
The International Newsletter for Smalltalk Programmers

October 1993 Volume 3 Number 2
PRAGMATIC—
MULTIPLE—.

INHERITANCE

by Bob Beck
Contents:

Features/Articles
1

4

Pragmatic multiple inheritance
by Bob i3eok

Coping with single inheriirrce:
building tree classes
by Wuoe Ssmuelson

9 Interfacing Smalltalk with
real-time systems: parl 1
by Edward Klimss

Columns

14 Smdltalk idioms:

Helper methods avoid
unwanted inheritance
by Kent Beck

16 Getting Real:

Abstract CkSSS

by Juanita Ewi+

18 The Best of comp.lang.smalltalk:

Extendingthe environment part 2
by Alan Knight
Iinl
HIS ARTICLE DISCUSSES pragmatic multiple inheritance (PMI),

which provides a usefid subset of full multiple inheritance functional-

ity in Smalltalk. PMI does this without burdening the Smalhalk system

w“th complex multiple-inheritance semantics or otherwise damaging

the nice single-inheritance model of Smalltalk. PMI adds instance

variables in target classes, which refer to instances of additional superclasses, and

adds methods to forward messages to these instances. A new browser provides a user

interface to support browsing and maintenance of PMI relationships.

Many cases where multiple inheritance is desired involve mixing-in properties

of some sort. Mixing in a property implies adding this property to a class as if the

class fully supports the messages and state of this property, PM1 provides a means

to mix-in properties in a class definition, where these property classes aren’t ap-

propriate as a unique superclass. While in some cases a single-inheritance class hi-

erarchy can be refactored to avoid using the mix-in model, in many cases the re-

sult is neither reasonable nor intuitive. Further, even if the properties can be

added to a single-inheritance class hierarchy, it is ofien difficult to arrange that

only the desired properties are inherited, without picking up unnecessary (or un-

desired) properties in the process. PMI addresses these difficulties.

An example of such a property is dirtiness: a binary state that implies an object

has been modified relative to a more permanent copy of that object. This is an

ofien-used property (e.g., in a View to know if the state of the view has been

modified from that of the model it represents), but is awkward to place correctly in

a single-inheritance hierarchy. A common result is various forms of abstract

DirtyXxxclasses (e.g., DirtyView, DirtyModel), where each duplicates the dirtiness code.

The technique used in PMI can be done manually using existing Smalltalk

browsing tools, but it is difficult to maintain and browse this way. The PMI

browser provides an interface that makes the creation, maintenance, and removal

of PMI easy to do.

PM I as discussed in this article has been implemented in VisualWorks V1.0.

The source code for PMI has been placed in the public domain, and maybe found

via ftp in the Manchester/UI Smalltalk goodies archives (mushroom. cs.man.ac. uk

(130.88.13.70) or st.cs.uiuc.edu (128.174.241. 10)) as /pub/goodies/visual/pmi. st.

These archives may also be reached via email by sending mail to goodies-

lib@cs.man.ac,uk with the word help in the subject line.

DESCRIPTION

PMI is basically inheritance by delegation. It works by storing a reference to an in-

stance of the PMI-superclass (the class being inherited from), and providing a means

to forward messages to that instance. A class doesn’t directly inherit from another

class via PMI; rather, it includes an instance of that class among its instance variables.

PMI creates an instance variable in the new class (the PMI-subclass: The class

inheriting from the PMI-superclass), which references an instance of the PMl-su -

cm,tiuwd m p,+y.?1...

tie Smatttalk Report
Editors
John Pugh and Paul WhW

Carleton University & The O’@eel People

Si= pllBLICATIONS
Mvkiory Board

] Tom Atwood, Ot@ctDesign

Grady Booth, Rational

Gsorge Bosworlh, Digitalk

Brad Cox, Information Age Cons.iiing

hdele Goldberg, par.pta.e Systems

rom Love, IBM

3ertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems

Sesha Pratap, CenterLine .%ftwwe

Dlifl Reevea, IBM

qjarne Strouatrup, AT&T Bell Labs

)ave Thomaa, Objecl Technology International

rHESMAUTAU(REPORT

EditorialBoard
Iim Anderson, Digiialk

4dele Goldberg, ParcPlace Systems

Iced Phillips, Krmwlsdge Syslmns Corp.

Mike Taylor, O!gitalk

)avs Thomse, O@cI Technc40gyInlerrationd

Columnists
(ent -ck, First Class Software

Iuanti Ewing, Digitdk

%g Hendley, Knowledge Systems Corp.

id Klimaa, Lines Engmewing Inc.

Van Knight, The Object People

~ric Smith, Knowledge Systems Corp.

