The Smalltalk Report

The International Newsletter for Smalltalk Programmers

November-December 1993

Volume 3 Number 3

THE HP

DISTRIBUTED
SMALLTALK IDL
LANGUAGE
BINDING

by Jeff Eastman

Contents:
Features/Articles

1 The HP Distributed Smalltalk IDL
Language Binding
by Jeff Eastman

4 What if? A protocol for object
validation
by Susan Griffin

Columns

7 Smalltalk idioms:
It's just not the case
by Kent Beck

9 Putting it in perspective:
Designing scenarios: making the
casa for a use case
by Rebecca Wirls-Brock

13 GUIs:
WindowBuilder: A do-it-yourself
extension framework
by Ray Hormn

16 Product Review:
Shoot-out at the Mac corral
by Jan Steinman

he Object Management Group’s Common Object Request Broker

Architecture (CORBA) specifies the architecture for an Object Re-

quest Broker (ORB), which provides a standard communication

mechanism between object systems in a distributed environment.

An ORB’s job is to communicate with ORBs on other systems, to
locate the objects that can perform requested services, and to communicate re-
quests that can be processed by those remote objects. A critical part of the ORB’s
job is the translation (via a language binding) between its language-neutral Inter-
face Definition Language (IDL) and the local language (such as Smalltalk, C, or
C++). The translation process uses the IDL definition to convert client object re-
quests expressed in the client’s language into request packets that can be decoded
by the server object and for converting result packets produced by the server into
the appropriate local language entities.

In order to use the ORB, it is necessary for programmers to know how to
access ORB functionality from their particular programming language.
Hewlett-Packard recently introduced HP Distributed Smalltalk, a full CORBA
implementation for the Smalltalk-80 language as delivered by ParcPlace Sys-
tems of Sunnyvale, CA. This article describes the manner in which the con-
structs of CORBA are made available to Smalltalk programmers in HP Dis-
tributed Smalltalk.

INTERFACE DEFINITION LANGUAGE

To allow abjects that are implemented in different programming languages to in-
teroperate via the ORB, it is necessary to define their behavior in an abstract man-
ner and then for each implementation to provide a mapping from this abstract
description to its particular language. The HP Distributed Smalltalk binding from
IDL to the Smalltalk-80 programming language provides the Smalltalk program-
mer with mechanisms for expressing the following IDL concepts:

« References to objects defined in IDL

« Invocations of operations, including passing parameters and receiving results

« Exceptions, including what happens when an operation raises an exception
and how the exception parameters are accessed

* IDL basic datatypes

* IDL constructed datatypes

» References to constants defined in IDL
* Access to attributes

* Signatures for the operations defined by the ORB, such as the dynamic invoca-
tion interface, the object adapters, etc.

contimied on page 21...

EDITORS’
CORNER

John P.ugh

Paul White

Ithough distributed computing and object-oriented systems have already been proven im-
portant technologies for the 90s, it is their union in the form of distributed object systems
that has even greater potential to address many of the problems facing application devel-
opers in the next few years. Distributed computing addresses the need for more open,
scalable, reconfigurable systems—systemns whose elements may reside on different proces-
sors at various network locations, but which function as an integrated whole. Object-
oriented technology addresses the need for systems which provide for better reuse of
software components, more robust and extensible software, and which more accurately
model the application domain.

In this month’s lead article, Jeff Eastman, the architect of Hewlett-Packard’s Dis-
tributed Smalltalk product and the designer of its Interface Definition language binding,
gives us a first look at distributed computing with Smalltalk. HP Distributed Smalltalk is a
set of approximately 150 classes built on top of ParcPlace Systems’ Visualworks product,
which provides the first complete implementation of the Object Management Group's
Common Object Request Broker Architecture (CORBA), a standard specification for how
objects make requests and receive responses in a distributed environment. In HP Dis-
tributed Smalltalk, messages may be sent to objects without regard for whether the in-
tended receiver is a local or remote object. To the Smalltalk programmer, access to remote
objects is completely transparent. '

Another new product is also causing quite a stir in Smalltalk circles. SmalltalkAgents
from Quasar Knowledge Systems is a2 new implementation of Smalltalk for the Macintosh. It
has generated a lot of discussion both for its departure from traditional Smalltalk syntax and
semantics with extensions patterned after C and Lisp, and for its exciting and innovative
features. In the former category we find that all objects are equal to true, except 0, nil, and
false, which are all equal to each other. In the latter, we find scoped, nestable public name
spaces, support for finalization, and true multitasking. In the first of two reviews entitled
“Shoot-out at the Mac Corral,” Jan Steinman takes an in-depth look at SmalltalkAgents. In
our next issue, Jan will review the new version of Smalltalk/V for the Mac from Digitalk.

Also in this issue, Susan Griffin introduces What If?, a protocol for object validation.
Susan argues that while some domain objects can live a productive life without a specifi-
cation for validation, those with complex rules that are at the mercy of a user can benefit
from standardizing their validation techniques. Working with clients on large Smalltalk
systemns, we find that many of them find the notion of use cases (2 la Jacobson) a powerful
modeling tool. In this edition of her Putting It in Perspective column, Rebecca Wirfs-
Brock describes her experiences bridging system requirements, object design, and user in-
terface design through the application of use cases. In this issue’s GUI column, Ray Horn
describes how to extend the popular WindowBuilder product from ObjectShare by
adding a custom pane and its associated editing dialog. Finally, Kent Beck looks at the
contentious issue of whether Smalltalk needs a case statement. We vote no!

AR

[

-—

Jolw

J

Tin Ssiant rark Ripurr (185NF 1036-7976) is published 9 times a year, every month except far the Mar/Apr, Tuly/Aug, and
Nov/Dee cambined issues. Published hy SIGS I’ulhlic.llium Inc., SHB Broadway, New York, NY 10012 212.274.0640. ¢¥ Copyright
1993 by SIGS Publications. All rights reserved. Reproduction of this material by electronic transmission, Xerox or any other
method will be treated as a willful violation of the L'§ Copyright Law and is Tatly prohibited. Material may be reproduced with ex-
press permission (rom the publisher. Mailed First Class. Subscriplion rales 1 year (9 issues): domestic, $63; Foreign and Canada,
890; Single copy price, SK.00. POSTMASTER: Send address changes and subscription orders 1o: THF Smatitark Revont, Sub-
scribier Services, Depl. SMI, P.O. Box 3000, Denville, NI 07834, For service on current subscriptions call 800.783.4903.

To submil articles, please send electronic fles on disk Lo the Fditors at 509-885 Meadowlands Drive, Otiawa, Ontario K2C 3N2,
Canada, or via Inlernet Lo pughérs rleton.ca Preferred formals for figures are Mac ar DOS EPS, TIF, ar GIF [ormats. Always
send a paper copy af your manuscript, including camera-ready copies of your figures laser output is fine).

PRINTED IN THE UNITED STATES.
2

'I'he Smailtalk Report

Editors

John Pugh and Paul White
Carlelon Universily & The Object People

SIGS PusLicaTiONS
Advisory Board

Tom Atwood, Obiject Design

Grady Booch, Ratianal

George Bosworlh, Digitalk

Brad Cox, Informalion Age Consulling
Adele Goldberg. ParcFlace Systems
Tom Love, 1BM

- Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems
Sesha Pratap, CenlerLine Software

. Cliff Reeves, 1BM

Bijarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology Inlernational

THE SMALLTALK REPORT
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg. ParcPlace Systems
Reed Phillips, Knowledge Syslems Corp.
Mike Taylor, Digilalk

- Dave Thomas, Object Technology Internalional

Columnists

Kent Beck, First Class Soltwares

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Syslems Corp.
Ed Klimas, Linea Engineering Inc.

Alan Knight, The Object People

Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.

" Richard P. Friedman
" Founder & Group Publisher

Art/Production
Kristina Joukhadar, Managing Editor

Susan Culligan, Pilgrim Road, Ltd., Creative Direction

Karen Tongish, Production Editar

Gwen Sanchirico, Production Coordinalor
Robert Stewart, Computer Sysiems Caordinator
Circulation

Stephen W. Soule, Circulation Manager

K.S. Hawkins, Fullilment Manager
Marketing/Advertising

Thomas Tyre, Advertising Mgr—East Coast/Canada
Helen Newling, Recruitment Sales Manager

Wendy Plumb, Advertising Assistanl

. Sarah Hamilton, Promotions Manager—Publications

Caren Polner, Promotions Graphic Artist
Administration
David Chatterpaul, Accounting Manager

. James Amenuvor, Bookkeeper

Margot Patrick, Assistant to the Publisher

Margherita R. Monck
General Manager

SIGS

I'U T VEIOENS

" Publishers of JouRNAL OF OBJECT-ORIENTED PRO-

GRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, and THE X JOJRNAL.

THE SMALLTALK REPORT

OBJECT
SWALSAS

INc.

Smalltalk 'V developers have come to |cl\ on

wWinnowBuUILDER PR

The New Power in Smalltallk/V Interface Decelopment

WindowBuilder Pro V is available on Windows for $295

WindowBuilder as an =‘L === Pra: rog r——" |“| > and OS82 for $495. Our stan-
essential tool for develop- P F i vor " 2ian Siie Optons Sorapbock Add - dard WindowBuilder, Vs
ing sophisticated user inter- = 3 = R REREeEEETmE | Sl available on Windows
faces. Tedious hand coding for $149.95 and OS; 2 for
ol interfaces is replaced by 2 ‘: I‘=E i """""'""“"‘"""' bl g [$295. We offer full value
interactive visual composi- - S pmia x trade-in for our

tion. Since its initial release, fos o % Iﬁf! F Window Builder customers
WindowBuilder has E e wiunting 10 move up o Pro.
hecome the industry stan- = TR : These products are also
dard GUT development tool = [AN - available in

for the Smalltalk/V environ- — — i ENVY «Deceloper and
ment. Now Objectshare = D—],’;T—LQFBLJ - Team. Vv compatible for-
brings you a1 whole new ———= ' Fmats. As with all of our
level of capability wiech ¢ o ot __F products, WindowBuilder
WindowBuilder Pro! New [FEEIEHen Pro comes with «a 30 day
functionality and power __ Siyte: [detouhityle L._! QE money huck guarantee, full
abound in this next genera- EHJE8f neme: [Programmerame Pedomm: source code and no Run-
tion of WindowBuilder. Ak sews el Tho b b bapDompise v = ! Time fees.

Some of the exciting new featitres...

e Compositelunes: Creme custom controls as composites

pr— of other controls, treated as
reel; . . .

I a single object, allowing the

developer higher leverage
v Jsmel 11| of renobie nideets,
_ 4| of reusable widgets.
Zip: ' . .
* * CompositePanes can be

*] Is1 h | (¢

used repeatedly and
because they are Class hased, they can be casily sub-
classed: changes in a CompositePane are reflected any-
where they are used.

e Morphing: Allows the developer to quickly change

Tomamak 37 from one type of control ¥suns o
orimdowHullder 1o another, allowing for | © smeltalk
powerful "what-if” style | = WindowBuilder
5 Visual development. The | = Other

flexibility allowed by
morphing will greatly enhance productivity.

