."
ifTrue: [MessageBox inform: 'Library file not found.'
title: 'PMHelpLibraryDLL'.
Aself].
self pmHelpLibrary: helplibrary.
addresses := Set new.
helpTableModule notNil
ifTrue: {
helpInit
phiHelpTableld: helpTableld;
hmodHelpTableModule: helpTableModule]
ifFalse: [
helpSubTable := self helpSubtableStructure.
helpTables := OrderedCollection new.
helpTables
add: ((SelfDefinedStructure named: "HELPTABLE')
idAppWindow: (PMWindowLibrary
queryWindowUShort: applicationWindow frameWindow
asParameter
index:
Qwsld);
phstHelpSubTable: (addresses add:
(MemoryBlockAddress
copyToNonSmalltalkMemory:
helpSubTable asParameter)) asParameter;
idExtPanel: extHelpPanelld).
dialogs do: [:id |

helpTables add: ((SelfDefinedStructure named: 'HELPTABLE')
idAppWindow: id;
phstHelpSubTable: (addresses add:
(PMAddress
copyToNonSmalltalkMemory: helpSubTable asParameter))
asParameter;
idExtPanel: id)].
helpTable := ByteArray new.
helpTables do: [:ht |
helpTable := helpTable, ht contents].
helpTable := helpTable, ((SelfDefinedStructure
named: 'HELPTABLE') contents).
helpInit phtHelpTable: (addresses add:
MemoryBlockAddress
copyToNonSmalltalkMemory: helpTable)) asParameter] .
al := MemoryBlockAddress
copyToNonSmalltalkMemory: helpWindowTitle asParameter .
a2 := MemoryBlockAddress
copyToNonSmalltalkMemory: helpLibraryPath asParameter.
helpInit
pszHelpWindowTitle: a1 asParameter;
pszHelpLibraryName: a2 asParameter,
helpInstance := self pmHelpLibrary
createHelpInstance: PM hab
pHelplInit: helpInit asParameter.
al free. a2 free.
self pmHelpLibrary associateHelpInstance; helpInstance
hwndApp: applicationWindow handle.!

destroyHelpInstance

pmHelpLibrary notNil
ifTrue: [
pmHelpLibrary destroyHelpInstance: helpInstance.
pmHelpLibrary close.
addresses do: [:a | a free]].
helpInstance := pmHelpLibrary := nil. !

displayHelp: id

~id isString

ifTrue: [(PMWindowLibrary sendMsg: helpInstance
msg: HmDisplayHelp
mp1Struct: id asParameter
mp2: HmPanelname) asPMLong asBoolean]

ifFalse: [(PMWindowLibrary sendMsg: helpInstance
msg: HmDisplayHelp
mp1: id
mp2: HmpaneltypeNumber) asPMLong asBoolean] !

helpSubtable

| answer helpSubtable |

answer := OrderedCollection with: 2.

helpSubtable := (self applicationWindow respondsTo: #helpSubtable)
ifTrue: [self applicationWindow helpSubtable]
ifFalse: {IdentityDictionary new].

helpSubtable associationsDo: [:association |
answer
add: association key;
add: association value].
~answer
add: 0;
add: 0;
yourself!

helpSubtableStructure
| answer helpSubtable |

helpSubtable := self helpSubtable.
answer := PMStructure new: helpSubtable size * 2,

i

10

THE SMALLTALK REPORT

1 to: helpSubtable size do: [:index |
answer uShortAtOffset: (index - 1) * 2
put: (helpSubtable at: index)].
~answer!

pmHelpLibrary
~pmHelpLibrary!

pmHelpLibrary: aPMHelpLibraryDLL
pmHelpLibrary -= aPMHelpLibraryDLL! !

'ViewManager methods !
helpSubtable

“Dictionary new!

provideOnlineHelp
Provide online help. Default is to do nothing. Typically subclasses over-
ride this to instantiate HelpManager.”

'TopPane methods !
helpSubtable

~self owner helpSubtable! !

!ApplicationWindow methods !
allPopupMenus

~(self allChildren collect: [:subPane | subPane popupMenu])
select: [:each | each notNil]! !

'Menu methods !
buildPopupln: aWindow

popup isNil
ifTrue: [
popup := MenuWindow new.
((aWindow mainWindow menuWindow allMenus size 2)
+ ((aWindow mainWindow allPopupMenus
indexOf: (aWindow mainWindow allPopupMenus
detect: [:menu | menu title = self title]
ifNone: [])) * 4))
timesRepeat: [popup allMenus
add: (self class new title: 'Dummy’; yourself)].
popup addMenu: self.
popup buildWindow: aWindow]!

isDummy

~self title = '‘Durmmy'!
popUpAt: aPoint in: aWindow

"Popup the receiver menu at aPoint in aWindow. Answer the action bar
MenuWindow."

self buildPopupIn: aWindow.

popup popUpAt: aPoint in: aWindow.
~popup! !

!MenuWindow methods !
allMenus

~allMenus! !

Listing 3

!TopPane methods !
allPopups

A(self allChildren collect: [:subPane | subPane popup])
select: [:each | each notNil] !

getMenultemlID: aString

| isPopup menultemName menuNames readStream spec
topLevelMenu |
readStream := ReadStream on: aString.
isPopup := readStream peek == $*
iffrue: [readStream upTo: $~.
true]
ifFalse: [false].
menuNames := (readStream upTo: $*)
asArrayOfSubstringsDelimitedBy: §>.
menultemName := readStream upToEnd.
topLevelMenu := isPopup
ifTrue: [self allPopups
detect: [:each | each title = menuNames first] ifNone: []]
ifFalse: [self menuTitled: menuNames first].

“topLevelMenu isNil
ifTrue: [-1]
ifFalse: [spec := menuNames asOrderedCollection
removeFirst; yourself.
menultemName notEmpty
ifTrue: [spec add: menultemName].
spec isEmpty
ifTrue: [topLevelMenu id]
ifFalse: [topLevelMenu getItemIDFromFullSpec: spec]] !!

!Menu methods !
getItemFromFullSpec: aCollection

| index label submenu |
label := aCollection first.
index := self getIndex: label ifAbsent: [].

~index isNil
ifTrue: [self hasSubMenu
ifTrue: [
submenu := self subMenus
detect: [zeach | each title =label] ifNone: [].
submenu isNil
ifTrue: [nil]
ifFalse: [aCollection size == 1
ifTrue: [submenu]
ifFalse: [submenu getItemFromFullSpec:
(aCollection copyFrom: 2 to: aCollection size)]]]
ifFalse: [nil]]
ifFalse: [aCollection size == 1
iffrue: [items at: index]
ifFalse: [(selectors at: index) getItemFromFullSpec:
(aCollection copyFrom: 2 to: aCollection size)]] !

getItemIDFromFullSpec: specification

| item |

item := self getltemFromFullSpec: (specification isString
ifTrue: [specification asArrayOfSubstrings]
ifFalse: [specification]).