?ebecca Wirfa-Brock, Oigitalk

51GSPr.rblidons Group, Inc.
lichsrd P. Friedman
‘sunder.4 Group Publisher

M/Production
(ristina Joukhadsr, Managing Ediior

Wsan Cull&n, Rlgrim Red, Ltd., Creatiw oird.m

(aren Tongiah, Production Edtior

:wen .%nchirico, Production Coordinator

?obt Stewarl, Computer Systems Coordinator

Hrculation
3tephen W.Swle, Circulation Manager

(.S. Hawkins, FulfillmentManager

hlarketing/Advertising 1

Imes O. Spsno3r, Dirdor of Eusi~ Oeveloprma-d

My Mei62sr,Akrtii *-wdb#EwOpl
kmaa Tp, ~ ~ ~nk

ielwl NErdrg, kAmnlliaabfh9gar

krsh Hamilton, Promolbns Manager-Pubfiduns

km PoIner, Pmmd-ans Gr@ii Ariist

idministretion
lavid Chettarpaul, Accounting Manager

ames Amenuvor, ❑ookkeeper

Aargot Patrick, ~istsni to the Publisher
>hristina Thodt, Adminislraiive Assistant

Margherits R. Monck
General Manager
EDITORS’
CORNER I

Paul WhiteJohn Pugh

T

wo of the articles featured this month focus on the issue of multiple inheritance. Inheri-

tance, of course, is sold as one of the big features offered by object-oriented technology,

and when used effectively allows for significant reductions in the amount of code needed

to be written for a sotlware project. There is little argument put forward as to the merit of

inheritance as a development technique. Discussions abound, however, over whether

multiple inheritance—the natural extension of single inheritance—is usable. “Why is it

that C++’s got it, and Smalltalk doesn’t?” “Well, Smalltalk could have it if it wanted it.”

“Well, why doesn’t it?”

There will never be a definitive answer to these questions, since the answer always de-

pends on context, It will always be possible to come up with examples where multiple in-

heritance is the way to go. String as a subclass of both Magnitude and Collection, and the

implementation of ReadWriteStieam are two obvious examples taken from the base

Smalltalk class library. Similarly, one can always cite examples where the use of multiple

inheritance is a disaster waiting to happen. Religious wars always have these examples,

At the heart of the question, though, is what we are actually trying to gain by using

multiple inheritance (or inheritance for that matter!). If it’s code reduction and reuse

along with reduced maintenance costs, we find that managing single inheritance problems

is difficult, let along multiple inheritance. The problem lies with the simple fact that ob-

jects change over time. As a particular class of object changes, or a family of objects in a

hierarchy evolves, their characteristics and responsibilities change and so must their hier-

archies. Pinpointing where these changes should be made, and how to do so effectively, is

challenging and usually represents a considerable undertaking. Multiple inheritance only

compounds the problem because the evolution of a class may impact others inheriting

from it in ways that are not at all obvious or predictable; class relationships are now repre-

sented as a lattice rather than a tree.

So, is multiple inheritance a good thing? Well, perhaps, but realize that what you gain

now may actually cost you much more to maintain in the future. . . .

These comments aside, the two articles presented in this month’s issue present inter-

esting discussions on how to best use inheritance. Bob Beck describes a means for attain-

ing a limited form of multiple inheritance, where developers can explicitly “mix in” addi-

tional classes to an existing class. Bruce Samuelson discusses the implementation of a

family of tree classes exhibiting a variety of properties, highlighting the design choices

faced during such development.

Also in this issue, Ed Klimas returns with a pragmatic description of how Smalltalk can

be used in the construction of real-time systems. Kent Beck presents a pattern for dealing

with the tricky problem of better controlling what code gets inherited in a deep inheritance

tree. Juanita Ewing explains how abstract classes can actually serve in tow different roles—

as a design mechanism or as an implementation-based code-sharing mechanism. And

finally, Alan Knight continues his exploration of extensions to the Smalltrdk environment.

—L–

THESMALLTALKREPORT(ISSN# 1056-7976) is pubfisbcd9 timma year.everyn-mntbexcept fm tbe Mar/Apr,july/Aug,and Nov/Occ
cambhmxfissues Publishedby SIGSPublicationsInc., 5M Broadway,New York,NV 10012212.274,0640. @Copyri@ 1993 by SIGS
Publications.AUrightsreserved,Kepmductionof this materialby dectmnic trammission,Xeroxm my othernmtbodwillbe treatedas
a wil16dviolatirmof the US CopyrightLawand is tlatlyprohibited Materialmaybe reproducedwith expresspermissionfrom [he pub
Iisher.MailedFirstCI.ISSSubscriptionratesI ymr (9 iss”m~ dommtic,$65; Foreignand Ca”a&, $SQ Singfecopy price,$8.00,POST-
MASTERSend addrs changesand subsniptio” ordersIn THESMALLTALKREI.ORT,SubscriberServices,Oept.Sh4L P.O. BOXMUO,
Dmville, NI 07834. For servicecm currentsub~ripdons cdl @fKI.783.4w3.Submit articlesto the Fditms al 509-BB5 Meadowlands
LMve,Ottawa,OntarioK2C3N1, Cansda,613.225.SS12(vI,613.225.5943(fl.
PRINTEDINTHEUNITEDSTATES.