¢ Scrapliook: Another new feature o leverage visual
component reuse, ScrapBooks provide a mechanism for
developers to quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interlace com-
ponents. organized

| Selecied lage
{ i Name. OR & Camir)

into chapters and pages.

o Rupid Protaty ping capa-
hilities: With the new link-

Select b ViewManger Class:

ing capabhilities. a develop- | |[Pimeee
cr can rapidly prototype 4 | G
functional interface without | st Gpens h
" , R . ‘MDISystem window as a child of
writing a single line of DT ot the current window.
. Pol Vi
code. LinkButtons and Pusgiels

LinkMenus provide a pow- o J

Ik B

and Wil nider Pro are

Inc. All other brand and product names are reg

crful mechanism for linking
Mi windows together and speci-
I lying flow of control.
|i ActionButtons and
i |i ActionMenues provide a
wlzliLl o | o | mechanism for developers o
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

Select an Adion: [Achan Drfinkion

Name {fancr) |
Inspect :

auther ‘081
| Metha teat
fisr

* Toollar: Developers can Create sophisticated toolbars

HAERREEPEE

just like the ones in the WindowBuilder Pro tool itself,

e Other new features indude: enhanced duplication and
cut ‘paste functions, size and position indicators,
enhanced framing specilication, Parent-Child window
relationship specilication, enhanced EntryPicld with char-
acter and field level validation, and much more...

= Add-in Manager: Allows developers o easily integrate
extensions into WindowBuilder Pro's open architecture.

Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742

5 Town & Country Village
Suite 735
$an Jose,

Objectshare Systems, Inc
Fax: (40B) 727-6324

CompuServe 76436,1063 CA 95128-2026

of their resp

companies

WHA_T IF?

A PROTOCOL FOR
OBJECT VALIDATION

Susan Griffin

ncapsulation mandates that an object maintain

the integrity of its own state. After all, nobody

else will. There’s nothing more dangerous to a

domain object than a system that allows a user

(an often inconsistent object!) to manipulate its
state through some kind of interface. Unfortunately for the
object, that manipulation is usually the purpose for its exis-
tence. In many “exception-based” domains, such as schedul-
ing or configuration by users, validating requests for a
change in state comprises the bulk of the services provided
by domain objects.

The situation is complicated by the fact that business rules
are often varied and rarely absolute. A secretary maintaining
his manager's calendar may need permission to schedule meet-
ings that overlap. A client may ask a sales representative to add
components to a complex equipment order, as long as the ship
date is not affected or the budget exceeded.

The presence of exception handlers (see Bob Hinkle and
Ralph Johnson's series in THE SMALLTALK REPORT, Vol. 2,
No. 3 & 4) certainly improves the situation for developers.
Interfaces that allow users to manipulate domain objects can
simply attempt to make a change the user requested rather
than testing for validity before the attempt is made. I often
picture this communication as a dialog between the manipu-
lator (some interface) and the object (an AppointmentBook in
this example):

an Interface: "Here, add this meeting. Don't bother me unless
there's a problem. "
an AppointmentBook: ‘Hey, there's a problem!” or "Hey, there may be a

problem!”

(an exception is raised.)

“Uh-oh. I better tell the user that hell have five
minutes to get from the home office to the client
site! (I wonder if it's OK?)"

an Interface:

This certainly simplifies matters for the interface. However,
many steps may be required of the domain object before it dis-
covers that there is a problem. The validation process can be-
come difficult to develop and maintain if a coherent strategy
for performing validation is not employed. The remainder of

this article discusses a way to organize the work that gets done
between the request for a change and the resulting success or
exception. It also provides several examples of the options a
domain object has in raising an exception.

WHAT IF?
In several projects, I have successfully used a protocol within
my domain objects that I like to call the what-if technique. It al-
lows me to isolate my error validation code so I can concentrate
on the business rules themselves and the severity of any viola-
tions, rather than when and where I will perform the validation.
Let's go back to our interface/domain object dialog. We'll
adopt the perspective of the AppointmentBook. Someone has
just asked us to add a meeting to ourselves. We need to inter-
rogate this meeting object and some others before we allow the
meeting to be added. A rapid fire of questions will result:

“Hey, meeting, what is your start and end time? Do I have a
conflict? What meetings are scheduled before and after this
one? Where are you located? Oh yeah? Hey, location, how far
are you from the location of the meeting before this one? How
about the one after you?...”

Certainly, these questions need to be asked. The question is,
where’s the best place to ask them? Even with extensive testing
protocols in our Meeting and Location objects, a first attempt
might still yield a rather messy #add: method. (All examples
use exception handling facilities in Objectworks\Smalltalk 4.1.)

add: aMeeting
"Add a meeting to my list of meetings. Raise an exception if any rules
are violated. Notify my dependents if I add the meeting."
self meetings do: [:eachMeeting |
(eachMeeting conflictsWith: aMeeting)
ifTrue: [self class invalidModelSignal
raiseRequestErrorString: self meetingConflictString]].
(((self meetingBefore: aMeeting) notTooFarFrom: aMeeting)
and: [(self meetingAfter: aMeeting) notTooFarFrom: aMeeting])
ifFalse: [self class invalidModelSignal
raiseRequestErrorString: self tooFarAwayString].
self meetings add: aMeeting.
self changed

Our instincts immediately tell us to separate the tests into
separate methods, yielding a cleaner #add:.

add: aMeeting
"Add a meeting to my list of meetings. Test to determine if rules are
violated.
Notify my dependents if I add the meeting."
self checkForConflictsWith: aMeeting.
self checkTravelTime: aMeeting.
"exceptions will be raised and handled. If I get to the next line,
everything's OK."
self meetings add: aMeeting.
self changed.

This certainly looks better, but barriers still loom ahead.
Suppose the users are allowed to schedule meetings with in-
adequate travel time, as long as the system warns them and
lets them decide? No problem; we raise proceedable excep-
tions and still add the meeting if the user (via the interface

4

THE SMALLTALK REPORT

and corresponding exception handler) decides to proceed.
But the writing is on the wall. The users will want some sort
of visual feedback if there is inadequate travel time, which
means our AppointmentBook will need to include testing
protocol. We end up creating testing methods that look a lot
like our validation methods.
isInadequateTravelTime
"Answer true if there are any meetings with inadequate travel time
between them."
self meetings do: [:eachMeeting | |nextMeeting |
((nextMeeting := self meetingAfter: eachMeeting) notNil and:
[eachMeeting tooFarFrom: nextMeeting])
ifTrue: [“true]].
~alse
What’s happened here? Previous tests for travel time in-
volved checking the proposed meeting, aMeeting, against my
list. Our new testing method requires no argument, since its
purpose is to test the current state of the object. The valida-
tions need to be available for both the current state of the
object and the proposed state of the object. That's what
what-if is all about. If we can create an object that looks like
the one the manipulator wants (“What if I added this meet-
ing?”), we can use the same testing method to ask it if it is
valid. And we can define a structured protocol that simplifies
both the methods that perform the validation and those that
invoke them. For example, I'd prefer not to change my #add:
method every time a new rule is introduced about adding
meetings, since we know how often these kinds of require-
ments can change.

TURNING TECHNIQUE INTO PROTOCOL
Let’s see what the what-if approach is all about by restructur-
ing the code. The #add: method becomes very simple.

add: aMeeting

"Add a meeting to my list of meetings. Notify my dependents if I add
the meeting."

self proposedChange: #add: with: aMeeting.

"exceptions will be raised and handled. If I get to the next line,
everything's OK."

self meetings add: aMeeting.

self changed.

This is looking better. Any future changes to the #add:
method will be only due to changes in the semantics of adding
a meeting, not because of new validation rules. Our simple
method is no longer overwhelmed by error checking code. The
new addition is the method #proposedChange:. The Appoint-
mentBook is proposing to add a particular meeting to itself. If
the proposal fails, exceptions will be raised. The following
methods in AppointmentBook illustrate the rest of the protocol.

proposedChange: anAspect with: anArgument
"Private - What if anAspect of me was changed? Would it be a problem?
I expect exceptions to be raised during validation if there is a problem."
self validating
ifTrue: [(self validatingCopy perform: anAspect with:
aParameter) validate:; #newMeeting]

validating

"Private - Answer whether I am currently validating all changes to me."
“validating

validating: aBoolean
"Private”
validating := aBoolean

validatingCopy
"Private - Answer a copy of myself which accepts any proposed
changes until asked to validate. The validating copy
must remember who originated the copy so that any resultant
exceptions will carry the appropriate parameters."
~self copy
original: self;
validating: false

validate: aValidationCategory
"Perform all validations associated with aValidationCategory."
(self validationTests at: aValidationCategory)
do: [zeachTest | self perform: eachTest]

validationTests

"Private - Answer a dictionary of validation tests. The key is a symbol
representing the category of the change.
The value is a list of selectors for each test that should be performed.
This really should be cached in a class variable."
~ldentityDictionary new

at: #mewMeeting put: #(checkTravelTime checkConflicts);

at: #removeMeeting put:

#(checkRequiredMeetings notifyAttendees);
yourself,

So what happened? When the AppointmentBook proposed to
make a change to itself, it actually created a what-if copy. The
copy was a standard copy with a pointer back to the original
object and a validation flag turned off. Then, the original ob-
ject’s “proposed change” (adding the meeting) was actually
made to the copy. After the meeting was added, the original
AppointmentBoak asked the new copy to validate itself.

To avoid blanket error checking each time a change is
made, a category of validations was specified. Each category
can be associated with an array of validation methods appro-
priate to the situation. In this case, the methods #checkTravel-
Time and #checkConflicts were the relevant tests for adding a
meeting. The final step was to perform the tests.

The protocol support methods above need only be coded
once. We can now focus on the validation and testing meth-
ods, which are structured differently in light of what if.

checkTravelTime

"Check for meetings with inadequate travel time and raise an
exception if any are found."
self meetings do: [:eachMeeting | | nextMeeting |
((nextMeeting := self meetingAfter: eachMeeting) notNil and:
[eachMeeting tooFarFrom: nextMeeting])
iffrue: [self class invalidModelSignal

raiseRequestWith: self original
errorString: self tooFarAwayString]].

isInadequateTravelTime
"Answer true if there are any meetings with inadequate travel time
between them.
If exceptions are raised during the check, I know there is inadequate
travel time, and I
can answer true in the handler."
self class invalidModelSignal

NovEMBER—-DECEMBER 1993

Digitalk Smalltalk/V for Windows, v2.0, list $499 $295

Digitalk Smalltalk/V for OS/2, v2.0. list $995 $595

plus shipping and handling. Prices subject to change without notice.

Smalltalk
Store

... devoted exclusively to Smalltalk products.

405 El Camino Real, #106

Menlo Park, CA 94025

voice: 415-854-5535

fax: 415-854-2557

compuserve: 715046,3160

email: ...'uunet!smiltlk'info

Ask to be put on our mailing list.

Developers: The Smallialk Store is looking for Smalltalk products
10 sell. If you would like us to sell your product (present or

future) please contact us. We want to make you money.

- -]

handle: [:ex | “true]
do: [self checkTravelTime] .
~Malse

Now we have one method, #checkTravelTime, which con-
tains the logic to check for adequate trave] time between meet-
ings. The accompanying testing method #isInadequateTravel-
Time can simply be defined in terms of the validation. This is
especially useful, since the presence of testing methods for ev-
ery validation allows user interfaces to give early feedback to
the user or perhaps disallow an invalid change,

It is important to note that the validations themselves are
performed by the new what-if copy, not the original object. Any
exception handlers for our signal must be aware that the origi-
nator of the exception is the validating copy. The parameter of
the exception is the actual object we attempted to change. We
could just as easily implement a new exception raising method,
#raiseFrom:with:errorString:, that would allow us to declare the
original object as the originator and the copy as the parameter.
In either case, it is important to document the originator and
parameters of any resultant exception. It’s a good ideato pro-
vide the exception handler with both the original state and the
what-if state for maximum flexibility handling the problem.

WHY BOTHER WITH WHAT IF?