~item isNil
ifTrue: [-1]
ifFalse: [item id] ! !

MARCH—-APRIL 1994

11

m CREATING IPF HELP PANELS FOR SMALLTALK/V OS/2 APPLICATIONS

specific help panel resource ID
when you create an instance of
HelpManager for a window or
dialog. The extension, shown in
Listing 1, alters the HelpManager
creation method #for:title:file:di-

Flle Edl SmaMalk CoDesign

S s

HM _HELPSUBITEM_NOT FOUND

fe——

Aequest Another Panel
ﬁ

alogs:aboutDlgClass: to add two
new arguments: the extended help
panel resource ID and the keys
help panel resource ID.

This method is sent to Help-
Manager by the #for:title:file:ex-
tendedHelpPanelID:KeysHelpPan-
elID: method, shown below:

HelpManager

Help Subtable No Entry

Conirol ID ResourceID

for: self mainView

title: 'Help Library Title'
file: 'library.hip
extendedHelpPanellD: 2000
keysHelpPanelID: 2010

By allowing you to code the resource ID of your extended help
panel and keys help panel, you can create as many of them as
you need and place all help panels for an application in a single
help library. This enables you to have a single source for on-
line help with a comprehensive table of contents. With this ex-
tension, each window in the mail order application, for exam-
ple, can be compiled in a single help library so that you can see,
simply by looking at the table of contents, what kind of infor-
mation is available for each tool.

Help subtables

Sending a help subtable to IPF to find help panels for menus
and menu items can solve the problem that HelpManager has
with external hypertext links and the problem with reusing
menu names. The following is an example of a help subtable
for the mail order application menus previously illustrated:

*ldentityDictionary new

at: 512 put: 2000;
at: 768 put: 2001;
at: 769 put: 2002;
at: 770 put: 2003;
at: 1024 put: 2004;
at: 1280 put: 2005;
at: 1281 put: 2006;
at: 1282 put: 2007;
yourself

In this IdentityDictionary, the index is the unique ID for each
menu or menu item. The value is the resource ID for the help
panel that explains the menu or menu item. Using this help
subtable, you can tag the help panels for these menus as follows:

:h1 res=2000.The Orders Menu

:h1 res=2001.0pening Orders

:h1 res=2002.0pening New Orders

:h1 res=2003.0pening Back Orders
:h1 res=2004.The Accounts Menu

Figure 1.

Processing help requests with an empty help subtable.

:h1 res=2005.0pening Accounts
:h1 res=2006.0pening New Accounts
:h1 res=2007.0pening Current Accounts

Since this technique does not interfere with IPF external hy-
pertext links, you can also code each of these help panels with
the ID and global attributes to enable other help libraries to
link to them, as shown in this example:

:h1 res=2007 id=2007 global.Opening Current Accounts

We have created a subclass of HelpManager, called MyHelpMan-
ager, and extended ViewManager and TopPane to support help
subtables. The code for these extensions is listed in Listing 1.

Help for Popup Menus

Digitalk assigns all popup menus the ID 513 (see Menu >>
buildWindow:). As a result, whether you use a help subtable or
Digitalk’s approach to providing help, you cannot provide cor-
rect help for two or more popup menus within the same win-
dow. There are several possible solutions to this problem and
each is discussed with its advantages and disadvantages in the
following sections:

* Guarantee that the popup menu has the same ID as the cor-
responding menu on the title bar menu.

« Guarantee that all popup and title bar menus have
unique IDs.

* Calculate menu and menu item IDs automatically.

Matching IDs Since a popup menu often corresponds to one
of the menus in the title bar menu, one way to solve the prob-
lem is to make the popup menu and its items have the same
IDs as their counterparts in the title bar menu. However, as
mentioned previously, you may not always want a popup
menu to correspond exactly to a title bar menu or you may not
want to include a title bar menu at all.

Unique IDs Another approach is to guarantee unique IDs for

12

THE SMALLTALK REPORT

all popup menus and their submenus within the same main
window. To guarantee unique IDs, We have modified the
method Menu >> popUpAt:in: and written four new methods,
shown in Listing 2. This code represents a noninvasive solution
to this problem. Although it may not be technically elegant, it
works well with minimum changes to the base image.

Calculating IDs To manually calculate the ID of menu and
menu items to build the help subtable is tedious and error
prone. TopPane and Menu are extended to accept a string
which specifies a menu or menu item and answers its ID. Four
methods have been added to automatically calculate menu
itemn 1Ds and are shown in Listing 3. This approach works for
pull-down and pop-up menus. In the sample application illus-
trated in Figure 3, you can create a dictionary as follows:

~Dictionary new
at: 'Orders' put: 2000;
at: 'Orders>0Open' put: 2001;
at: 'Orders>0Open*New' put: 2002;
at: 'Orders>0pen*Back Orders' put: 2003;
at: 'Accounts' put: 2004;
at: 'Accounts>Open' put: 2005;
at: 'Accounts>0Open*New' put: 2006;
at: 'Accounts>0pen*Current’ put: 2007;
at: '~Orders' put: 2000;
at: '“Orders>Open' put: 2001;
at: '*Orders>Open*New' put: 2002;
at; ‘*Orders>0pen*Back Orders' put: 2003;
at: '“Accounts’ put: 2004;
at: “*Accounts>0Open’ put: 2005;
at: "“Accounts>Open*New' put: 2006;
at: '~Accounts>Open*Current' put: 2007;
yourself

~ Tt

~

-

The strings that include a carat define popup menus and their
submenus and menu items. :

Using this approach you do not have to calculate the menu
or menu item IDs. If a menu item is repositioned within the
same menu, there is no need to reconstruct the help subtable.
This solution gives you the best of both worlds: it conforms to
IPF’s requirements to use a help subtable to associate an appli-
cation resource with a help panel, and it relieves you of the
burden of calculating control IDs, which is one of the goals of
Digitalk’s implementation of HelpManager.