.-

Publishers of JOIJFrNALOF OBJECT-OUIENTED Pm.
SRAMMING, OBJECT MAGAZINE, C++ REPORT, T~E
SMALLTALKREPONT,THE INTERNATIONALOOP DIREC-
TORY,and THE X JOURNAL. I

THE SMALLTALKREPORT2

INc. The New Power in Smalhall/V Interface Development

Wincknvl)uikler as ‘fin
esscnti:ll t(x)l for clcvclop-
ing sophi,stimtecl user inter-
kwcs. “1’rxlious lxmtl cocling
()f interfaces is replmxl by
intrmxlivc visual Lwmpos i-
tion. Since its initti~l relwwe,
Wincknvliuikkx 11:1s
Iwconw [he industry Mm-
da rd GIJ1 devek)pment [d
for the Sndlrdk/V mviron-
ment. Now ObjLxtshme
brings yx)LI J whole new
Ievcl of mpbilily with
WincknvIluil&r Pro! h-cw
Functimxllity ancl pmvcr
tibouncl in this next gener~-
tinn nt’ Wincfow13uik_ler.

1 ~=FP=lP-===-?==m
Elk Edn Mew Allgn Size Qpliom Scrapbook “ “.

.& -.-, -.. :mcl OS/2 for S495. our stml-

K Asia Lwcl V~incl(]wI)Llilclcr/\~ is
still ;lvtiilxble on Wintlows
for $149.95 ;Incl 0S/2 for
$295. W-L’ofk’1” ~Llll V’,l]LIC

tmcle-in for our

Wincknvliuiklcr Cll,sl(nlwrs
\v.lnting to m(we Llp to Pro.

These procluc[s :Irc :Ils()

4J
aw.liklble in
ENVY 11/lkIId(@JI-md

l’ T12;mlWr\l conqmtible f’or-
tmts. AS with dl ot’our

■ prmfucts, WincknvIluilclcr
~ I’ro comes with ;I .30 ck[y

money Imck gumxntec. FLII1

sourer code mxl no Run-
:L.:,.. Time fem.

Some of the exciting newfeatures...

-L,sed:epe.tcd,y.,n’,
cfcvclopcr higher Ievtmge
nt’ reuv.lble wi@ts,
Compositckmes cm be

.

Ixxwsc they me C1:MS Ixwxl, they cm be ewily 5LIh-

d:lssccl; chmgcs in 1 C(mlpositel]mw arc reflected my-
w-lmre they arc LM4,

● Morplling: Allows the developer to quickly chmgc>

E31

~nlllalk from one type of control ■ Skmfl
WndmvEuilder
Othef to another, x]lowing for

L

O Smallldk

pmverful “wbflt-if style ,3 WindowBullder

visual cicv-rlopment. The ~ ~~~,

Flexibility tillowecl by
morphing will greatly enh:lncc procluctivity,

● !icr.lplkmk: Another new Fc;llure to lcwr~ge visu;~l
LXmmonent reuse, Scmr)lkmks provide ;I nwclxmi.sm for

-Acinluttnstincl

ert”ul nwchnism for linking

H“~—QI~ win~lo~s togcthc’r :ln~l sp~’ci-
tying flow ot control,

ticti(ms without hnving tn write CO(IC, These bturrx
gr~.ltly enhxncc procluc[ivity &lring prototyping.

● T(x)lll:lr: Ilwdopm cm Crmte sopllisticWLd tmllmrs

iust like the ones in the WincknvIluildrr Pro t(x)l itscll,

● ollwr rwnv t’cx[urc+ incluck’: cmhtinced duplication ;IIKI

uutip.1.stu functions, size md position indimlors,
rmhmwecl fr~ming specifkxti(m, P;mmt-ChilLl window
rdtl[ionship specifimti(m, mh:lntxd Entry Fielcl wi[h clrm-
:wler tind field ICVL4Vdickltion, :Incl much more,..

● A&-in fWm;lgL’r: Allows ck>vc’lnpers to cmily intL’gr~tc!
extensions into Wincknv[)uilr-lcr Pro’s open wchitccturc.

Catch the excitement, go Pro!
Call Ol>jectsh:]re for more infommtion.

(408] 727-3742

Objectshsre Syskems, hsc 5Town& Countg Village
Fax (40S) 727-6324 suite 735
Cmmpu.%a-ve 76436,1063 Ssn Jose,CA95128-2026

Window6”ilderand WindowBu,lclerPro are !ra&rnarks .1 Objeclshare S@ms. In.. All oher brand and producl names are regisierod kademmks .1 Ihair mspeti.e cmpames

COPING WITH

SINGLE

INHERITANCE:

BUILDING TREE CLASSES

Bruce Samuelson
Q
ow can you develop a class library using single in-

heritance for a problem domain that is most nat-

urally modeled with multiple inheritance?