Was it worth it? We may have had some ugly code to start with,
but look at all the code we had to write for what if. For an ob-
ject with few validation tests, this may be overkill. However, if
your domain is heavy on rules for state validation, you have a
lot to gain. My current implementation abstracts most of the
protocol in a superclass, ValidatingModel. My subclasses simply

& WHAT IF? A PROTOCOL FOR OBIECT VALIDATION

define the categories of exceptions and the logic for the tests
themselves. And as always, the more a process is structured, the
more it can be automated. I can build simple code generators

. that allow me to define the test categories and validation logic

and generate appropriate setters and test methods at the push
of a button. Guess what? I'm suddenly concentrating on the
rules and how to express them, rather than where to put them.

"CAVEATS

With every convenience comes a price. If I generalize the vali-
dations, they will ultimately test more conditions than neces-
sary. For example, when [add a meeting, I should only have to
check the travel time for the previous and next meeting. Gen-
eralizing the test means I iterate through all the meetings, in-
cluding those that may have been tested when they were added
previously. Making the validating copy certainly costs more
space, even if temporarily. In domains with complex and
changing rules, these drawbacks have been acceptable for me,
but keep themn in mind during performance profiling. Opti-
mization may be necessary if a particular validation is expen-
sive in terms of time or space.

EXTENSIONS

Possible extensions to this technique are numerous. Rich pro-
tocol can be added to the ValidatingModel to include block
changes (anAppointmentBook validateAfter: [some changes]),
delayed validation (anAppointmentBook validationOff), and cate-
gories of initialization. I am currently exploring techniques for
employing a what-if approach without using inheritance as the
framework for reuse.

Code generators could become a substantial project, pro-
viding many options for initialization, categorization, and
specification of the validation logic. Rules could be specified
with a rules language rather than Smalltalk code. Once a rules
definition language is defined, the rules could be specified dy-
namically using input scripts.

CONCLUSION

While some domain objects can live a productive life without a
specification for validation, those with complex rules that are
at the mercy of a user can benefit from standardizing their vali-
dation techniques. Any technique that can help separate the er-
ror tests from the semantics of the “normal” course of action
produces code that is easier to read and maintain. It also helps
to separate two very distinct tasks—maintenance of an object’s
services and maintenance of its rules, Bf

Susan Griffin is an independent Smalltalk developer assisting
clients in the design and development of systems in Smalltalk/V
and VisualWorks, Her interests include discovering reusable de-
signs and improving the usability of systems. Prior to founding
Griffin & Griffin, she was a Smalltalk instructor at Knowledge
Systems Corporation. Further discussions of this topic or others
are welcomed via phone at 919.676.2294 or email at
72147.2656@compuserve.com.

6

THE SMALLTALK REPORT

MALLTALK IDIOMS

It'’s just not the case

he topic of this month’s column is case statements:
I practical necessity or pernicious contarminant? My in-
terest in the topic comes from several areas at once.
SmalltalkAgents has added a form of case statement to their
Smalltalk for the Macintosh. CompuServe has hosted a lively
discussion of isKindOf: and its relatives, Finally, net news has
had a discussion of case statements. What's the deal?

Cutting right to the punch line, I think case statements
are an inappropriate holdover from procedural thinking.
While vital in procedural languages, their use in object pro-
grams is obviated by the much more powerful mechanism of
the polymorphic message send. Anytime you find yourself
wishing for or using a case statement, you have an opportu-
nity to take advantage of objects instead. The non-case ver-
sion will yield a more maintainable, more flexible, more
readable, and faster solution.

Of course, [can’t just say case staternents are bad, I have to
demonstrate how to avoid or eliminate them. Here is the first
of two patterns that go a long way toward getting rid of the
need for case statements.

PATTERN: TURN CLASS TESTS INTO MESSAGES

Context

To get code running, you occasionally have to insert an explicit
test for the class of an object, either through sending it the
message class or isKindOf:, or by introducing a testing method
like isInteger, which is implemented in Integer to return true
and in Object to return false.

Problem

Class tests, explicit or implicit, are a maintenance nightmare.
An operation like refactoring an inheritance hierarchy can
break seemingly unrelated code. How can you eliminate class
testing?

Kent Beck

Constraints

* Limited impact. You'd like the solution to affect as little
code as possible.

* Readability. The solution should reveal more of the pro-
grammer's intent than the original code.

* Maintainability. The solution should yield code that is less
susceptible to breaking because of unrelated changes than
the original.

I did a little research into the various images’ use of class tests.
Table 1 provides the raw results. These numbers need a little
interpretation. There are legitimate uses for isKindOf:, like writ-
ing generic comparison methods. There are also legitimate uses
of class. It is used heavily in V Mac 2.0 to return instance-
invariant information.

The most interesting comparison in Table 1 is between V
Win 2.0 and V Mac 2.0. Both images come from a common
base and share a lot of code. The Mac image shows the effects
of being worked on after Digitalk bought Instantiations, which
brought a new sense of discipline to Digitalk’s code. Both the
reduction in the reliance on isKindOf: and in the increase in the
use of class, not for class testing, but for instance-invariant
behavior seem to be the result of the strict programming style
developed in Portland.

Solution

Replace the test with a message. Implement the conditionally
executed code as the method in the class tested for. Implement
the conditionally executed code as the method in the class
tested for. Implement an empty method (or one that returns a
default answer) in all the other classes the object could be.

Example
Here is an example from the V Win 2.0 image. The method

: . M
Table 1. How various images use class tests. :
V Win 2.0 V Mac 2.0 VisualWorks 1.0 ENVY for VisualWorks

Senders of isKindOf: 44 26 161 214
Senders of isMemberOf: 3 1 26 26
Senders of class 156 810 573 823
is... methods in Object 43 18 11 13

NOVEMBER—DECEMBER 1993 7

Now! Automatic

Documentation

Synopsis produces high quality class documentation
automnatically. With the combination of Synopsis end
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

Documents Classes Automatically

Provides Class Summaries and Source Code Listings
+ Builds Class or Subsystern Encyclopedias

~ Publishes Documentation on Word Processors

- Packages Encyclopedia Files for Distribution

*

-

« Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every scrious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

For Smalltalk/V Development Teams — With Synopsis

Development Time Savings

Coding

Without
Synopsis

With
Synopsis

Productls Supported:
Digitalk Smalltalk/V
OTI ENVY/Developer for Smalltalk/V
Windows: $295 0S/2: $395

oy Synopsis Software
8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

(=4

| think case statements are an
inappropriate holdover from
procedural thinking.

9

ApplicationWindow>>isTextModified returns true if any of the
pane’s children has modified text. It looks like this:

ApplicationWindow>>isTextModified
children
detect: [-each | (each isKindOf: TextPane)
and : [each modified]]
ifNone: [*false]
“turn

This method will break if you add new text editing panes that
don’t inherit from TextPane. Using the transformation de-
scribed above, we implement two methods:

TextPane>>isTextModified
~self modified "This is the conditionally executed code"

Pane>>isTextModified
~alse
Then the original method simplifies to:

ApplicationWindow>>isTextModified
children
detect: [-each | each isTextModified]

“ifNone: [*false]

“true
This transformation has done two things. First, the code is eas-
ier to read. I can read it as saying, “I have modified text if any
of my children have modified text.” No such simple statement
can be made about the original. Second, the intent of my code
is much clearer. If I want to create a subclass of Pane that edits
text, it is clear from browsing the code in Pane that I will have
to override isTextModified. Before, whatever behavior depends
on checking for modified text (like prompting before closing a
window), would simply not have worked, and you would have
a chore figuring out why.

OTHER PATTERNS
You may be able to factor the implementations of the blank
methods higher in the hierarchy (Move Common Methods Up).
What if you have an object that can be in one of three
states, and you have to take the state into account in several
methods? Seems like a natural use of a case statement, doesn’t
it? In my next column, I'll present the Multiplexer pattern,
which improves your design in such a situation at the same
time it eliminates the need for a case statement

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. He is also
the founder of First Class Software, which develops and dis-
tributes reengineering products for Smalltalk. He can be reached
at First Class Software, P.O. Box 226, Boulder Creek, CA 95006-
0226, 408.338.4649 (voice), 408.338.3666 (fax), or 70761,1216
on CompuServe.

THE SMALLTALK REPORT

UTTING IT IN PERSPECTIVE

Rebecca Wirfs-Brock

Designing scenarios: making the
case for a use case framework

from many different angles. They refine ideas of how

their systems should respond while they are in the
middle of building and discarding ideas about how their de-
signs should work. Getting a design to gel involves making
assumptions, seeing how they play out, changing ane’s mind
or perspective slightly, and reiterating. Design is a difficult,
involved task. It inherently is a nonlinear process. Yet, we are
asked to trace our design results back to system require-
ments. And if we uncover some implications during design,
we’d like to tune our system requirements to reflect neces-
sary design compromises.

To meet these challenges, we need solid conceptual
bridges to help us straddle the concerns of what the system
must do (analysis) and how it will be accomplished (design).
We also need techniques for adding detail and driving out
different perspectives during this process. In this column, I'll
describe experiences we have had bridging system require-
ments, object design and user interface design by applying
use cases.

Experienced object designers explore the design space

WHAT IS A USE CASE?

Use cases, scenarios, or scripts are roughly synonymous terms
forimportant ways to focus our design activities. I prefer the
term use case (although quickly saying it three times can leave
your tongue tied) because it emphasizes usage.

A use case is a textual description of a sequence of inter-
actions between an actor (roughly corresponding to an ex-
ternal agent or class of users) and the system we are design-
ing. Use cases were first described by Ivar Jacobson in
OBJECT-ORIENTED SOFTWARE ENGINEERING: A USE
CASE-DRIVEN APPROACH.!

Use cases have been around in various forms for quite some
time, Jacobson, however, made the keen observation that use
cases can be treated as refineable, extensible, and even reusable
specifications of system requirements. We’ve had these same
goals for object designs. We know that it is harder to actually
accomplish them than it is to talk about them.

Use cases are a pretty powerful modeling concept, once we
know how to effectively build them. What sounds good in the-
ory needs to be practically applied within a basic system devel-
opment framework. A flock of questions come to mind:

* What process can you use to build good ones?

- How should they be captured?

* How detailed should they be? Are there different levels of
detail?

* When are you done finding and describing them?

I've had heated discussions about these exact same issues for
object design. It isn't surprising that these themes keep re-
curring. People who build and describe software systems
want to know how much they should describe before they
truly understand what they are building. The answer to this
question depends on how one intends to apply that descrip-
tive information.

Many people claim to be using use cases. It’s a trendy con-
cept. Yet they all seem to be applying good use case construc-
tion techniques at completely different levels of detail! This can
be incredibly confusing to an innocent bystander, manager,
student of design technique, or end-user!

Being the pragmatic type, [really want to get to the heart of
the matter. I've known for a long time that you really need to be
aware of what perspective you are taking during a discussion.

I was stumped by the question of what’s a good use case?
until I read about the what vs. how dilemma in Alan Davis’
excellent book on software requirements.2 Davis discusses

user needs @————__ what
how

possible solution space ~ @——— what

. how
chosen solution's @———
behavior €————— yhat

. 4— how
system architecture ‘\
what

- T - how
design specifications <
what

algorithms how
code \ what
how

Figure 1. Requirements framework.

NoVEMBER—-DECEMBER 1993

= PUTTING IT IN PERSPECTIVE

the requirements analysis dilemma. Claiming that require-
ments are a statement of what not how is extremely simplis-
tic (and insufficient for us to know how to pick the level we
want to be working at). Many prominent requirements tech-
niques are really modeling different requirements! Davis
presents a nice framework for discussing various methods
(Figure 1).