Destroying help instances

As explained in part 1 of this article, an application must de-
stroy help instances upon closing windows Smalltalk/V for
065/2 does not destroy help instances. The method Application-
Window >> closeView is supposed to destroy its help instance.
ApplicationWindow keeps its help instance in the properties dic-
tionary. In the middle of closeView, ApplicationWindow sends
the message super close to Window. Among the things that Win-
dow >> close does is to nil the properties dictionary. Since the
message to destroy the help instance is at the end of closeView,
by the time it executes, it can no longer access the help instance.
As a result, it does not destroy its help instance. You can ad-
dress this problem by moving the code that destroys the help
instance to execute before the message super close.

Order Processor
Orders Accounts

w Customer Inform

atinn

J Product Inventory

Figure 2. Example of a multiwindow application.

HELPFUL HELP

The enhancements described here can make your on-line help
panels easier to retrieve and easier to navigate through. Of
course, no amount of programming can guarantee well-writ-
ten help, but by making it easier to obtain context-sensitive
help and create hypertext and hypergraphic links among help
panels, you can place more information before your users. The
more information you can give users about your application,
the more you can reduce the frustration that leads them to seck
help in the first place.

References

1. SMaLLTALK V FOR O5/2 PROGRAMMING REFERENCE, Digitalk In-
corporated, 1992, p. 161.

2. Common UseR ACCESS ADVANCED INTERFACE DESIGN REFERENCE
(5C34-4290-00) (1991). International Business Machines Corpora-
tion, First Edition, Armonk, NY.

Marcos Lam is @ member of the technical staff, and Susan Maz-
zara is a technical writer at Knowledge Systems Corporation.
Both have worked on the development team for CoDesign, a
Smalltalk development environment that integrates design and
code. They can be contacted at Knowledge Systems Corporation,
114 MacKenan Drive, Cary, NC 27511, 919.481.4000.

Order Processor

Orders E
New

Current

Figure 3. Duplicate submenu names.

MARCH-APRIL 1994

13

New from SIGS in May’

A SIGS Publication

Report on
Object Analysis

N , & Design
Stzatnglc Object Modeling: 1
Enterpris with Objects

Designing Objects into Procedural Sysiems ...—...-13

Your first step for
The Changing Role of the Analyst and Designer..._1B

Mathreegy Mt Nosmry b .--21 pla.nnmg and building
How o Tkt s ouice..————-2. | gbject-based software
R-kvmuf’l‘ndihnl'l‘drﬂqn&nd\umh)

Dlgrme wOOALD systems.

The Report on Object Analysis & Design (ROAD)

is a new bi-monthly (6x), advertising—free journal, which
focuses on language-independent, architectural concerns
about object—oriented analysis, design and modeling. Each
issue provides you with in-depth articles addressing the
complex questions related to the system architecture prior
to when language issues are addressed, including...

- the fundamental issues related to object modeling

- notational schemes for representing A&D models

- the processes for performing OOA or OOD

- revisions and updates of various design methods

- comprehensive comparisons of OOA&D approaches
- specifications on which method to use, and when

— expert reports on the tools currently available

And much more.

YeS—Enter my subscription to
ROAD at the pre-publication rate
marked below:

- Individual 1 Year (6 issues) $99 $74

A SAVINGS OF 25% OFF THE BASIC
INDIVIDUAL RATE!

[Institutional 1 Year (6 issues) $1998 $174
YOU SAVE $25!

For software developers
and project leaders
either currently working
on an OT project, or
moving toward that

METHOD OF PAYMENT

1 Check enclosed, payable to ROAD
(in U.S. dollars, drawn on a U.S. bank)

goal. [Charge my
0 Visa 0 MasterCard 1 AmEx
Platform and system Accr

independent, ROAD is
written for all levels of

Exr

project complexity. SIGNATURE

Save up to 25%!

ROAD'’s editor, Dr. Richard Wiener, has
assembled the leading international authori-
ties as regular columnists. Regular columns,
written by the very creators of the most pop-
ular methods, include...

Grady Booch Ed Yourdon
Objects

Derek Coleman
Mechanics

¥ Meilir
Page-Jones

Object-Oriented

Design Notation

\ Sally Schlaer
~ Methods &
Architectures

Steve Mellor
Methods &
Architectures

ALSO...

Ralph }ohnum
Patterns of Thought
Patrick R

Practical Experiences
Nancy Wilkenson

An Informal Approach

PRE-PUBLICATION OITER EXPIRES MAY 1, 1994

This is the lowest rate offered!

Name
Title
Address
City
State/Province
Zip/Postal Code
Country
P: F:
RETURN TO
ROAD, P.O. Box 2027,
Langhorne, PA 19047-9027

Fax 215-785-6073 Phone: 215-785-5996

To start your subscription to ROAD at these special
pre-publication discounts, mail or fax this coupon by May 1, 1994!

MALLTALK IDIOMS

Kent Beck

Where do objects come from?

Part 2

REVOUSLY, I talked about how objects could be cre-
P ated from the states of objects that acted like finite state

machines (the Objects from States pattern). I'll con-
tinue on the theme of where objects come from for this and
several issues.

[won’t be saying much about the conventional source of
objects, the user’s world. There are lots of books that will tell
you how to find those objects. Instead, I'll focus on finding
new objects in running programs.

In all programming, many of the most important design in-
sights don’t come until after a program has been deployed for
awhile. Smalltalk is unique in that it is possible to fold those
insights back into the program. Polymorphism, in particular, is
invaluable for introducing new abjects without disturbing ex-
isting ones. Unlike programs written in more conventional
languages, Smalltalk programs can get better and better, and
easier to extend over time. Such programs tend to spin-off
reusable pieces, as well, which multiplies their value.

Ward Cunningham is a pioneer of this technique, which he
calls episodic design. In an episodic design process, design
doesn’t happen all at once, as in the barnacle-encrusted water-
fall model. Instead, design happens in episodes, whenever you
understand an issue well enough to know that your previous
design is limited in some way.

To avoid overdesigning, design episodes are typically trig-
gered by the desire to add a new feature. Some features seem to
slide right in with little effort. Others must be forced in at the
cost of violating good design. When encountering the latter, an
episodic designer will first “make a place” for the feature by
fixing the design so it’s easy to add.

Design episodes typically consist of finding new objects,
new responsibilities, or new collaborations. New objects often
come about to add degrees of freedom to your program. For
example, you may have thought initially that interest calcula-
tion was a simple computation, so it was buried in a method in
Financiallnstrument. In adding new functionality, you realize
there are many different ways to calculate interest, so you need
an InterestCalculator, which a FinancialInstrument collaborates
with to compute interest. Then you can add new InterestCalcu-
lators without disturbing the rest of the design.

When creating new objects, you might think a flash of in-
sight is required to discover them. Not so. While some objects
come out of the blue, most can be found in the program itself.