Smalltalk-80 included partial support for mul-

tiple inheritance in some older versions, Re-

searchers have added experimental support to the current ver-

sion. Digitalk has added some hooks in its current version for

possible support in the future, However, industrial-strength

support is not available in Smalltalk-8t) or Smalltalldv today.

The problem domain under consideration is tree structures.

A tree is a hierarchical organization of nodes with intermediate

branches and terminal leaves. Examples are file systems, hier-

archical databases, parse trees, balanced trees, and the

Smalltalk class hierarchy. The goal is to design tree classes that

are robust, flexible, reusable, clear, simple, and reasonably

efficient in space and time. The constraint is to do so within

Smalltalk’s single inheritance model.

The tree classes have four possible instance variables:

● Key uniquely identifies a node like a database key or a dic-

tionary key

. Value stores data at the node

. SubTrees holds the immediate subnodes

. superTree points to the parent tree

Each needs a public read accessor, and all but one need a public

write accessor. With one exception, each variable is optional

and may be introduced independently of the others. This makes

24, or 16, possible cla~es. For example, for every class contain-

ing a supefhee pointer, another class can be defined without

one. Because a key cannot be defined apart from subTrees, four

combinations are ruled out, resulting in 12 possible classes.

Where should support methods (validate, tiltialize, access,

test,. ..) for an instance variable be placed? They can either be

in each class defining the variable or in a common superclass.
—.

4

The only way to organize a single-inheritance class hierarchy

that avoids duplication of support methods would be to place

them in the top-level class. If multiple inheritance were avail-

able, they could be naturally defined in several superclasses.

THREE AITEMPTS AT IMPLEMENTING TREE CLASSES

The adage is to throw the first one away if you want to get it

right. I threw the first two versions away and am still not sure I

got it right. Figure 1 shows the three design iterations. The

third has the 12 classes resulting from possible combinations of

instance variables. Later, I’ll explain the last class, BinaryTree.

There were three problems with the first two design at-

tempts, They lacked an abstract superclass analogous to Collec-

tion, making new application subclasses more difficult to write.

They forced subclasses to inherit instance variables (key and

subTrees) that the subclass might not need. And there were too

many methods with nearly identical code.

DESIGN PRINCIPLES
The third iteration of tree classes worked better. It is based on

familiar design principles. The single inheritance constraint

ofien forced these principles to be pushed to their limit.

VALIDATE THE CLASSES

A validation suite is implemented in a group of subclasses un-

der a class called Tester. Each subclass corresponds to a tree

class and has methods that exercise the corresponding tree

method. Validation can be applied to an individual tree class or

to the entire class hierarchy.

VALIDATE STRATEGIC ARGUMENTS

When a tree client sends a message that creates or modifies a

tree, its arguments get validated. This protects against building

incorrect trees and catches most errors at their point of origin.

It provides a clearer explanation of the error than would be

possible if it went undetected until later in the processing.

INTRODUCE SERVICES HIGH IN THE

INHERITANCE HIERARCHY

The higher you place a method in an inheritance hierarchy,

the more leverage you get. For example, once a collection

class defines do:, it can use several enumeration methods

defined by Collection. The tree classes work similarly. Most

methods are implemented in Tree and do not need to be

redefined by subclasses.

Three standard techniques are employed to gain leverage:

indirect reference, semantic extension, and weak (or no-op)

polymorphism. Exdmples include:

- Indirect reference. Subtrees are accessed via a message send

rather than directly, allowing many variations of subtrees

processing to be deployed.

. Semantic extension. A node’s parent (superTree) is also ac-

cessed indirectly. The notion of root is extended to trees not

containing a supertree pointer. They are defined to be their
—— .

THE SMALLTALKREPORT

object Transition
by ~~

APPRENTICE PROGRAM ;..

ADVANCED TRAINING ““%
...,:, 1

ANALYSIS & DESIGN “%
Y

,:.._

\

Object Technology Potential
Object Technology can provide a

company with significant benefits:

. Quality Software

● Rapid Development

. Reusable Code

. Model Business Rules

But the transition is a process that

must be designed for success.

CUSTOM CONTRACTS

Transition Solution
Since 1985, Knowledge Systems

Corporation (KSC) has helped

hundreds of companies such as

AMS, First Union, Hewlett-Packard,

IBM, Northern Telecom, Southern

California Edison and Texas instru-

ments to successfully transition to

Object Technology.

Is

?df

KSC Transition Services
KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable soh.rtirms. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

●

●

9

●

Introductory to Advanced

Programming in Smalltalk

STAPT” (Smalltalk Apprentice

Program) Project Focus at KSC

00 Analysis and Design

Mentoring Process Support

KSC Development Environment
KSC provides an integrated applica-

tion development environment

consisting of “Best of Breed” third

party tools and KSC value-added

software. Together KSC tools and

services empower development

teams to build object-oriented

applications for a client-server

environment,

Design your Transition
Begin your successful “Object

Transition by Design’! For more

information on KSC’S products and

services, call us at 919-481-4000

today . Ask for a FREE copy of KSC’S

informative management report:

Softwrt Assets by D@m

Knowledge Systems Coqmation 1l-t MacKenan l)r.