Each item in this figure can be said to rightfully be a re-
quirement. From one perspective, each item can be considered
a what (a reasonable thing to include in a statement of require-
ments), or a how (something beyond scope). Depending on
your viewpoint, you can argue for or against it. This is fun
reading. It’s good food for thought the next time you find
yourself debating with your manager or colleague about
whether some design activity is appropriate.

The key to solving our use case dilemma and keeping our
sanity is to realize that one person’s what is always another’s
how. Just as one size of requirements doesn't fit all, one
canonical use case format won’t work either. We need to for-
mulate use cases slightly differently if we want to apply them
to different purposes. Yet if we are careful not to get too ar-
cane, these use case descriptions can be understood by a wide
range of people.

What we really need is a conceptual map for describing and
refining use cases, similar to the one Davis proposes for think-
ing about requirements. Once we have this framework, I am
perfectly content to initially state, “It depends,” and try to as-
certain real needs before coming up with a reasonable answer
to the question of what makes a good use case?

One answer doesn't have to fit alll New object designers
need descriptions broken down into fairly detailed steps. Expe-
rienced designers are comfortable leaving out details that are
easy to infer from the rest of the design. Those focused on de-
signing user interactions need additional information. Teams
transitioning formal system requirernents on a large project
into object designs undoubtedly need lots of precision.

Here’s my proposal for a use case framework (Figure 2).
This framework could plug into Davis’ picture after the system
architecture and present an augmented view of his design

high level description

of business scenario
‘\ what
/ hOW
system/actor

conversation

how

initial object model /
how

detailed object model /

Figure 2. A use case framework.

specification models. We have experimented with several of
these forms (with varying degrees of expressiveness and for-
malism) on several projects and in numerous mentoring and
teaching situations.

A FIRST ATTEMPT AT DESCRIBING A USE CASE

Let’s take a quick stab at writing a very high-level scenario for
our hypothetical automated teller machine (ATM). We’ll re-
visit and tune this use case to suit various needs.

Use Case: Performing an ATM Financial Transaction

A bank customer can select a financial service from several
available transactions. These transactions include cash with-
drawal or deposit, account balance inquiries, and funds trans-
fer between two accounts. Once a customer has selected a
financial service, she will be prompted to enter information
necessary for performing the financial transaction. Upon com-
pleting a transaction,the bank customer may perform addi-
tional transactions or indicate that she wishes to terminate the
ATM session,

This description is so non-specific that we could present
any design (a human teller might satisfy these requirements or
a fairly ridiculous design that has users entering their bank ac-
count numbers or cash amounts in Morse code) and argue
that it met the requirements. Design students and developers
need more guidance.

For large systems, there will be a wealth of additional require-
ments (ranging from user interface guidelines to detailed busi-
ness function descriptions to banking regulations to process
specifications, and on and on). All this information still needs to
be distilled into a comprehensible form in order to commence
design. We can always refer to the wealth of supporting require-
ments material, we just don’t want to be overwhelmed.

In less formal design efforts, we need to supply more infor-
mation. In either case, let's see how we might add more detail
to this nearly content-free description.

OUR FIRST REFINEMENT

We have found it useful to clearly demarcate actor actions from
system responses. This allows us to add more or less detail to ei-
ther side of the conversation, as you'll see shortly. There are two
central parts to this system/actor conversational form:

1. A description of the actors inputs to our system

2. A corresponding description of our system’s responses

Together, these side-by-side narratives capture a dialog be-
tween an actor and our system. There is also a list of alterna-
tives to the main course of the use case. These alternatives rep-
resent a reasonably complete list of conditions that system
designers must be able to detect and to design appropriate re-
sponses for.

Use Case: Performing a Withdrawal Transaction
Actor: Bank customer
Overview: Bank customers can perform any number of finan-

10

THE SMALLTALK REPORT

Object Transition

by Design

ANALYSIS & DESIGN

‘3{

CUSTOM CONTRACTS

Object Technology Potential
Object Technology can provide a
company with significant benefits:
» Quality Software

* Rapid Development

¢ Reusable Code

* Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 19835, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, Tirst Union, Hewlett-Packard,
IBM, Northern Telecom, Southern
California Edison and Texas Instru-
ments to successfully transition to
Object Technology.

ADVANGED TRAINING

TEAM REQUIREMENTS

APPRENTICE PROGRAM

MENTORING

TEAM TOOLS

KSC Transition Services

KSC offers a complete training

curriculum and expert consulting

services. Qur multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

e Introductory to Advanced

Programming in Smalltalk

e STAP™ (Smalltalk Apprentice
Program) Project Focus at KSC.

e 00 Analysis and Design

¢ Mentoring: Process Support

SOLUTIONS

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of “Best of Breed” third
party tools and KSC value-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server
environment,

Design your Transition

Begin your successful “Object
Transition by Design”. For more
information on KSC’s products and
services, call us at 919-481-4000
today . Ask for a FREE copy of K5C's
informative management report:
Software Assets by Design.

IS

Knowledge Systems Corporation

OBJECT TRANSITION

BY

« 1992 Know ledge Syslems Corporation.,

DESITGN

114 MacKenan Dr.
Cary, NC 27511
(919) 481-4000

s PUTTING IT IN PERSPECTIVE

|7Table 1. Typical user-ATM interaction.
Actor Action Systern Response

Present the user with a list of
accounts

User indicates she wants to
perform a cash withdrawal

Prompt the user for cash
amount

Selects a particular account

Validate available funds on
hand

User cash amount must be
in multiples of available de-
nominations

Update account balance
Withdraw request must be
within daily ATM limits and
cash in account

i Indicates cash amount

Log transaction on external
record and prepare receipt
information

i Dispense cash and sense
when user has removed it
from dispenser

Ask user if another transac-
tion is desired

User retrieves cash

Print out receipt and eject it
Eject user’s card

User indicates she is finished

Alternatives:

1. Insufficient funds on hand.

2. Insufficient funds in customer account.

3. User doesn’t respond to any part of thedialog (within a
sufficient time period).

4. User wishes to perform an additional financial transaction.

cial transactions once they've presented the system with an un-
expired, not-known-to-be-stolen bank card, and entered a
valid personal identification number. The typical custorner
performs a single transaction before terminating a session with
the ATM (see Table 1).

Use cases should be constructed by business domain—
knowledgeable people. The key to building a good use case is
to remember that it serves two purposes: It will guide develop-
ers and be reviewed with clients. Use cases should be written
for both audiences. Actor interactions and system responses
need to be described at a fairly high level.

On the other hand, descriptions of system responses must
contain sufficient detail so that object designers working with
analysts can design a reasonably detailed object model. Walk-

ing this fine line between sufficient detail and bogging down in
details requires practice and critique.

Level of Detail

The sample use case we wrote still needs more detailed de-
scriptions before we can design our system. In particular, the
syster responses need to be expanded upon to include:

« Steps and logical sequencing of actions that must be per-
formed by the system.

« A description of necessary information that must be sup-
plied by the actor. Reasonable defaults (if any) for informa-
tion not supplied.

» Description of any data validation or business constraints
that must be checked before performing a system action.

- Format of reports that are generated.

- Timing of and contents of any significant system feedback.

This could be captured in other documents, or less formally,
much of this information might be directly placed in our ob-
ject model. It needn’t be crammed into either side of the con-
versation. Side notes and additional constraints make it hard
to follow the thread of conversation. _

We wrote our system/actor conversation for a concrete sit-
uation, withdrawing cash. We could have written it more ab-
stractly, where the system response and actor conversations
would describe any of the permissible transactions. If we wrote
at this more abstract level, we’d have to remove a fair amount
of detail from both the actor and systern dialogs. For example,
since not all transactions involve cash amounts specified by the
user, we'd have to state that the user is prompted for addi-
tional information, if required, and that the bank customer
enters information. We would also have to remove alternatives
that don’t apply.

This is too abstract for my tastes. This feels uncannily like
the process I go through when I refactor responsibilities
during detailed design. I do this only after I have responsi-
bilities assigned to concrete classes. When I am carving up
the systems responsibilities and finding more general ways
of stating things, I also take pains to assign details to con-
crete classes. I'm not losing class-specific behavior during
this refactoring.

I find it useful to keep use case conversations pretty specific
for another important reason: They are understood by ana-
lysts, users, and developers. We can periodically review and
verify correctness with clients. They will be refined over time
to reflect actual implementation and to include more detail,
particularly on the system-response part.

TUNING THE CONVERSATION

Conversations can also be worked on in order to tune the user
interface of our application even before building a prototype.
The most likely thread through the conversation is termed the
main course. Other optional paths are alternatives. On a num-

continued on page 20...

12

THE SMALLTALK REPORT

Uls

WindowBuilder: A

Ray Horn

do-it-yourself extension

indowBuilder, originally developed by Cooper &
WPeters and now distributed by ObjectShare Systemns,

is a powerful GUI builder. WindowBuilder allows
you to lay out user interfaces graphically, save them as classes
with source code, and then edit these same interface classes
graphically.

Cooper & Peters created WindowBuilder to be easily ex-
tended. This column explains how to extend WindowBuilder
by adding a custom pane and its associated editing dialog. The
editing dialog appears when you press the Other button in
WindowBuilder.

A SAMPLE EXTENSION

The custom pane you will create is a list box with a horizontal
scroll bar in addition to the vertical scroll bar that list boxes
normally have. In Windows a list box gets a horizontal scroll
bar when its horizontal extent is set to a number of pixels
greater than its width.

You might reasonably expect the extent to be adjusted auto-
matically so that horizontal scroll bars appear and disappear as
needed, the way they do in MS Windows program groups. Un-
fortunately, this does not happen. So in this example the width
must be set explicitly once. You may want to extend this exam-
ple to automatically adjust the extent as list iterns are added or
removed.

Step 1: Create the Custom Pane

Create HorizontalScrollListBox as a subclass of ListBox. Horizon-
talScrollListBox inherits the following method from ListBox for
setting its horizontal width:

setHorizontalExtent: pixelWidth
"Sets the width in pixels by which a list box can be
scrolled horizontally. If the size of the list box is
smaller than this value, the horizontal scroll bar will
scroll items in the list box. If the list box is as large
larger than this value, the horizontal scroll bar is
disabled."
self isHandleOk
ifTrue:[
UserLibrary
sendMessage: self handle
msg: LbSethorizontalextent
wparam: pixelWidth
lparam: 0

]
ifFalse:[self propertyAt: #horizontalExtent put: pixelWidth].

Override this inherited method so that the value of horizon-
talExtent is always at hand in the image:

setHorizontalExtent: pixelWidth
"Make sure the value is always stored in the properties dictionary."
self propertyAt: #horizontalExtent put: pixelWidth.
super setHorizontalExtent: pixelWidth.

Now it is safe to write a simple method to get the horizontal
extent:

getHorizontalExtent

"Answer the width in pixels by which a list box can be scrolled
horizontally"

~self propertyAt: #horizontalExtent

Step 2: Create the Matching Interface Object
All subpanes edited in WindowBuilder have a matching inter-
face object. InterfaceObject is a class-specific to WindowBuilder.
Interface objects know how to draw themselves on a LayoutPane
{another WindowBuilder class) and how to produce source
code for the pane they represent. The interface object for List-
Box is PListBox, a subclass of InterfaceObject. If some distant sub-
class of Subpane does not have an interface object named after
it, then the interface object for the superclass is used. If you
were to use HorizontalScrollListBox now, WindowBuilder would
use PListBox to represent it and generate code.