The next couple of columns will explore where you can find
some of these derived objects. This month’s pattern helps you
find objects you just didn’t quite want to create when you
found them in the first place. The programming “conve-
nience” it represents is particularly common in former LISP
programmers, but I've seen it come from C and assembly lan-
guage hacks, too.

PATTERN: OBJECTS FROM COLLECTIONS

Problem

Collections where two or more methods in the same or differ-
ent objects have to agree on a fixed set of indexes are a mainte-
nance headache (the same observation applies to Associations
or Points being used to represent a duple). The programming
environment doesn’t help you find where all these implicitly
meaningful indexes are used. If you have such a collection,
how can you make it easy to maintain?

Constraints

« Simplicity. The reason such collections arise in the first
place is because creating classes is a fairly heavyweight activ-
ity. You have to find the right name (System of Names) for
the class, then you have to find the right name for the mes-
sages, then you have use the programming environment to
define it. Once it’s there, you have to document and main-
tain it. Where you can’t imagine the object being used any-
where else, like returning two values from a method, you
aren’t likely to bother.

Readability. The problem with simply using collections in-
stead of an object is that even in the small it fails to convey
the intent of the code. A good example from the Visual-
Works 1.0 image is Browser>spawnEdits:from:. It creates a
three-element array with the text to edit, the start of the se-
lection, and the end of the selection. This array gets passed
through two intermediate methods before it is finally torn
apart in Browser class>setTextView:fromTextState: and turned
into messages for the newly created text editor. Reading the
code, the only clue you have to the contents of the array is
the names of the temporaries in the latter method.

* Maintainability. Closely allied with readability is the issue
of how hard the code is to maintain. If I wanted to add a

MARCH~APRIL 1994

15

THe SmaLirack
Resource Guide:

e the most compreliensive suide to Smallealle prod-

velsand =ervices avarlables Tes more than 50 pazes of

The S Sl R
<hippime and handling
lociitions - We

dravn cheelks,

IS "“l.“ =00 !1|H~ =250
USand oo =500 all other
s hanle-

Soreyv no Purchose Opders,

accept ngor credit eavds.

o BE1TS

Creative Digital Systems

293 Corbetlt Avenue, San Francisco. CA 94114
415.621.4252 - 415.621.4922 (fax)
727223225 compuserve.com * cds<¢nelcom.com

fourth element to the array in the above example, perhaps
for a special font for the selection, I would probably go to
Browser>spawnEdits: from: and Browserclass>setTextView:from-
TextState: and make the change. However, this would break
the debugger, which also spawns edits. This hidden multi-
ple update problem is the best reason for making collec-
tions into objects.

Solution

Create a new class. Give it the same number of instance vari-
ables as the size of the collection. Name the variables according
to what goes in them.

Example

To simplify the above example, let’s say you wanted to be able
to spawn a text editor. TextEditor has a method textState:,
which takes as a parameter a three-element array:

TextEditor>textState: anArray
self text: (anAmay at: 1).
self selectFrom: (anArray at: 2) to: (anArmray at: 3)

Our browser uses this method:

MyBrowser>spawnEdits
| array |
amay := Ammay
with: self text

u SMALLTALK IDIOMS

with: self selectionStart
with: self selectionStop.
TextEditor open textState: array

Both methods are now vulnerable to change in the other. By
creating an object from the collection, we solve this problem:

TextState
variables: text selectionStart selectonStop

TextState class>text: aString selectFrom: startInteger to: stopInteger
~self new
setText: aString
selectionStart: startInteger
selectionStop: stopInteger

TextState>setText: aString selectionStart: startInteger selectionStop:
stopInteger

text := aString.

selectionStart = startInteger.

selectionStop := stopInteger

Then we can use a TextState in the TextEditor:

TextEditor>textState: aTextState

self text: aTextState text.

self selectFrom: aTextState selectionStart to: aTextState
selectionStop

And create it in MyBrowser:

MyBrowser>textState
~TextState
text: self text
selectionStart: self selectionStart
selectionStop: self selectionStop

MyBrowser>spawnEdits
TextEditor open textState: self textState

The result is code that is slightly more complicated, but
much easier to read and maintain. The beauty of Objects
from Collections is not just in the immediate results. The new
objects often become the home of important behavior in
their own right. Code that lived uneasily in one of the abjects
that understood the format of the array can now live com-
fortably in the new object. Also, the new object becomes a
new degree of freedom in the system. If there are a variety of
ways the information can be structured or used, you can cap-
ture that variety in a family of objects all responding to the
new object’s protocol.

In the next issue, we will examine two more patterns for
creating objects from code: Objects from Variables and Objects
from Methods.

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. He is also
the founder of First Class Software, which develops and dis-
tributes reengineering products for Smalltalk. He can be reached
at First Class Software, P.O. Box 226, Boulder Creek, CA 95006-
0226, 408.338.4649 (voice), 408.338.3666 (fax), or 70761,1216
on CompuServe.

16

THE SMALLTALK REPORT

Net resources

sions and talk about some of the Smalltalk resources

that you can access from your computer. There are
many such resources, and they may be available over ftp, email,
or direct modem connections.

T his month we move away a little from USENET discus-

VENDOR RESOURCES

Software companies usually provide some sort of on-line sup-
port. This comes in a variety of forms, and is normally de-
scribed in the documentation. Most of the Smalltalk vendors
have some sort of email access.

Digitalk has a vendor forum on CompuServe, which is
where most of their support activity seems to take place. They
do have Internet email, though, and can be reached at
info@digitalk com.

ParcPlace has a bulletin board called ParcBench, which can
be reached at 415.691.6716. They also have Internet email, and
can be reached at info@parcplace.com.

QKS, makers of SmalltalkAgents, can be reached at
info@gks.com.

FTP SITES

I discussed anonymous ftp archive sites for Smalltalk in my

very first column, but that was almost two years ago, so I think

it’s worth repeating the information for new readers. Anony-

mous ftp means that you connect through fip and use “anony-

mous” as a username and your email address as a password.
“Two main archives have large amounts of Smalltalk code.

» st.cs.uiuc.edu (University of 1llinois, Internet ID
128.174.241.10)

* mushroom.cs.man.ac.uk (University of Manchester, Inter-
net ID 130.88.13.70)

These two sites have a “mirroring” arrangement, so they both
have exactly the same files available, although they are orga-
nized a bit differently. Transfers will probably be faster if you
use the site closest to you.

As with any freely distributed software, be careful of copy-
right restrictions, particularly “copyleft” if you plan on distrib-
uting this as part of commercial code. Files collected by the
Manchester library (which is a subset of those available from
the Manchester site) are often copylefted unless otherwise
specified.