Cary, NC 27511

OBJECT TRANSITION BY DESIGN (919) 481-4000

.,. 1992 Know,ledgc !iyitrm+ (Iorpomtion.

■ COPINGWITH SINGLEINHERITANCE:BUILDINGTREECLASSES
—-— .
.

own root, and all methods that manage the pointer work

properly with them.

- Weakpo@sorphism.Tr eesuseno -opsanalogouslyto the

‘close’ method forstreams in Smalltalk. Aclient can operate

polymorphically without knowing what kind of tree or

stream it is talking to.

INTRODUCE INSTANCE VARIABLES LOW IN THE

INHERITANCE HIERARCHY

You should avoid introducing an instance variable until you

need it. The flaw in the first two design iterations was to define

instance variables directly in Tree rather than deferring the

definition to subclasses. The third attempt takes this deferred

approach- Instance variables are introduced one at a time as
you descend the class hierarchy, and all possible combinations

are available for anchoring application specific subclasses. The

exception is that there are no classes defining a key without

subTrees because it would make no sense.

The Smalltalk Collection classes again provide a good anal-

ogy. The superclasses of Array are Object, CoUeetion, Sequence-

ableCollection, and krayedCoUection. As you descend this chain,

capabilities for processing array elements are introduced. But

an indexed instance variable to actually hold the data is not

defined until the Array class itself. Even ArrayedCollecdon is

dataless, allowing it to anchor several subclasses.

rhird iteration shows number of methods defined by each class.

?irst attempt

Tree(lseyvalue subTrees)

GroundedTree(superTree)

;econd attempt

Tree(keysubTrees)
GroundedTree(superTree)

FullTree(vslue)
ValueTree(value)

rhird attempt

Tree() 100 methods

P1’ree (supes’rree) 2 methods
PVTsee(value) 2 methods

.SCree(subTrees)26 methods
SXliee (key)40 methods

SXPTsee(superTree) 2 methods
SWVTree(value)2 methods

SKVTsee(value) 2 methods
SPTree(superTree) 2 metiods

SPWree (value) 2 methods
SVTsee(value) 2 methods

VTme(value) 2 metiods
BimuyTree(left right) 10 methods “definedfor pedagogic proposes”

Qaming conventions for third attempt

)refix derived from

K‘k in key
P ‘p’in superTree
S ‘s’in subTrees
V‘Vin value

Figure 1. Inheritance hierarchies in three design iterations,
_- .

6

INTRODUCE INSTANCE VARIABLES INTO THE
INHERITANCE HIERARCHY IN THE RIGHT ORDER

One path of descent goes from Tree to STree to SKTree to SKP-

Tree to SKPVTree.The variables are introduced in the order sub-

Trees, key, superTree, and value. The ones requiring the most

supporting methods (subTrees and key) are introduced first

and the ones requiring the least supporting methods (superTree

and value) are introduced last. SubTrees is introduced before

key because a key cannot be defined apart from subTrees.

Figure 1 shows how many methods are defined by each

class. Those with only two methods have basic read and write

accessors for the instance variable they introduce. The hierar-

chy is arranged so that the two variables requiring the most

support, subTrees and key, are introduced only in one class

each, This prevented a major duplication of methods.

ACCESS INSTANCE VARIABLES INDIRECTLY

Kent Beck explains the advantages of accessing instance vari-

ables directly versus indirectly in the June 1993 issue of TH E

SMALLTA[.K REPORT. He favors direct access and uses indirect

only when necessary. 1’11try to show that for the tree classes,

indirect access via a message send is indeed necessary. Let’s

consider encapsulation violation, availability of a variable, and

interpretation of a variable.

Encapsulation violation is the main reason Kent gives for

avoiding indirect reference. You don’t want to publish a vari-

able’s read accessor unless clients legitimately need it. Other-

wise, internal implementation details are exposed, Publishing

the write accessor is even more serious. However, for the tree

classes, clients need read access to all four variables and write

access to three, so publishing them in a public interface is nec-

essary and does not violate encapsulation.

Each instance variable is not available in each tree class. For

example, several classes do not define or inherit the subTrees

variable. Yet much of the processing done by a tree is per-

formed on its sub trees. By using indirect access, it is possible to

write general purpose methods at the top of the inheritance hi-

erarchy that don’t depend on the variable being present. If ab-

sent, a subtrees collection is synthesized from other data.

Some variables such as subTrees need to be interpreted flexi-

bly. We might want to return its processed contents rather than

raw contents. This can only be done with indirect reference.

lNTERPR~ INSTANCE VARIABLES FLEXIBLY

Using the subTrees variable again for a case study, we’ll see how

flexible interpretation contributes to the goal of reusability

through subclassing. Three examples are static, dynamic, and

synthetic interpretation.