To edit horizontal scroll list boxes differently from list boxes,
you need to create the class PHorizontalScrollListBox, as follows:

PListBox subclass: #PHorizontalScrollListBox
instanceVariableNames: 'horizontalExtent’
classVariableNames: "
poolDictionaries: "

The instance variable horizontalExtent is the horizontal scroll
bar’s width. Horizontal scrolling is done in units of pixels,
rather than characters.

PHorizontalScrollListBox needs accessing methods called hori-
zontalExtent and horizontalExtent:, a getter and setter.

horizontalExtent
"Answers the horizontalExtent"
~horizontalExtent.

horizontalExtent: anInteger
"Sets the honizontalExtent to anInteger”

horizontalExtent := anInteger.

NovEMBER—DECEMBER 1993

13

e b e i

. HorizontalScrolliListBox Atitibutes

Horz Scroll Bar Pixel
Width:

Figure 1. Window displayed by the WBHorizontalScrollListBoxEditor.

WindowBuilder provides a number of standard methods
that must be overwirtten by our custom InterfaceObject:.

« The attributeEditor method is called when the Other button
is pressed.

attributeEditor
"Answer a dialog for editing unique attributes."

~WBHonzontalScrollListBoxEditor new

* The copySpecificsTo: method makes a copy of the parameters
specific to PHorizontalScrollListBox when the WBHorizon-
talScrollListBoxEditor OK button is pressed:

copySpecificsTo: aPane
"Copy all of my attributes to aPane."
aPane
horizontalExtent: self horizontalExtent.

The displayWith: method redraws PHorizontalScrollListBox
when necessary.

displayWith: aPen
"Redraw, with or without scroll bars, as appropriate.”
(self horizontalExtent > 0)

Events

ifTrue: [self displayWithBothScrollBars: aPen]
ifFalse: [self displayWithLeftScrollBar; aPen).

* The initjalize method initializes PHorizontalScrollListBox and
sets horizontalExtent to 0.
initialize
"Initialize a new instance of this object."
super initialize.
horizontalExtent := 0

* The readSpecificsFrom: method reads the specific parameters
from the real HorizontalScrollListBox.

readSpecificsFrom: aPane
"Read the specific settings from aPane."

self horizontalExtent: aPane getHorizontalExtent.

* The storeSpecificsOn: indentString: method writes source
code for the HorizontalScrollListBox during a save operation.

storeSpecificsOn: aStream indentString: indentString
"Store the specific settings on aStream."

(self horizontalExtent = 0)
ifFalse: [
aStream
nextPutAll: ;'; cr;
nextPutAll: indentString,'setHorizontalExtent: ', self
horizontalExtent asString.

1

It is not widely known that WindowBuilder maintains a
dummy invisible instance of TopPane during an editing session.
WindowBuilder uses this invisible TopPane to obtain the vari-
ous parameters that were originally set in the source code.

WindowBuilder uses the InterfaceObject method storeOn: in-
dentString:. to write source code for each control being edited.
WBRealLayoutPanes send storeOn: indentString: to InterfaceObjects
from generateCode.

Step 3: Create the Other Editor
The WBHorizontalScrollListBoxEditor is responsible for displaying

Inlitled|

Events

{4 :

styte: IRV

e e L S—
Figure 2. Layout pane with a normal HorizontalScrollListBox or ListBox on it. Figure 3. Layout pane with a horizontal scroll bar defined by using the
Other pushbutton editor.

THE SMALLTALK REPORT

the window shown in Figure 1. The user enters the width of the
horizontal scroll bar as an integer pixel value as shown in the
figure.
To edit the HorizontalScrollListBox’s parameters we must cre-
ate the WBHorizontalScrollListBoxEditor.
changedHorzScroliWidthEF: aPane
"This method is called for every keystroke the user enters to validate

the entry."
| avalue |

aValue := aPane contents.

((aValue notNil) and: [aValue asInteger > 0])
ifTrue: [(self paneNamed: 'horzScrollBarWidthST') enable]
ifFalse: [(self paneNamed: 'horzScrollBarWidthST') disable].

initWindow
"The window is initialized with the opening values."
| horzExtent |

(self paneNamed: 'horzScrollBarWidthEF')
contents: (horzExtent := thePane horizontalExtent) asString.

(horzExtent > 0)
ifTrue: [(self paneNamed: 'horzScrollBarWidthST') enable]
ifFalse: [(self paneNamed: "horzScrollBarWidthST") disable].

ok: ignore
"The Ok button has been pressed so save the changed parameters
and close the dialog."

thePane
horizontalExtent: (self paneNamed: "horzScrollBarWidthEF')
contents asInteger.

self close

Step 4: Tying it all together
The final step is to test the HorizontalScrollListBox custom pane.
Figure 2 shows a layout pane with a normal HorizontalScrollList-
Box or ListBox on it. The layout pane contains one Horizon-
talScrollListBox object. HorizontalScrollListBox can be added to a
layout pane by using the Add Custom Pane. . . menu. Refer to
page 19 of the WindowBuilder reference manual for more de-
tails concerning how to manipulate custom window panes.
Figure 3 shows a layout pane with a HorizontalScrollListBox
that has a horizontal scroll bar defined by using the Other
pushbutton editor.

CONCLUSION

WindowBuilder can be extended rather readily. The result is an
easier to use, more powerful interface builder. The Horizon-
talScrollListBox sample in this column is quite simple, but the
same techniques can be used for a more elaborate extension of
the WindowBuilder environment. B

Ray Horn is an independent consultant with Hierarchical Applications
Limited (HAL) in Cary, NC. He has over three years of extensive expe-
rience with object-oriented software design and development in
Smalltalk/V WIN/PM/VOS2, Smalltalk-80 R4.1 and Envy Developer
R1.41. Ray may be contacted via email at HBNH98A®@Prodigy.com or
through the American Information Exchange (AMIX).

The
Smalltalk
Report

Call for Papers

The editors of THE SMALLTALK REPORT invite you to
share your research, applications, programming
tricks and tips, etc. with our readership. If you have
a Smalltalk story to tell, they would like to know
about it. Suggested topics are:

* language issues, such as inheritance, user
interface paradiems, concurrency, persistent
objects and databases, distributed Smalltalk
issues, performance issues, typing, metalevel
programming, garbage collection, interfacing
Smalltalk with other languages or applications,
metrics
Teaching/learning Smalitalk, novel approaches,
educating management, research laboratory
reports, teaching 00D
Project management, including rapid prototyp-
ine. version or application management, team
organization, organizing for reuse
Application development tools, object editors,
CASE tools, and project management and
application development tools
Commercial, engineering, and scientific appli-
cations; application frameworks; object library
management; portability uses; object-oriented
design and analysis techniques.

Please send manuscripts or queries to:

John Pugh and Paul White

The Object People

885 Meadowlands Drive, Suite 509
Ottawa, Ontario

Canada K2C 3N2

613.225.8812

Internet: pugh@scs.carleton.ca

£

NovEMBER—DECEMBER 1993

RODUCT REVIEW

Jan Steinman

Shoot-out at the Mac corral

ne of life’s little ironies may be drawing to a close. It is
O argued that Smalltalk’s greatest mark on the world has

been via its direct influence on Apple and the highly
successful Macintosh line of computers. This Mac-Smalltalk
connection has forever changed even the greater world of com-
puting, due to its subsequent influence on the X Window Sys-
tern and Microsoft Windows.

Yet the Macintosh has never really had a credible Smalltalk
implementation. An implementation of Smalltalk-80v1 was de-
veloped at Apple in the early Mac days, but its performance was
inadequate for anything but O-O research. Digitalk produced a
useful Mac implementation, but let it languish while they lav-
ished resources on their popular MS-DOS products. In keeping
with an otherwise admirable policy of “portability at all costs,”
ParcPlace’s Mac implementations had difficult access to native
platform features and were perceived as painfully slow on all
but the top-end Macs.

Thus the machine that owed the most to Smalltalk paid it
back the least. Mac fans who were also Smalltalk fans suffered
the benign neglect of a second-string product; Smalltalk fans
who were also Mac fans worked on Suns and PC-compatibles
by day and went home to their Smalltalk-less Macs at night.

This situation is about to change with a brand-new, original
Mac implementation of Smalltalk, and a major update to a ven-
erable existing product. This article explores an exciting, though
vexing, newcomer to the Smalltalk world, SmalltalkAgents, from
Quasar Knowledge Systems. In a future article, we’ll take a look
at Digitalk’s Smalltalk/V for Macintosh, version 2.0.

ENTER SmalltalkAgents

Now Mac fans have an alternative to the ParcPlace and Digitalk
offerings in SmalltalkAgents from Quasar Knowledge Systems.
It follows the Digitalk tradition of making a clean break with its
Smalltalk-80 heritage—the class hierarchy and user interface
are much more different from Smalltalk-80 and Smalltalk/V
than they are from each other. (For convenience, we’ll refer to
the three dialects as ST-80, ST/V, and STA.)

STA departs from traditional Smalltalk in many ways, most
of which are good ideas. For instance, the global name space
has been segmented, so that class names can be repeated in
different contexts, or libraries. There are a few not-so-good
ideas, however, such as a sprinkling of C semantics that leaks
through, ostensibly for performance reasons. For now, at least,

I'll list all such differences as features, and will discuss the impli-
cations of some of these later.

FEATURES

Following is a quick list of features claimed by STA. At the time
this article was written, QKS was shipping version 1.0.1 at a dis-
count. It was missing some features slated for the “final” re-
lease, including a useful manual. The features not available at
press time are noted below. Some of these features may be
available in the currently shipping product.

- Tight, searnless integration with the Macintosh OS; direct
access to most Macintosh services, including XCMDs and
XFCNs, Quickdraw, access to Mac resources, machine and
OS interrupt handling, and class-level interfaces to advanced
Mac concepts, such as tear-off menus.

+ Scoped, nestable public namespace, rather than global
namespace, “Smalltalk” (instance of SystemDictionary) is re-
placed with multiple instances of Library. The “Environ-
ment” library has global scope; the others are accessed via
their containment relationship to Environment. Any class can
declare any library as a pool, thereby accessing that library’s
name space. One class can appear in multiple libraries, un-
der different names, which can be useful for class name
aliases, and portability between Smalltalks with different
class names.

* A unified object model, without concern for the differences
between named or indexed storage, or the size of storage el-
ements. Object state can be named or indexed, and is dy-
namically sized. All indexable objects understand streaming
protocol.

* Any object can contain “structured storage,” which is a
block of memory that is interpreted independently of the
object, for example, a Mac resource or a C struct. Accessing
such storage is direct; it does not carry the overhead of copy-
ing.

All objects are capable of functioning as Strings. Strings hold
8-, 16-, or 24-bit elements in any combination.

« Objects have property lists, which indicate such things as
whether the objects is immutable, or if it is fully resident in
memory. (All objects have the basic capability to be known

by proxy.)

16

TuE SMALLTALK REPORT

Table 1. A comparison of Smalltalk implementations available for the Macintosh.

* Inspectors were partially operational, without access
to properties, structured storage, or self.

* The Binary object loader/unloader was not available,
nor was there automatic source code management
(limited to file-in, file-out, with no crash recovery).

* WorldScript/Unicode was incomplete.

« The debugger was partially operational, with no ac-
cess to self or modification of temporaries.

The compiler had debug/trace code installed and

lacked speed.