HE BEST OF comp.lang.smalltalk

Alan Knight

Other sites
A number of other sites also have files of interest to Smalltalkers.

* GNU Smalltalk (see THE SMALLTALK RepoRrT 1{8]) is avail-
able from most of the many archives that carry GNU
software. The reference site is prep.ai.mit.edu, but that site
is heavily loaded, so it’s best to look elsewhere.

* A Little Smalltalk is Tim Budd’s UNIX implementation of a
subset of Smalltalk. It’s available from cs.orst.edu (or by an
email server that can be reached by sending a message with
the text “send guide” to almanac@cs.orst.edu). A Little
Smalltalk is described in the Addison-Wesley book of the
same name, An extended version, which includes graphical
support for the X Window System, is available from
beach.rockwell.com.

The comp.lang.smalltalk frequently asked questions (FAQ)
list and an archive of discussions from the smallmusic mail-
ing list is available from xcfberkeley.edu.

* QKS has recently started an ftp site for Smalltalk Agents ma-
terial at pineapple.qks.com (192.55.204.66).

email
ftp sites are very convenient if you have fip access, but most of
the world doesn’t, Those with Internet email access (note that
many cornmercial on-line services can send and receive Inter-
net mail), can use the Manchester and Illinois Smalltalk
archives through email servers.

To reach the Manchester archives, send a message of the form:

To: goodies-lib@cs.man.ac.uk
Subject: help;index

You should receive an explanation of how to use the archives
and a fairly informative listing of what’s available along with a
summary. If you need to communicate with a human, try
lib-manager@cs.man.ac.uk.

To access the University of [llinois archives, send:

To: archive-server@st.cs-uiuc-edu
Subject: <Doesn't matter>

path yourname@your.Internet.address
help

MARCH-APRIL 1994

17

This will send a help file. To also receive a complete listing, send

To: archive-server@st.cs.uiuc.edu
Subject: <Doesn't matter>
archiver shar

encoder uuencode

help

encodedsend 1s-IR.Z

The listing doesn’t have the nice explanations you get from the
Manchester archive (although the Manchester catalogue is
available as one of the files). The listing will also come as a
uuencoded, compressed file.

SMALLTALK MAILING LIST

One of the most valuable network resources is comp.lang.-
smalltalk itself. There's a lot of junk to sort through, but there’s
also a large community of knowledgeable Smalltalk users, many
of whom normally charge a lot of money for the kind of advice
they give over USENET.

08 |'d like to be able to point you to
some good file dialog code (for Parc
Place), but | don't know of any. 99

Unfortunately, not everyone can receive USENET news. For
those who would like to, but who have only email access, there
is a mailing list that echoes postings in comp.lang.smalltalk.
The list is maintained by Joerg Rade (jradel@gwdg.de), and de-
scribed as follows:

Info-CLS (formerly Smalk) is a mailing list which is bidirec-
tionally gatewayed with comp.lang.smalltalk (via NET-
NEWS@AUVM.BitNet). Every posting to c.ls (with distrib-
ution options usa or world) gets distributed to all
subscribers of Info-CLS, and vice versa every mailing to
Info-CLS gets posted to c.l.s.

In order to get subscribed, send a mail message to the
listserv (LISTSERV@vm.gmd.de), containing SUBSCRIBE
Info-CLS name@node.net.world Your F. Name or drop me
a note.

A knowledgeable group of Smalltalk users is a wonderful thing,
but the delay involved in getting an answer can be very painful.
This is particularly true when the question has been asked be-
fore and you could get an answer very quickly if you only had
an archive of old messages to search through. Luckily, there is
such an archive:

There is a mailarchive associated with Info-CLS; that is,
every posting/mailing gets archived and can be keyword
searched by email. To search the archive, which started some-
where around September ‘92, send a mail message to

u THE BEST OF COMP.LANG.SMALLTALK

LISTSERV@vm.gmd.de
containing something like:

/!
Database Search DD=Rules

//Rules DD *

Search type & checking in INFO-CLS

index

print

/i
as the body part of the message. For details on more fine-grained
retrievals, read the document that is obtainable by sending

GET LISTDB MEMO

as the body part of a mail message to the listserv.

A FEW GOODIES

That’s all the general network resources that I'm aware of at the
moment. If you know of others that you think should be men-
tioned, please tell me about it. In the remaining space, I'll
briefly mention some of the Smalltalk source code available
from the Manchester and Illinois Smalltalk archives. These bits
of code are often referred to as “goodies.” As with all freely
available code, you need to exercise some care. The code may
be of very good quality, or it may not. It is almost certainly not
maintained, so it may be out of date. In most cases, it will not
have been tested on a very wide variety of different machines.
Basically, you will probably want somebody who knows what
they’re doing to look the code over. You also need to beware of
copyright restrictions, as I mentioned in the ftp section.

Object debugging

This is described in great detail in the July-August 1993 issue of
THE SMAaLLTALK REPORT (Debugging Objects, by Bob Hinkle,
Vicki Jones and Ralph E. Johnson 2[9]), so I won't say much
except to recommend it. It works with ParcPlace Smalltalk and
uses instance-specific behavior to provide enhanced debugging
facilities. In particular, it lets you set breakpoints (real break-
points) on methods in individual objects (e.g., halt when add:
is invoked for this particular OrderedCollection). This is really,
really nice. It does make some very deep system changes, which
is scary, but I think it’s well worth it. To my mind, the biggest
drawback is that it doesn’t coexist well with ENVY/Developer
(as of version 1.42). I have an idea of how to make it work, but
it’s pretty sneaky, and I'm not using ENVY right now, so I
haven't tested it.

FileNavigator

It’s very annoying that ParcPlace Smalltalk (including Visual-

Works) still doesn’t have any kind of a file selection dialog. We

have a system that is supposedly good for writing graphical user

interfaces, and the standard way to get a file name is still
DialogView request: 'Enter file name and path'.

Forget using shortcuts like “~"".

continued on page 21

18

THE SMALLTALK REPORT

RODUCT REVIEW

Reportoire

that excels at object modeling—building the underlying

‘object-model’ (the M in MVC) part of applications.
However, Smalltalk also has some definite low productivity
shortcomings. For example, until Smalltalk GUI builders ar-
rived, it was often true that you could build the model portion
of an application at a blindingly fast rate then spent countless
tedious hours hand-coding your interface. Other problems re-
main. What is needed is for third-party tool developers to step
in and produce extensions to the ST environment that address
these problems.