Static interpretation is used with STree and some of its sub-

classes for branch nodes. They simply return the contents of

their subTrees variable when queried.

Dynamic interpretation is used for an application specific

subclass of STree (actually of SKFVTree) called roughly Directory-

Tree. Rather than returning a static collection, it queries the file

system dynamically for the crmtents of a directory, returns the
- —-—

THE SMALLTALKREPORT

—

Coding Doeumentetion

Without

A
.SM Fhlsh

Now! Automatic Documentation
For SmalltalWVDevelopm ent Teams — With Synopsis

Dcvclopmcnt Time Savings

Synopsis prcrdum high quality class documentation

automatically. With the combination of Synopsis and

Smrdltalk/V, you can eliminate the lag between the

[

\
production of code and the availabili~ of documentation. :

Synopsis for Smalltalk/V

+ Documents Classes Automatically
\

● Provides Class Summaries and Source Code Listings

● Bukls Class or Subsystem Encyclopedias

● Publishes Documentation on Word Processors

● Packages Encyclopedia Files for Distribution Products Supported:

● Supports Personalized Documentation and
Coding Conventions

Digitalk Smrdltalk/V Windows $’295

Digitalk Smalltalk/V 0S2 $395
(0S/2 version worka wills Team/V sndPasis)

Dan Shafer, Oraphic User Interfaces, Inc.:

“Every serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make documentation 8609 Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-S47-2221 Fax 919-847-0650

Wdh
Synopsis

A A

*rt Fmlsh

. .
result in response to a subTrees query, and caches it in the sub-

Trees variable for other purposes. This is an approximation of

the actual implementation.

Synthetic interpretation is used for classes that do not have

a subTrees variable. They synthesize a collection from other

variables. For example, a Bina@ree class is defined for peda-

gogic purposes. Its left and right variables each stores a sub tree.

When queried for subTrees, a branch node returns an array

containing the lefl and right nodes and a leaf node returns an

empty array.

Synthetic interpretation is also used by STree, which has a

subTrees variable, when answering queries to a leaf node. This

is explained in the next section.

MAXIMIZE THE DATA CONTENT OF INSTANCE VARIABLES

An instance variable should hold useful information. Try to

store something more informative than nil. The subTrees vari-

able again provides an example.

For a branch node, subTrees holds a collection of subnodes.

For a leaf node, it holds a collection class such as Array, Or-

deredCollection, SortedCoUecbon, or Set. A leaf uses this class to

know what kind of collection to instantiate if it later becomes a

branch. Tree clients may speci~ the class when creating a node.

Listing 1 provides sample code.

Other implementations are less effective. If a leaf stored nil

in the subTrees variable, it would not have maximized the in-

formation content and would have denied clients the choice of

collection class. If a leaf stored an empty collection instance in

the variable, it would have taken more memory, It would also
OCTOBER 1993
make it harder to distinguish between a branch with no subn-

odes and a leaf in a manner analogous to the way a file system

distinguishes an empty directory from a file. If leaves and

branches were implemented as distinct classes, the inheritance

hierarchy would become unwieldy with leaf versus branch bi-

furcations. If a new variable were defined to hold the collection

class for leaves, it would waste memory.

Hree: testing

isLeaf
“Returna boolean indicating whether
tie receiver is a leaf node.”

‘self basicSubTreesisBehavior

STree:converting

makeBranch
“Coercethe receiverto a branch node
and return it.”

setf isLeafifhue: [selfbasicSubTrees:selfbasicSubTreesnew]

STree:public accessing

subTrees
“Returnthe subtrees, repotilng an
empty collecbon for a leaf node.”

“self isLeaf
iffrue: [selfbasicSubTreesnew]
iffalse: [selfbasicSubTrees]

.—

. -.

7

fordableSmalltak?

,,:., :,,,,,1~:,,/.,i

Digitalk Smalltalk/V for Windows, v2.0, list $499$295

Digitrdk Smalltalk/V for 0S/2, v2.0, Iist $995 $595
plus shipping and handlin~. Pricm subjecl m chan~e wilhoui nolicc.

The 405 El Camino Real, #l 06
Menlo Park, CA 94025

Smalltalk
voice: 415-854-5535

fax: 415-054-2557
compusewe: 75046,3160

Store
emud: . . . !uunet!smlltlk!info

Ask tn be put on our maifissg list.

... devoted exclusively to Smalltalk Products.

Developers: The Smalhalk Store is looking for Smalltalk products
to sell. If you would like us to sell your product (present or
future) please contact us. We want to make you money.

■ COPINGWITH SINGLEINHERITANCE:BUILDINGTREECLASSES
DISTINGUISH PUBLIC AND PRIVATE METHODS

Although Smalltalk-80 does not enforce access restrictions to

private methods, it at least allows them to be placed in a sepa-

rate protocol. There are several reasons the tree classes make

this distinction.

1. The superTree pointer is managed automatically. A public

write method is not defined. Internal methods that need to

set it use a private method.