STALO.L | STV 12 ST/V20 ENVY/VisualWorks
Hé'm;:-up time 42% 10 15% | 7.3 71% |34 | 100% | 48
image save time 00% I8 | 18% |33 | 94% |17 | 88% | 16
slapstone (no FPU) 100% 0076 | 71% |0.054 | 60% |0.046 | 13% | 0.037
dopstonc (FPU) | 74% 0.7 | 30% | 0070 | 27% | 0.061 | 100% | 0.23
| “smopstone (na FPC) | 100%, 0.10 | 46% | 0.046 | 34% |0.034 | 39% | 0.039
[smopstone (FPL) S9% 0.13 | 27% | 0.060 | 22% |0.050 | 100% | 0.22
required memory | B5% 3500 | 35% | 1465 | 65% | 2654 | 100% | 4.096
preferred memory (K) | 60% 6,000 | 20% | 1953 | 36% | 3,584 | 100% | 10003
image size () 71% 2944 | 16% |669 | 50% | 2073 | 100% | 4121
number of classes 45% 369 | 20% | 165 | 68% |553 | 100% | BI1
number of methods 34% 5892 | 20% |3490 | 59% | 10190 | 100% | 17268

= DAL interface.

« Objects receive events such as finalization prior to garbage
collection.

Source code is stored as styled text, and names may contain
16- or 24-bit characters. Syntax is added for literal styled text.

Blocks can take a variable number of arguments, and be
reflexive via the pseudo-variable blockSelf. Syntax is added to
explicitly declare local or global scoping of block arguments,
which allows much better performance if block locals can be
used. This is also an improvement over ParcPlace’s
“clean/copying/full” hidden block semantics, since only so-
phisticated developers fully understand how to write a block
for maximum perfyormance.

Class Switch supports case statements.

Local variables are automatically declared—they need not be
declared at the top of the method, as in other Smalltalks.

Call-by-reference is supported: formal parameters can be
modified, and the modification is reflected in the actual pa-
rameter in the sending context.

C-style syntax for Integer bit operations; C-semantics for
true and false. All objects are equal to true, except 0, nil, and
false, which are all equal to each other.

Arbitrary-precision primitives. This could be extremely use-
ful in financial software, since Float should not be used for
counting money!

Syntax added to support compiler directives. This has po-
tential for improving performance by providing “type hints”
to the compiler.

Pre-emptive, time-sliced (UNIX-style) processes.

General-purpose catch-throw exception handling mecha-
nism, similar to the C setjmp/longjmp.

* An event-driven (as opposed to polled), non-MVC GUI
frameworks.

FEATURES MISSING FROM BETA VERSION
The following features are referred to in the beta manual, but
were not available at the time of review.
* Only part of the GUI builder was present: The source code
was protected, and no documentation was provided.)

= 32K limit on text views.

* No network classes.

PROBLEMS

STA is a young product, and it shows in many ways, While ap-
plication crashes were rare, they did occur. On the other hand,
QKS technical service was especially responsive, both in my
personal experience and as related by others.

The STA virtual machine proved fairly stable for any
software named “1.0.1.” Only a few application crashes oc-
curred during my use. However, there does not appear to be
the equivalent of a “changes file,” and all source code is cur-
rently kept in the image. In this situation, one quickly learns to
save often! On the list of promises is a source-code database of
some kind, with multi-user facilities.

Short of outright crashes, a number of features had problems
that might be expected in such a young product. For example,
the messages in the debugger window were often wrong or mis-
leading. T became used to routinely not trusting what it said, and
opening a full debugger to see what was really happening. Even
then, the debugger is but a shadow of what Smalltalkers have
come to expect. You cannot evaluate expressions in the de-
bugged context, nor can you change the method and re-start, re-
turn arbitrary expressions, or modify temporaries.

I was unable to send messages to “self” in either an inspector
or debugger, which greatly reduced the usefulness of the debug-
ging environment, since one often goes into an inspector to
evaluate expressions, like self halt problemMethod. On the
promise list is a true breakpoint facility, which would be a wel-
come improvement over the typical Smalltalk habit of inserting
halts in the source code.

In general, the development environment has rough edges.
The browsers are impressively colorful, but lack the spatial
efficiency that users of other Smalltalks take for granted. For ex-
ample, over half the area of a typical inspector is taken up with a
large Properties check-box area, which apparently displays static
flag information that might be more efficiently displayed as a bi-
nary or hex number and legend. Code browsers devote nearly an
inch of the view to iconic buttons. This is not a product that is
comfortable to use within a 640 by 400 screen!

The euphemistically named Beta Manual, which seemed to
be galley proofs of several chapters combined with some design

NoveEMBER—-DECEMBER 1993

17

m PRODUCT REVIEW

objectives, was nearly useless, especially to an experienced
Smalltalker. Most of it was an overview of O-O principles, and
some of the example code did not even work. Hopefully, QKS
is shipping a final manual by the time you are reading this.

Mac users are generally resigned to incompatibilities with
various system extensions. [found that Now Software’s WYSI-
WYG Menus 3.0.1 caused the format menu to be unusable, and
that Adobe Type Reunion 1.1 disabled the font menu. No other
system extensions proved troublesome. (Although I did not try
STA with every system extension in the world, I normally have
three rows of icons at boot-time!)

Compared to ST-80 (and even ST/V), there are few com-
ments in the code. This is a terrible thing to do in a system that
relies so heavily on source code access, and is especially trou-
bling to those familiar with a different Smalltalk, since many
methods are close enough to make you think you know them,
but they operate differently. The lack of a manual would be lit-
tle trouble to experienced Smalltalkers if the source were better
commented.

STA handles modified keystrokes in a non-conventional
way, following the currently installed keyboard resource
(KCHR) for only shift, caps lock, and option modifiers. This is
annoying and frustrating for Dvorak typists and those who re-
map their function keys to their liking. QKS argues that there is
no standard for other modifiers, but if Claris and Microsoft can
agree that command plus whatever key is defined as “Q" always
quits an application, QKS should, too! If you use a macro pro-
gram such as QuicKeys, be prepared to lose your custom func-
tion key mappings while running STA.

Following Digitalk's lead, QKS has

work on different platforms will hate this. I had particular prob-
lems with this, since I was moving a single image between two
machines for comparative benchmark measurements. QKS
should follow the lead of all major software vendors, and exhibit
some trust in the ethics of their customner base.

COMPATABILITY

This is a burning issue of such importance that it may make or
break the future of any new Smalltalk implementation. QKS
has made a number of controversial decisions that impact
portability with existing Smalltalk dialects, decisions that
change the very relationship between basic system classes.

Protocol has arbitrarily been changed from the de facto
Smalltalk standard. For example, in other Smalltalk dialects, the
message "|" is only sent to a Boolean, and it answers the logical
OR of the argument and the receiver. STA defines it as a numeric
OR, which is called "bitOr:" in all other Smalltalks. This is much
more severe a change than the spelling of metaclass, for example.
(ParcPlace calls it Metaclass, Digitalk calls it MetaClass.)

This is simply wrong—it doesn’t matter so much if one
wants to change the implementation of classes (as QKS has with
collectives), but the very definition of an object is its behavior.
Luckily in this case, it is not such a problem, since boolean op-
erators that evaluate their argument are discouraged in favor of
“short-circuit” boolean messages, such as and: and or:.

But wait—we’re not out of trouble yet. Quick, what is 347
and: [true]? If you have been with Smalltalk for some time, you
might answer that it doesn’t make sense to send and: to 347, but
in STA, this staternent evaluates to true. An interesting side

protected some of its source code. Just

when things start to get interesting in a
debugger, you are confronted with ,—' Toe 0971471993
& 11:42:44 P

** QKS has removed the source **

This is a regrettable, but growing,

trend in Smalltalk—some may choose Serlal Number : 221 00383

ISmallhlk Agenis™ (| 0.}

] hbnx& tachnical supporl at:

B] sraTital Heap

Launched: Tue 09/14/1993 11:

Thark you for purchasing
Smal | LalkAgants™ 1.0 s

00 PM

If you hava any difflcullies or tions you can reach

Ink: “0K8" altn: support

this is the “Transcript” in
In {: “suppori@qhs.con” other Smaliiaks
S3A0-4833

Phora: 30D |
Code BugwserSrmopsioneBenchmark [N -T)

to stick with ParcPlace simply for tbeir srimtmmmn T .

complete source code access, especially - ——

to the compiler classes. Given the lack 1 | | @J I '%: | Q @_ [operations

of a credible manual, the lack of any Hierarchy Categefy Browse Modo E
source, commented or not, is inexcus- B the prfes nunbars batsesn Window

able. QKS has several years headstart

This asthod fesis the sfficlency

Browse Pools col lectior[

on any new competitor (and ParcPlace snumeration on Integer orlthmY! Browss Libraries GUIIs space-insffiant: you
and Digitalk aren't paying attention to | rSari Mfubrines highfrinex genlil Browse Key Public wﬂ naed & Big scraen ffecl
QKS yet), so source code protection is o LV gy ;e AN
no more forgivable than copy protec- hi > ke | Noner eneonrte
! 8 PYP oo [betract |tdenting :
tion, Algebra i
Speaking of which, a real nuisance is :;::;2""“'““'
. por
the serial-number-entry style of copy applioation Module |
protection QKS has implemented. Mov- Catlegeries Protecels
i i ses i i this 7s the code 2
ing z.m Image .caus.es itto ass_ume that it Pl Ay ”l"'s";"ﬂ% nts Browse Message Implementars
has just been installed, and it requests a
most seleclion tools are fiaating paleftes Browse Methods Referencing.. F14

13-character key before doing anything

useful. People who need to test their

Figure 1. SmalitalkAgents.

18

THE SMALLTALK REPORT

Should I Use SmalitalkAgents?

V=Y ~\Considar STA. It currently has
Ihe tightest Mae integralion.

[or Macintosh

goodchoice. In particular,
5780 does tLhis extremely
ofl, often fo the expense of
other considerations.
Consider using ST-80.

for other platforms

b Nty M3 Jother Smalitalks. The Ul classes
Szl ks re naver will be, but portability aids
. are promised lor other classes.
Stick with your existing Smalltalk
if a high degree of poriability is a
musl.

onsider STA. ff currently has
the fightest Mac Infegration.

f you are a Mac—fanatic,
STA may be your best
starting poinl into Smalltalk.

onsider using
STA.

NO

The STA lools are desthelically beauiiful, bul cluttered and wasteful of
screen space. If you must develop on a small scresn, you might consider
the lass handsome, but more efficient ST-80 or STV browsers.

Figure 2. The pros and cons of SmalltalkAgents.

effect is that such boolean messages are no longer commutative:

347 and: [true] answers true, but true and: [347] answers 347.
This is going to be a maintenance nightmare—when someone
changes the order of short-circuit boolean messages to improve
performance, the behavior of entire systems may change.
(Perhaps one should not be so hard on QKS for this. Start-
ing with VisualWorks, ParcPlace changed the semantics of
and:—along with all other messages that take a no-argument
block—simply by implementing "value” in Object to return self.
The statement true ifTrue: 347 evaluates to 347, but takes much

longer to execute than true ifTrue: [347]. “Hidden-time” is a
ParcPlace weakness (as with different block semantics); it
would be regrettable to see QKS follow that path.

QKS defends their boolean equivalence policy vigorously,
citing C and Lisp (while conveniently ignoring Pascal, Modula-
2, Ada, et al), and VM efficiency as reasons. They have taken
considerable criticism from the Smalltalk community on this,
and may yet yield to pressure to conform with established
boolean semantics.

Other compatibility issues are more easily justified, and gen-
erally have workarounds. For example, much of the collection
and stream hierarchy is subsumed by class List, but with multi-
ple libraries (any of which can be declared as a pool), it is sim-
ple to create aliases for List called Array, OrderedCollection,
WriteStream, etc. QKS is promising eventual file-in compatibility
for major base classes, but as of version 1.0.1, it is safer to as-
sume that there simply is no compatibility—even basic class
creation methods, such as needed to file in, are completely
different and incompatible.