Fortunately, although the number of third-party tools now
available for VisualWorks is fairly small, some exciting new
products are beginning to appear. If you're on the ParcPlace
mailing list, you probably recently received a large envelope
auspiciously labeled “Essential Extensions For VisualWorks”.
Inside was a brochure describing Reportoire, a new query and
reporting tool from Synergistic Solutions, Inc. You may also
have learned about Reportoire at OOPSLA '93. We've been
part of the Reportoire beta test group and recently began using
release 1.0, In this article we’ll outline what Reportoire is, what
you can do with it, and briefly describe some of our experi-
ences using it.

S malltalk is a highly productive development environment

WHAT IS REPORTOIRE?

Reportoire is a set of ObjectWorks applications for doing data-
base queries and creating reports. Using Reportoire, developers
can quickly and easily create queries and reports on any data
which can be accessed from within VisualWorks. The Repor-
toire toolset is extensive, including several database browsers
(Schema, QBE (Query-By-Example) and Free Form browsers),
tools for defining data sources and filters, a WYSIWYG report
designer, a callable runtime reporting engine, and a ‘librarian’
application for managing access to all this functionality in a
multi-user environment. Reportoire tools are accessed via an
iconic launcher, shown in Figure 1.

-

Tool box

=

Synergistic Solulions, Reportoire © 1993

E]
Layout Script

Librarian Filter Execution
Figure 1. Reportoire's launcher.

Jeff Cantwell & Douglas Camp

FEATURES

One of the first things you notice about Reportoire is that it
contains a lot of functionality. The User’s Manual is just over
400 pages, and the full-blown Development version of Repor-
toire contains more than 400 new classes, more than 9000 new
methods, and increases the size of an Envy image by about
2.5M, and about 1.8M for a standalone VisualWorks image.
(Note that these numbers are for the full-blown Development
version. Reportoire is available in three flavors: Development,
Standard, and Embedded Execution.). Some of Reportoire’s
major features:

* Full integration with VisualWorks. Standalone image and
ENVY versions available,

« Concurrent access to any accessible data sources, including
SQL relational databases, object-oriented databases, PC
databases via ODBC, and any Smalltalk object in the image.
(Some drivers must be purchased separately.)

* An excellent WYSIWYG report designer which supports
different text sizes and fonts, event driven formatting and a
sophisticated macro language for formatting and control.

= Access control provided by the Librarian tool through user-
name and password restrictions.

* Reuse is encouraged—all reporting elements can be stored
in a central repository and reused.

* Device independent output—print drivers are included
for Postscript, Windows Metafile, HP PCL and ASCII out-
put. (This feature alone could be an excellent third party
add on. You mean I don’t have to have a postscript
printer? WOW!)

WHAT DOES REPORTOIRE DO?
To get a feel for how developers actually use Reportoire, let’s
work through the design of a simple report to show which of
our customers have balances which exceed their credit limits.
Before a report can be created, a data source must be
defined. The source is the connection to the raw data provided
by the database driver. Note that this is a one time process—
once a source is defined, the Reportoire user can reuse it in
other reports. Defining a source is a simple process—popup a
short dialog and supply a name for the component, a password

MARCH-APRIL 1994

19

and username for the database (if required), and select the dri-
ver type (e.g. Sybase) from a list.

After the Reportoire environment is configured (creating
users, defining sources, etc.), creating a report in Reportoire is a
3-step process that creates discrete, reusable components: de-
velop any scripts necessary to prompt users for variable data at
runtime, develop filters for selecting only the data of interest,
and define the report layout. (Many times only the report lay-
out will need to be created because the other components may
already exist and can be reused.) When these steps are com-
plete, the report can be executed at any time—from the Repor-
toire environment, or from your VisualWorks application code.

1. Script(s). Scripts are primarily used as short dialogs to
prompt users for variable values at runtime. Clicking the
Scripts icon on the launcher brings up the Script creation
tool. Defining a script is a simple, fill-in-the-blanks
process: name the component, provide variable values and
prompts, and select the variable type (e.g. String, Boolean,
Date). For this simple example we don’t need any scripis.

2. Filter(s). Filters determine which data is selected from the
data sources. Filters can use SQL for databases which sup-
port it (e.g. Sybase, Oracle, ODBC); filters can also use
Smalltalk code, the Reportoire macro language, or custom
data source specific language. For example, a filter to re-
trieve all the customers whose balance exceeds their credit
limit (for an SQL data source) might look like Figure 2.

3. Layout. The Layout Designer is where Reportoire really
shines. This tool uses a “spreadsheet metaphor”—the de-
sign space is broken into columns and rows, and individ-
ual elements of the report are added much as you would
type data into a spreadsheet. Once added to the layout, you
can drag elements around with the mouse to fine tune the
look of the report. A layout for our customer report might
look like Figure 3.

Different fonts, typestyles and sizes can be applied to each ele-
ment of the report. All the functionality you'd expect to find in
a good report designer is here, including header/footer sections,
multilevel grouping, conditional formatting, and a macro lan-
guage. An especially nice feature is the ability to define a “row
variable” as a Smalltalk object (done in the filter definition).
This means that instead of working with report data as simple
relational rows, the actual ST object (and all of its behaviors)
are available to the report at runtime.

Once the layout is started, reports can be executed and the
results viewed immediately from the layout designer—this fa-
cilitates easy, incremental report testing and design. Reports
can also be executed from Smalltalk code, meaning you can
embed calls to the report engine anywhere in your application.
It's a simple process in VisualWorks to create a new canvas,
paint a button on it, and call the report engine in the button
action method.

The Layout Designer is the key feature of Reportoire. This

= PRODUCT REVIEW

Filler: Cuslomers Over Limit

File Edit Tool Help

Description I Retrieve all customers whose balance exceeds credit kimit. l

Row varlable

Row class

Ii

Select name, balance, credit_imit from customers where (credit_limit > balance)

Figure 2. An example of a Reportoire Filter.

tool alone enormously simplifies the often tedious and time-
consuming task of report design.

EXPERIENCE REPORT

We've used Reportoire to create several custom Smalltalk class
reports for use as development aids, and to prototype reports
for our major application (a financial/banking system). We've
used the Smalltalk image, ODBC, BOSS and ASCII files as
data sources.