2. A public read method provides processed access to the sub-

Trees variable while the private method provides raw access.

3. Raw read and write access to all variables is needed in the

tree copying machinery. It must be private.

4. Public write methods validate their arguments, while pri-

vate write methods bypass validation for efficiency.

ASSESSMENT OF DESIGN PRINCIPLES

How well did these design principles contribute to the original

goals? The intention was to create a hierarchy of Tree classes

within the constraints of single inheritance that are robust,

flexible, reusable, clear, simple, and reasonably efficient.

“ Robust. The trees validate strategic arguments and offer a

class validation suite.

■ Flm”bk. The classes offer several measures of flexibility.

1. All four instance variables are optional and are avail-

able in all legitimate combinations, enabling a client to

store only the data needed for a particular problem.
8

2. A client can access subtrees statically, dynamically, or

synthetically.

3. A client can choose from among several collection

classes for storing subtrees.

4. The various nodes within a single tree structure may

use different collection classes for storing their sub trees.

5. A branch node can store a full or empty collection of

subtrees.

6. It is possible to mix instances of different tree classes,

such as STree and SKTree, in the same tree structure.

7. It is possible to convert from one subtrees collection

type to another or from one tree type to another.

■ Reusable. There are several abstract tree classes. Most services

are defined high in the hierarchy. All logical combinations of

instance variables are available. They are accessed indirectly.

. Clear. The classes push the design principles to limits that

might be unfamiliar to some programmers. To achieve

clarity, I tried to write explanatory comments, use consis-

tent naming conventions, and otherwise make consistent

design choices.

. Simple. Ideally, each service should be implemented once.

Single inheritance forced some services to be duplicated,

This occurred in the nine classes labeled’2 methods’ in Fig-

ure 1. Their read and write accessors resulted in 2 duplicate

lines of code per class, or 18 total. This is acceptable.

. Eficient. Space is saved by defining instance variables low

in the inheritance hierarchy and by storing maximal infor-

mation in them. More savings come by common substruc-

ture sharing for applications not requiring a super’hee

pointer. Execution time is saved by bypassing argument val-

idation whenever it is safe to do so. Although the cost for

validation is modest, it can be bypassed entirely if necessary.

A moderate penalty is incurred by implementing most of

the methods with sufficient generality to place them at the

top of the inheritance hierarchy.

CONCLUSION
I think the third design iteration satisfied these goals. Other

programmers can confirm this by reusing the classes for

their applications.

SOURCE CODE
Version 1.1 of the tree classes and their validation suites is

available by anonymous ftp from the Smalltalk archives at the

University of Illinois (st.cs.uiuc.edu 128.174.241. 10) or the

University of Manchester (mushroom. cs.man.ac.uk

130.88. 13.70). Look in the directories for ParcPlace’s Visual-

Works or ObjectWorks. ❑

Bruce Samuelson (bruce@utaj71. uta.edu) uses ParcPlace Smalltalk for
linguistic applications at the University of Texas at Arlington and
with the Surnrner Institute of Linguistics
THE SMALLTALK REPORT

INTERFACING

SMALLTALK WITH

REAL-TIME SYSTEMS:

PART I

Edward Klimas
❑
he development of complex real-time automa-

tion systems that must interact with client-sewer

based factory information systems is one of the

most promising applications of Smalltalk. Cur-

rent applications of this technology not only in-

clude real-time commodity trading and financial transaction

applications, but sophisticated instrumentation, mission criti-

cal biomedical, and process automation systems as well. The

high productivity] and improved reliability of this technology

offer an impressive foundation for cost effectively deploying

complex systems in the future.

Technically commendable real-time systems have been fiel-

ded in many of the currently available Smalltalk dialects. s-6

One of the drawbacks to the wider application of this technol-

ogy is the scarcity of documentation and example frameworks.

The goal of this article is to explain a framework that can be

used as a starting point for intermediate level Smalltalk devel-

opers to begin designing and developing Smalltalk-based real-

time applications.

This article, the first of two on this topic, will follow the

path of the messages from the low-level operating system ap-

plication programming interface (API) calls up to the high-

level Smalltalk event messages required to open, write to, and

read from a device. A subsequent article will describe the mes-

sage flow through the Smalltalk event mechanism as well as

optimal multitasking issues.

This article will document a number of the steps that a typi-

cal real-time signal might take into and out of an OS/2-based

Smalltalk/V-PM program. Due to its ready availability on marry

systems, the examples employed in this article are based on a se-

rial port connection to an internal modem. Alternate sources for

real-time signals can come just as easily from named pipes con-

nected to external signals, real-time process 1/0 modules pro-

viding serially encoded ASCII data or from other coprocessor

cards in the automation hierarchy.
..