FEATURE COMPARISON

Table 1 lists some items for comparison among some Smalltalk
implementations available for the Macintosh. All measurement
figures are rouded to two significant figures, which is within the
variation we observed between trials.

The Samuelson benchmarks (THE SMALLTALK REPORT, June
1993) were run on two different platforms, both as a consis-
tency check, and to assess the contribution of a floating point
processor. The “no FPU” tests were performed on a Mac
PowerBook Duo 210, which has a 25MHz 68030 and 12MB
RAM. All other measurements were made on a Mac lIci, which
has a 25MHz 68030 with a floating point processor, 20MB
RAM, and a 32K cache card. All measurements were made un-
der “maximum performance” conditions—no system exten-
sions or other applications running, 1-bit video, and no power-
saving in effect—using System 7.1.

With two exceptions, all measurements were performed using
the “preferred memory” partition—if an implementation did not
“prefer” extra memory, I did not offer it. I felt that changing the
memory partition for one or more implementations would be ar-
bitrary, and difficult to do for all of themn in a fair manner.

The exceptions are the two “no FPU” measurements for Vi-
sualWorks. The Duo’s 12 MB of RAM was not enough to allow
VisualWorks to run with its preferred memory partition—the
Finder indicates that those measurements were run in 9,560K.
Note the dramatic, 6:1 reduction in performance in these cases.

Due to portability problems, many of the individual bench-
mark tests had to be modified to run under STA. Two Smop-
stoneBenchmark tests, primesUpTo: and streamTestsOn; would
not complete, and were removed from the suite. The smop-
stone numbers are the geometric mean of the remaining tests in
the suite.

The only VisualWorks image I had available was ENVY/De-
veloper R1.41a as delivered by Object Technology Interna-
tional. This difference should not greatly impact most measure-

NoveEmMBER—DECEMBER 1993

19

u PUTTING IT IN PERSPECTIVE

...continued from page 12

ments, except for the number of classes and methods. (A PPS-
supplied VisualWorks image is 4,694K and has 685 classes and
14,055 methods.)

The measured start-up time was for a pure image, as deliv-
ered from the vendor. The measured save time was for the im-
age plus the benchmark code. All disk-related measurements
were made from a Fujitsu 1.2 GB drive with 11mS average ac-
cess time.

The first columnn for each implementation lists that imple-
mentation’s needs relative to the greatest in the group. In gen-
eral, lower is better, although items such as “number of classes”
are better the higher the number.

SUMMARY

The SmalltalkAgents “post-Beta, but pre-real-thing” that I re-
viewed is brimming with promise. It pushes the envelope - Par-
cPlace and Digitalk are busy fighting over the Fortune 500 MIS
Sun/PC marketplace, and have neglected innovation on the
Mac.

STA's performance seems remarkable. Although it bench-
marks somewhat slower than VisualWorks, it feels faster—win-
dows open quicker, menus pop up faster, etc. VisualWorks em-
ploys dynamic translation of Smalltalk bytecodes into cached
native machine code, a technique that excels with small, re-
peated loops, which is what these benchmarks measure. The
Samuelson Benchmarks have acknowledged shortcomings, fore-
most of which is the lack of “huge operation” measurements;
such “Shopstones” could have vastly different results than those
obtained with low- or medium-level measurements.

Both exciting and troubling are basic changes QKS has made

to Smalltalk. The addition of structured storage has the promise
of greater integration of Smalltalk with other languages and sys-
terns, and the unified object model with weak references holds
the possibility of less obtrusive garbage collection, and simple
persistent storage and remote object facilities.

Yet this review was a difficult task: I wanted to like STA;
there is much to like about it, and I want it to succeed, but ver-
sion 1.0.1 is simply not ready for use as a workhorse commer-
cial development environment.

The realities of business sometimes dictate that products are
marketed and delivered before they are ready - unfortunately,
this has becomne the norm in software, rather than the excep-
tion. Given that the largest name in software produced their
first credible windowing system with a version of “3.0,” I would
encourage early-adoptors to purchase and become familiar
with Smalltalk Agents in non-critical applications until the real
“real thing” is available,

Jan Steinman is a partner in Bytesmiths, a consulting company
that specializes in helping organizations start new Smalltalk pro-
jects. He has over 11 years of object experience in embedded sys-
tems, instrumentation, scientific visualization, finance, and
telecommunications. Prior to forming Bytesmiths, Jan was project
leader for Tektronix’s monochrome Smalltalk virtual image. He
can be reached at jan.bytesmiths@acm.org.

ber of projects, we have focused a lot of attention on designing
the particulars of conversations. This fine-tuning really pays off
for systems where improving the quality of human-computer
interactions is a high priority.

In these situations, we pay particular attention to finding
the main course and painstakingly ensure that this indeed is
the most common task that users want to perform. We also
use a variety of user interface design techniques to construct
and test theories about preferred conversation patterns. This is
lot of work. Conversations can be crafted by interface special-
ists (and iteratively prototyped by designers) if the projects size
and scope warrants this attention, or they can be done more
informally.

Even though it is a good idea to separate the details of user
interface and information presentation from our business ob-
jects, the way a user converses with our software can have a
significant impact. In my experience, no application area is im-
mune. I personally know about oscilloscope control software,
customer information systems, and trip-planning applications
where seemingly minor interface features placed significant de-
mands on the underlying object model. Any effort to work out
the interface issues early made our job of developing the other
parts of the software that much easier.

CONCLUSION

Users can work with analysts and object designers to formulate
and tune system requirements. People from business, analyti-
cal, and object design disciplines can come together, learn from

. each other, and generate meaningful descriptions of systemns

that are to be built. Each participant and each project has
slightly different concerns and needs. Practical application of
use cases can go a long way to improve our ability to deliver
just what the customer ordered.

References

1. Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard. OrjecT
ORIENTED SOFTWARE ENGINEERING: A Use CASE DRIVEN-
APPROACH, Addison-Wesley, Reading, MA, 1991.

2. Davis, A. SOFTWARE REQUIREMENTS OBJECTS, FUNCTIONS AND
StaTESs, Prentice Hall, Englewood Cliffs, NJ, 1993.

" Rebecca Wirfs-Brock is the Director of Object Technology Services

at Digitalk and co-author of Designing Object-Oriented Software,
She has 18 years of experience designing, implementing, and man-
aging software products. For the last nine years she has focused on
object-oriented software. She managed the development of Tek-
tronix Color Smalltalk and has been immersed in developing,
teaching and lecturing on object-oriented software. Comments,
further insights, or wild speculations are greatly appreciated by the
author. Rebecca can be reached via email at rebecca@digitalk.com.
Her U.S. mail address is Digitalk, 7585 S.W. Mohawk Drive, Tu-
alatin, OR 97062.

20

THE SMALLTALK REPORT

...continued from page 1

References to Objects

IDL interface definitions contain the definitions of IDL con-
structs that define the basic unit of an object’s abstract type.
Each interface groups a portion of the operations and related
abstract behavior of the object into units that are meaningful to
an external client. Interface definitions may be composed and
interrelated using a multiple inheritance mechanism organizes
and determines object roles in a distributed system. Groups of
related interfaces and other declarations may also be grouped
into larger units called module definitions that capture client
and server behavior that is related to a particular application
policy or protocol.

Local objects in Smalltalk are manipulated via object refer-
ences supported by the virtual machine. Remote objects in HP
Distributed Smalltalk are manipulated via local surrogate ob-
jects which contain identifiers to uniquely identify the object
and its interface. Local calls on these surrogates are transpar-
ently intercepted by the ORB and the message is forwarded to
the remote object using this information. During remote exe-
cution, the local process thread is blocked until the result values
have been received and decoded into internal Smalltalk repre-
sentation. At that point, the local thread is resumed and local
execution continues. Since access to remote objects is transpar-
ent to the Smalltalk programmer, operations that have been
defined in IDL interfaces may be invoked as though they were
local methods on local objects.

Operations on Objects

In IDL, an operation invocation requires a reference to a target
object, a description of the operation to be performed, and a
specification of the argument values. This is completely consis-
tent with the Smalltalk object model; thus, in HP Distributed
Smalltalk, a remote method invocation is indistinguishable
from a local invocation. The only difference to the programmer
is the amount of time required to complete the request.

IDL and Smalltalk message syntaxes both allow zero or
more input parameters to be supplied in a request. For return
values, however, Smalltalk provides a single result object
whereas IDL allows multiple output parameters to be returned
from a single invocation. This is handled by returning an array
with all of the output parameters included in the order of their
declaration in the IDL operation declaration (the result value is
given last). IDL operations declared to have a type void result,
but have a single output parameter are returned as single values
just like operations with a single result value and no output pa-
rameters: the single value without an enclosing array. All para-
meters are allocated and reclaimed from the Smalltalk heap.

In addition to in and out parameters, IDL also allows inout
parameters to be defined. These parameters are expected to be
supplied in the invocation and will be returned as out parame-
ters in the resultant array. In HP Distributed Smalltalk, the in
and out values will be distinct Smalltalk objects, rather than
sharing some portion of the heap (as in C, for example). The
programmer may use #become: with caution to achieve this
effect if it is desired.

Exceptions

IDL allows each operation definition to include information
about the kinds of runtime errors that may be encountered.
These are specified in an exception definition that declares an
optional error structure which will be returned by the opera-
tion in lieu of its normal results, should an error be detected.
Exception handling is implemented using the normal
Smalltalk-80 exception handling classes Exception and Signal.
Thus to raise an exception, the programmer can merely invoke
#error:. To return an appropriate error value, the #1aiseWith:er-
rorString: operation may also be used. Consider the example
Smalltalk fragment that raises the BAD_INV_ORDER exception
(one of the standard exceptions defined in interface Object):

~ErrorSignal raiseWith: (Array
with: #BAD_INV_ORDER'
with: (Array with: minor with: #N0))
errorString: ' routine invocations out of order'

To allow the ORB to return the error result structure cor-
rectly to the sender of the method, an array must be returned as
the parameter of the error. Here, the symbolic name of the
event is provided in an array along with the type-structure rep-
resentation of the required error result values. These values will
be processed by the ORB to ensure that the same exception is
raised in the context of the client of the remote operation.

As with normal Smalltalk exceptions, a #handle:do: or other
recovery method may be used to catch and recover from these
exceptions. The main difference is that the ORB call context
will have already unwound to the site of the remote call before
the exception is raised. This greatly limits the extent to which
recovery can be accomplished.

Basic Datatypes

Each of the parameters of an IDL operation definition has an as-
sociated data type that must be declared in advance, since IDL is
a statically typed definition language. As a result, some opera-
tions that can be implemented in Smalltalk cannot be declared
in IDL at all. This is also complicated by the fact that Smalltalk
has no notion of type: All Smalltalk values are instances of a
Smalltalk class. To be able to construct valid calls on IDL opera-
tions, however, a mapping must be devised. Fortunately, the fol-
lowing type-class mapping works well enough, and useful dis-
tributed systems can be constructed which use IDL definitions.
What is needed is for the Smalltalk programmer to understand
the mapping and its limitations.

In HP Distributed Smalltalk, the following classes are
mapped directly to the required IDL basic datatypes. Instances
of these classes are passed by value during remote method invo-
cation. This means that a copy of the argument instance is pre-
sented to the server implementation.

Boolean values true and false are used to represent IDL
boolean types. Character values are used to represent IDL char
types. Float and double values are used to represent IDL float
and double types. Integer values are used to represent 1DL long
and short integer types Character and SmallInteger values may be

NoveEMBER—DECEMBER 1993

21

u THE HP DISTRIBUTED SMALLTALK IDL LANGUAGE BINDING

used to represent IDL octet types. String values may be used to
represent 1DL string types.