Overall, our experiences with Reportoire have been very
positive, and we plan to use Reportoire for the reporting com-
ponent of our VisualWorks applications. However, there are
some problems. Unexplained walkbacks do occur occasion-
ally—in a development environment, or for strictly in-house
systems, this isn’t a major problem (what developer isn’t used
to seeing walkbacks?). However, if you planned to deploy appli-
cations with Reportoire embedded, it might be a concern.
Many of the problems we encounter are a function of the com-
plexity of the environment: When you layer Reportoire on Vi-
sualWorks on Envy, small things (like a class variable not get-
ting properly initialized) can cause annoying, time consuming
problems. Other problems and concerns with this release:

* Installation can be difficult. Again, this is a function of the
environment (VisualWorks/Envy). We’ve spent many
hours reinstalling the application, trying to resolve obscure
load problems.

File Layout Edit Group Tool Help

8% |2 %|B|O[H
|Delaulm:= !I
|Delaulsi1=£ NS D - - S T

Pg Hdr
Rpt Hdr
Rpt Hdr
.1<>Hdr
1¢<>Hdr Customer name c
.1.1 Body =ENAME =#BALANCE
1< :Smry
Rpt Sery
Pg Footer

Y

Customers Over Credit Limit
As of i =now()
it Limit
=#CREDIT_LIMIT

Total customers: =couni(¥NAME]

FR R HEEERR -

o[| J2lle] I+

Figure 3. An example of a Reportoire Report.

20

THE SMALLTALK REPORT

* Some features simply don’t work well. For example, Repor-
toire comes with some handy ready-to-run class reports,
however these occasionally fail without any immediately ob-
vious reason.

« Context sensitive help is available, but there is a very small
number of help topics, and these are in general not as useful
as one would hope.

* Reportoire inherits some problems from VisualWorks—for
example, Windows 3.x/VisualWorks users occasionally see
“ghost” popup menus left behind when a parent window
closes, which usually cause a walkback.

* We’ve no experience attempting to strip/whittle an image
containing Reportoire, and we have some concerns about
image size. However, all our experience has been with the
full-blown Development version—adding the Embedded
Execution version of Reportoire may have a much smaller
impact on the image.

Although we have had some problems with Reportoire, 551
technical support (in the form of email, faxes and phone con-
versations with Bill Reynolds, the president of SSI and chief de-
veloper of Reportoire) has been excellent. The company has
been extremely responsive, often solving our problems imme-
diately or within just a few hours.

NOTES ON THE EVALUATION ENVIRONMENT

For the record, we’ve tested Reportoire only in our environ-
ment: VisualWorks (standalone and Envy) running under
Windows 3.1 on 486/66 systems with 16 meg of memory—our
development platforms.

SUMMARY
Reportoire 1.0 is impressive in scope, functionality and design.
When developers first see the WYSIWYG report designer, and
begin to understand just how much time it can save, the re-
sponse is very positive. However, this is version 1.0—some bugs
haven’t been worked out and the product needs refinement. In
their favor, SSI has been supporting Smalltalk since 1989 (with
already successful products such as Smalltalk/LAN and
Smalltalk/SQL) and we expect future versions will resolve these
problems. In the meantime, if your application requires report-
ing, you should strongly consider using Reportoire. Perhaps
even more exciting, and important for Smalltalk, the language
that has been touted as the MIS software development tool of
the 90’s finally has a third party tool that speaks directly to MIS
software needs in a powerful way.

For further information on Reportoire contact SSI at
908.422.0450 or via email at 70233.2017@compuserve.com.

Jeff Cantwell is the Vice President of Research and Development,
and Douglas Camp is a Software Developer for Private Business,
Inc. They can be reached at Box 1603, Brentwood, TN, 37024,
(615) 790-0484. Jeff's email address is cantwell@vanderbilt.edu,
Doug’s is 74017.2614@compuserve.com.

u THE BEST OF COMP.LANG.SMALLTALK

continued from page 18

People doing serious development have the privilege of writ-
ing their own file dialog, which isn’t that easy to do well, given
the bizarre behavior of some Filename operations.

I’d like to be able to point you to some good file dialog code,
but I don’t know of any. The best I can do is the FileNavigator
goodie, which is a start, even though it’s trying to solve a differ-
ent problem. FileNavigator is an improved version of the stan-
dard FileBrowser, written by Carl McConnell
(mcconnel@cs.uiuc.edu). He describes it as follows:

FileNavigator provides the same functionality as
FileBrowser, but with an easier-to-use select-and-click inter-
face reminiscent of a Macintosh file dialog box.

He also warns that

I've only tested FileNavigator on the Macintosh, so although
it’s supposed to be portable, minor problems may crop up
on other platforms.

0 For those who have only email ac-
cess, there is a mailing list that echoes
postings in comp.lang.smalltalk. 99

[did experience some problems when T tried this out under
MS-Windows VisualWorks, but I think they wouldn’t be hard
to fix. I didn’t think it was very reminiscent of a Mac file dialog,
but it was an improvement on the FileBrowser, and could be a
good source of ideas for other file-manipulation tools.

Importing Bitmapped Images

Applications often need pictures, and they often need to import
those pictures from some external source, in one of many in-
compatible image formats. You can display it on the screen, then
manually import it using ImagefromUser, but that takes a lot of
time. There are a few goodies available for dealing with this prob-
lern. One is PNMImport, by Frerk Meyer (frerk@telematik.infor-
matik.uni-karlsruhe.de). The file-in describes it as follows:

PNMImport adds methods for importing Portable
aNyMaps (PNM) as of Jef Poskanzer's pbmplus package.
With the help of his package or the xv program you can im-
port ANY bitmap you like into your Smalltalk image.

The pbmplus package, which is available by ftp from many
sources, converts a wide variety of image formats to and from
the formats that PNMImport reads. As far as I know, these
tools are only available on UNIX platforms, but it’s possible
they’ve been ported or that other programs can produce
these formats.

Alan Knight is one of The Object People. He can be reached at
613.225.8812, or by email as knight@acm.org.

MARCH-APRIL 1994

21

RECRUITMENT

ITo place an ad, contact Wendy Plumb at
212.274.0640. (S

, = SMALLTALK
12455 R NNl | ARCHITECTS/DEVELOPERS

MinneapolissAtlantaeRaleigh

1ston Stathing. Supenor SN

& We currently have numerou

opportunities requiring 1+

years experience with:

- NYeBoulder
As a leader in Ihe dehvery of Object-Orienled Syslem u SMALLTALK
Technology Consulting, Inc. is a dynamic and Integration Services. SHL Systemhouse mwites you lo

rapidly growing Software Development Firm explore challenging and unique opportunilies within S . . .
Wi':h)éhgallengiag assignments. pwe are a our organizalion SMALLTALK opporiunities exisi in D Ob_]ect Oriented DeSlgll
leader in client-server systems integration and Minneapols. Allanta. Boulder. Ralexgn and NY. lor

vl ’ 4 , Technical Architecls. Proj . Seni
application outsourcing. We have immediate -eimc:'p ol '.l_ecl:an:r?efl Mar:-a gers, Senior u 0S/2

: - . - g 5.
openings to support exclusive client projects We seek clien/server. object-orienled prolessionals

and our state-of-the-art regional development wilh impressive induslry credenuals who share our Cit
center. worldwide commilmenl 1o excellence These resulls- i

orienled informalon prolessionals musl thrive on .
CLIENT SERVER - SMALLTALK, C, C++, challenges and possess exceplional lechnical skills B C
VISUAL BASIC/C++, ORACLE, SYBASE, as well as business advisory expenence.
POWERBUILDER For Consideralion send your resume in contidence (o:

Michelle Hayden Depl. SMR334

TCl offers compelive salaries, attractive SHL Sysiemhouse
benefits, and relocation assistance. For gmm:ma;‘z%";e' Sule 200 i
consideration, send resume or call: 1.800.769.8704 or Fax 407,767 5309 For immediate

1800 Meidinger Tower, Louisville, KY 40202 (Exira Fine Mode) | { _ consideration,
(502) 589-3110

lease FAX or mail

= resume to:

1) _ Tech Specialists
T@I TECHNOLOGY ?ﬁi ! B T sh o o
) I Raleigh, NC 27609
N SHLSYSTEMHOUSE

- (919) 870-7274 Fax

Member NACCB FAX 502-569-3107

The Smalitalk Report

Provides objective & authoritative coverage on language
advances, usage tips, project management advice, AGD
techniques, and insightful applications.

SMALLTALK
DESIGNERS AND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalltalk
Professionals in Various Regions of the Country.

O Yes, I would like to subscribe ro THE SMALLTALK REPORT.
d 1 year (g issues):
QO Domestic: o Individual $79.00 O Institutional $19.00

O Overseas: Individual $594.00 O Institutional $134.00
Q 2 years (1B issues):
O Domestic: U Individual $148.00 O Institutional $228.00

O Overseas: Individual 5178.00 O Institutional $258.00
Method of Payment ¢

(J Check enclosed (payable to TH SMALLTALK REPORT)

1 Bill me

3 Chargemy: dVisa U MasterCard ‘1 AmEx ScoAn Fl-_olngrun

Card No.

Exp. Date Salient Corporation...
Signature Smalltalk Professionals Specializing in the
Name Placement of Smalltalk Professionals
Address

Title Compa ny For more information, please send or FAX your resumes to:
City State Salient Corporation

Country Zip 316 5. Omar Ave., Suite B.

Phone Los Angeles, California 90013.

To order, return this form with payment to
The Smalltalk Report, P.O. Box 2027, Langhorne, PA 19047
Fax: 215.788.6073 Phone: 215.785.5996

Voice: (213) 680-4001 FAX: (213) 680-4030

FORCE-FIT RELATIONAL TECHNOLOGY
AND YOU COULD REALLY HIT IT BIG.

Maybe you're beating your head against the relational you can store Smalltalk objects directly in the
database wall — trying to integrate your Smalltalk database. We make your development time more
applications with an RDBMS. Maybe you're spending productive and your object applications more efficient.
all your time debugging SOL calls instead of building Learn for yourself by calling us today for a
great applications. Or maybe you've hit the relational copy of “Object or Relational? A Guide for
performance wall because you're wasting too much Selecting Database Technology” After all, the
processing time on object decomposition and recomposition. best way to deal

Servio™ has a better way. With our high-performance with an obstacle SER \/ IO
GemStone® object database management system, is to avoid it in

OBJECT TECHNOLOGY
the first place. FOR THE REAL WORLD

Call 1 800-243-9369 for a free copy of “Object or Relational? A Guide for Selecting Database Technology”

Servio is a trademark and GemStone is a registered trademark of Servio Corporation.

“ttt

Not long ago, client/server
development required massive
amounts of time, money and
expertise to combine different
and complex technologies.

m—— Now Digitalk
PARTS PARTS? a rapid
‘ ‘ application
development
tool set, lets you
easily integrate
W your software
DIGTTAL K JPreeegs
client/server applications.

PARTS is the only object-
oriented technology that lets
you leverage your legacy code
and the knowledge of your
current staff.

Only PARTS products let
you take existing code —written
in Smalltalk/V, COBOL, C, SQL
and other languages —and wrap
it into components or “parts”
Which can then be virtually
snapped together visually. The result
is smooth-running client/server
applications in a fraction of the
usual time. For a fraction of the
usual cost.

PARTS supports all popular
SQL databases like Sybase, Oracle
and DB2. Plus legacy or late model

[

!

i

AR

i

E

]

T,

el
(‘I

FINALL
CLIENT/SE
INTEGRATION.

systems like CICS, COBOL, APPC
and SOM. And PARTS lets you
develop on both 0S/2 and Windows.

RATED #1- TWICE.

Only months ago, PC WEEK
awarded PARTS Workbench the
highest rating ever in the 05/2

PARTS. THE CLIENT/SERVER INTEGRATION TOOL.

AVER

—
=l ==l

I=‘i_';|m| SaL e A1 cosoL

g ij ' mu g

o

i

wll

"

I

I

|

i
Wm

ull

I
l||

T

M -

I

PARTS Workbench
Evaluation Kit.

effort, you'll learn why
PARTS is the maximum
solution for client/server
integration.

DIGITALK

category, calling it “the defini-
tive visual development tool”

And InfoWorld ranked
PARTS the #1 component-
based tool for visual develop-
ment. InfoWorld’s Stewart
Alsop adds: “There's nothing
like it on the PC.”

To make large teams pro-
ductive, PARTS also supports
group development and version
control. Plus PARTS has a host
of graphical power tools to give
you all the power of objects—
without the learning curve.

10 YEARS EXPERIENCE.

And PARTS is from
Digitalk. The company that'’s
been providing object-oriented
tools to the Fortune 500 longer
than anyone else in the world-
with over 125,000 users.

Call 800-531-2344 X 610
and ask about our

With minimum

	By Article Title
	Creating IPF help panels for Smalltalk/V 0S/2 applications
	Net resources
	Pools: An attractive nuisance
	Reportoire
	Where do objects come from?

	By Author Name
	Beck, Kent
	Camp, Douglas
	Cantwell, Jeff
	Ewing, Juanita
	Knight, Alan
	Lam, Marcos
	Mazzara, Susan

	By Topic
	comp.lang.smalltalk
	Product Review
	Smalltalk idioms