Constructed Datatypes

IDL Constructed types must also be mapped to Smalltalk con-
structs. Here there is more latitude for the mapping designer,
and the choices are less clearly defined. The following mecha-
nisms have proven themselves to be useful.

Enumerations An IDL type-enumeration value is constructed by
using the Smalltalk symbol that is identical to the IDL enumnerator
string. This allows Smalltalk programmers to use symbols freely
and to declare the symbol values that are legal in each parameter
situation. To preserve the IDL ordering requirements on enumer-
ations, each enumeration declaration produces a constant array
which contains its values in declared order. This constant array
may be accessed from HP Distributed Smalltalk’s ORBConstants
pool dictionary using the fully scoped name of the type.
For example:
module Chart {
enum ChartStyle {line, bar, stacked, pie);
W);

allows the symbols #line, #bar, #stacked, and #pie to be passed
as ChartStyle values in requests, Their sorting order is main-
tained in an array #(line bar stacked pie) named #"::Chart::Chart-
Style' in the ORBConstants dictionary.

Sequences 1DL sequence values are constructed using instances
of the Smalltalk Collection subclasses. Since IDL sequences are
all restricted to have homogeneous elements of the same type,
however, this represents a limitation which the Smalltalk pro-
grammer must take into consideration when defining inter-
faces. For situations where the Smalltalk value of choice is a
heterogeneous Collection subclass, consider the use of IDL type-
structure instead.

IDL sequence values returned from remote operations are
instantiated as Smalltalk OrderedCollections by default. This may
be overridden to accept and return any Smalltalk class which
has the ORB-required #at: and #at:put: methods by using a
CLASS pragma in the IDL definition.

Structures IDL structure values may also be constructed using
instances of the Smalltalk Collection subclasses. Heterogeneous
instances of OrderedCollection subclasses may be passed as para-
meter values to IDL operations, assuming that their runtime el-
ements correspond to the declared IDL types. At the server end,
an OrderedCollection will be provided to the server, which has
the same element values as were passed in by the client.

In addition, any Smalltalk class that has the ORB-required
method selectors can be used as type-structure values for remote
calls. To use this capability, the Smalltalk class name must have
been declared in a CLASS pragma associated with the IDL type de-
claration, the class must implement accessor methods corre-
sponding to each IDL struct field name, and either the class or

22

the instance must include a combined method (of the form:
#f1:f2:...fn: where each f is the i-th field name in the struct) to
set the instance state. By convention, field names which contain
underscore characters are converted to more conventional
Smalltalk notation. For example, a field named "my_field" in IDL
would require an accessing method named #myField.

For exarmple:

struct Point {
long X;
long v
) CLASS = Paint;

will allow Smalltalk points to be passed and returned without
programmer intervention, since point has methods #x, #y, and
also the class method #x:y:. Of course, points containing float-
ing point or rational values must be handled differently.

Unions IDL type-unions are represented in Smalltalk by in-
stances of the Association class, where the key of the association
is the union’s discriminator value and where the value of the as-
sociation is the union’s member. For proper operation during
remote invocation, both the key and the value of the associa-
tion must be of a type which is compatible with the respective
union declaration roles.

For example:

enum Numeric { Integer, Real, Fraction };

struct Rational { long numerator, denominator; J;
union Number switch (Numeric) (

case Integer: long intVal;
case Real: double fitval;
case Fraction: Rationmal fracVal;};

struct Point {Numberx, y; };

allows the full range of Smalltalk point values to be (awkwardly)
represented in IDL. An instance of such an IDL Point may be
constructed in Smalltalk as follows: Array with: #Integer > 5
with: #Fraction -> (3 / 4). Not a pretty sight, but it works.

Type Any In some situations, however, it is just not possible to
know a parameter’s type at IDL definition time. Thus, IDL pro-
vides a dynamic type-any that carries its associated typing infor-
mation with it at runtime. In HP Distributed Smalltalk, in-
stances of type-any are represented by an Association of the
form (obj typeObject -> obj) where the #typeObject method re-
turns a Repository meta-object that can properly encode/decode
the object’s value in an ORB packet. Since all Smalltalk objects
are inherently typed, it is never necessary to explicitly create the
type-any Association; the instance’s #typeObject method will be
called by the ORB as needed automatically. Thus, normal
Smalltalk objects may be passed as type-any parameters. To as-
sist with easy conversion of type-any Associations to normally
typed Smalltalk instances, the method #value has been added to
class Object to return the object itself.

Thus, potentially remote operations that yield type-any val-
ues can be handled uniformly by appending the #value method
to the result. If the operation is local and is returning a local

THE SMALLTALK REPORT

Smalltalk object directly, then there is no net effect. However, if
the operation is remote and actually returns an Association
value, then the value of the Association (the intended result) re-
sults. For example:

struct Point [any x, y;) ;

allows Smalltalk Points to be passed as parameters to methods
which remember to add a #value call to the point’s coordinates
before they are used. A better solution than with type union
perhaps, but it is still awkward.

Constants
IDL allows constant expressions to be declared in interface and
module definitions. In HP Distributed Smalltalk, such expres-
sions are evaluated to produce constant values each time the
Interface Repository is changed. During ORB operation, [DL
constant values are stored in a pool dictionary ORBConstants un-
der the fully qualified name of the constant.

For example:

interface foo {
const long bar=7;
):
results in the following:
(ORBConstants at: #'::foo::bar') = 7

Attributes
IDL attribute declarations are a shorthand mechanism to define
pairs of simple accessor operations, one to set the value of the
attribute and one to get it. Such accessor methods are common
in Smalltalk programs as well, thus attribute declarations are
mapped to standard methods to get and set the named attribute
value, respectively.

For example:

attribute string title;
attribute string my_name;

means that Smalltalk programmers can expect to make #title
and #title: calls to get and set the title attribute of the object. By
convention, attribute names that contain underscore characters
are converted to more conventional Smalltalk notation. For ex-
ample, "my_name" results in selectors #myName & #myName:.

Signatures of Standard Interfaces

CORBA defines a minirnal set of standard interfaces that define
types and operations for manipulating object references, for ac-
cessing the Interface Repository, and for Dynamic Invocation
of operations. These operations have been implemented in HP
Distributed Smalltalk, and may be invoked using the operation
binding discussed previously.

For example, an object reference to the Interface Repository
meta object supporting an object’s DL interface is obtained by
invoking the #getInterface method. Other calls, from the stan-
dard interfaces InterfaceDef, Container, Contained, and Object may
also be invoked on this metaObjRef to further elucidate its nature.
While the mechanisms provided in the Dynamic Invocation In-

NovEMBER-DECEMBER 1993

terface (DI1) may be used by the HP Distributed Smalltalk pro-
grammer to dynamically construct object requests, the more
conventional #perform:withArquments: method works the same
and is preferred to the more verbose DII.

SUMMARY

The preceding is a description of the [DL to Smalltalk language
binding which is provided by HP Distributed Smalltalk, In addi-
tion, HP Distributed Smalltalk also contains a number of Com-
mon Object Services and Sample Applications which extend and
apply the CORBA standard. These services allow the easy creation
and manipulation of true distributed applications by providing
standard distributed building blocks that can be used by develop-
ers. For more detailed information, contact the author. E

Jeff Eastinan is a consulting engincer in Hewlert-Packard’s Dis-
tributed Computing Program, where he is the architect of HP Dis-
tributed Smalltalk and the designer of its IDL language binding,
He has over 18 yedqrs experience in software development at HP
and has held positions in development, research, and manage-
ment. His experience with Smalltalk dates back to 1980, and he
has been active in object-oriented development at HP during the
interim. Jeff holds a Ph.D. in electrical engineering from North
Carolina State University. He can be reached at:
Jeastman@cup.hp.com. His mailing address is: Hewlett-Packard
Company, 19447 Pruneridge Road, Cupertino, CA 95014.

NOW AVAILABLE FREE OF CHARGE

Cumulative Article Index
For SIGS Publications
JOOP
OBJECT MAGAZINE
C++ REPORT
SMALLTALK REPORT
From January 1990 - 1993

The Source for information on

Object Technology

Receive a FREE comprehensive subject index to
ALL articles published. Find in—dePth, practical
information in seconds. Whether you're researching
a particular topic or are simply looking for that
landmark article you missed, this index will put you
on the right track and provide che answers your
need—fast.

To receive your FREE index
Call: 7188340170 (Customer Service)
Fax: 212-274-0646 (SIGS Publications)

SIGS Publications, 588 Broadway, Suite 604, NY, NY 10012

23

LOOK WHAT HAPPENED
WHEN DIGITALK
BROKE INTO THE BANK.

PRt g

BANK O ANMLRICA
Congratulations to WINNIR - (G953 luminaries and Fortune 500
Bank of America on their . A N managers aren't the only
new 11-state wide area net- COMPUTERWORLD - 8 ones who have recognized
work. A system they call “the OB JECT APPLICATIONS Y the value of Smalltalk/V,
most sophisticated distributed Users have discovered that

v ‘\=<")

network in the world.” ; _ Smalltalk/V is the only

With good reason. 4 BIST 1 Ol OBRNLCT object-oriented technology
Their network configuration : TEOSINGLO0LY WITHIN ' that's 100% pure objects.
tools have already won the i b dsEOR With hundreds of reusable
Computerworld 1993 Award | : SV ST classes of objects, thousands
for Best Use of Object- TN | of methods and 80 object

classes specifically designed

to build GUIs fast, Which

System Environment. means no more time spent
Of course, that's what writing code from scratch.

happens when a company T
like Bank of America turns A T BANK ON SMALLTALK/Y.

to a powerful technology like So it's no wonder that

Oriented Technology within
an Enterprise or Large

Digitalk's Smalltalk/V. : i : a&dﬂ't'“ - iy : S0 many companies are
n aaartion, our leamy/v Group doing award-winning work with
LIKE MONEY IN THE BANK. Development Tool lets large teams of Smalltalik/V. Incideng;ally, Smalltalk/V
Why are so many Fortune 500 programmers use version control to applications can be easily ported
companies like B of A switching to easily coordinate their work. Plus between Windows, 0S/2 and
B, 577 !taV? you'll be surprised at how quickly your Macintosh. And you can distribute
v Smalltalk/V lets in-house staff becomnes productive 100% royalty-free.
Smalkalky ® you show proto- with Smalftalk/V. For information on how Digitalk’s
W g types of enterprise- The bottom line is Smalitalk/V Smalltalk/V can save you time and
- - wide systems in helps a company get more done in money, call 1-800-531-2344

weeks instead of less time. Which can save very large department 310 for our special White
months. In fact, amounts of corporate cash. Paper. And be sure to ask about Digitalk's
systems as ambi- _ Consulting and Training Services.
tious as Bank of RATED #1 BY USERS TOO. Call right now, and see how
America’s can be On behalf of Computerworld, Smalltalk/V can yield a maximum

completed in as Steve Jobs presented the award to return on your investment.
little as 18 months. Bank of America. But industry

SMALLTALK/V. 100% PURE OBJECTS. DIGITALK

	By Article Title
	Designing scenarios: making the case for a use case
	It’s just not the case
	Shoot-out at the Mac corral
	The HP Distributed Smalltalk IDL Language Binding
	What if? A protocol for object validation
	WindowBuilder: A do-it-yourself extension framework

	By Author Name
	Beck, Kent
	Eastman, Jeff
	Griffin, Susan
	Horn, Ray
	Steinman, Jan
	Wirfs-Brock, Rebecca

	By Topic
	GUIs
	Product Review
	Putting it in perspective
	Smalltalk Idioms