OCTOBER 1993
LOW-LEVEL API CALLS

The basic path a real-world signal takes into the 0S/2 system is

typically dependent upon a specific device driver. Serial port

signals, including those of internal modems, are routed

through an 0S/2 device driver called dos16DevIOCtl for 16-bit

systems and dos32DevIOCtl for 32-bit applications. The archi-

tecture of this driver is based upon a curious singularity, in

that the driver, for efficiency purposes, does not support inter-

rupts to user programs. In an I/O-intensive application, the

overhead of supporting an interrupt call can become a

significant percentage of the processor’s total computing re-

quirements at maximum throughput rates. Hence, high speed

communications are handled much more efficiently by filling

1/0 buffers and having programs asynchronously access the

contents of those 1/0 buffers as soon as they are available. For

support of multiple high-speed serial 1/0 streams, this ap-

proach is not only superior, but becomes imperative. An 0S/2

serial port signal accesses Smalltalk via a call to the appropriate

DevIOCtlAPI call. The calling conventions for the DevIOCtl API

require the placement of parameters into registers. These pa-

rameters include a special parameter denoted by an ordinal

number that identifies the specific system call being requested.

When the registers are set, a software interrupt instruction is

then issued transferring control to the 0S/2 kernel. Using the

ordinal number, the 0S/2 kernel dispatches the system call to

the appropriate routine. Upon completion, control returns to

the requesting program with a return code that indicates the

status of the requested operation.

Calls to APIs are typically quite straightforward, but they

are also prone to excessive debugging time in any language be-

cause of the ctyptic operating system error messages and frus-

trating system traps or halts that can result from incorrect API

parameters. The following set of calls show debugged examples

of working API calls into the DosDevIOCtlAPI. Upon inspecting

the IBM documentation for the 32 bit 0S/2 DosDevIOCtlsystem

call in the on-line programmer’s reference, one will find the C

calling convention information to include:

/’ DosDevIOCtlperfomrscontrol
fmc~ons on a devicespecified
by amopened device handle. “/
#define tNCL_DOSPROCESS
#inchrde <os2.h>
HPILE DevHandle;
ULONG ulCategoy;
ULONG ulfrmction;
PVOID pParnrI.i3t;
ULONG ullarmLengthMax;
PULONG pPamrLengthInOut;
WOID pDataA2ea;
ULONG rrUlataLengthMW
PULONG pDataLengthInOut;
APIREr rc; /* Return code ‘/

rc = DosDevIOCtl(DevHandle,ulCategory,
ulpunction, pParrnList,
utParcnLengthMax,
pParrnLerrgthInOut,pDataArea,
ulDataLengthMax,pDataLengthInOut);
.—

9

■ INTERFACINGSMALLTALKWITH REAL-TIMESYSTEMSPART1
..
The equivalent C-to- Smalltalk API call can be derived with the

following “translation”:

c Smalltalfcapi: parameter
HFILE handle
LIKING ulong
PVOID Struct
PULONGulong
APIRET ushort
APIRE2 apiret (also for /VOS2)

The basic procedure is to match up the 0S/2 API call parame-

ters with the corresponding Smalltalk api: parameters. The or-

dinal number for the corresponding IBM-defined API func-

tion, #2fJ4 for 32-bit DosDevIOCtl, is supplied in an ancillary file

that comes with the Smalltalk/V-PM system. The equivalent

Smalltalk/V version 2.o for 0S/2 code is:

DynamicLinkLibraryvariableSyteSubclass: #DosDLL
classVariableNames: ‘OS2Errors’
poolDifionaries:”

!DosDLLmethods !
dos32Dw1OCW aDeviceHandle

devieecatagory aDeviceCatagory
funtirtorhx aFunctionCode
parametm parameterlistt+ddress
pasameterLen@rMa.m parameterlengthtlaa
retumedPararoeterLengthInOssti retumedParameterLecrgthInOutb
datahex dataAreaAddreas
datahngthMax dataLengthMax

retusnedDataLengtlrlnOsst retumedDataLengthInOut
CSpk‘#284’handle ulong ulong
strcrctulong ulong strcrctulong ulong ushort >
“self invalidArgument

Unfortunately, the equivalent 16-bit call is different from the

Table 1. DosOpen/DosSatstate flags.

1 PM I Cmrskurts I vHEX I BitPattern
, Implemented I

I OUeflccessReadwrite I Y (0002 I -------------0101

I 0penShare13myReadwrite I Y I 0010 I ---------001 ----1

I OpenFlagsNoinherit I Y ‘ Ol)go . .------ 1------- I

I OpmFlagaNolocality I N I 0000 I -----000 ---- ----\

OpenFla@quential N 0100 -----001 --------

OpenFlagsRandom N 0200 -----010 --------

OpenFlagstZandomSequcntial N 0300 -----011 --------. .
OpmFlagsNocache N 1000 ---1 ------------

.
OpenFlagsFailOnError Y“” 2000 :- 1-----:-------

OpenFlagsWriteThrough Y 4000 -1-----------
.

200penFlagsDasd Y“ ‘iooo ““’11---------------

L. ..L .J–_... L ..—. .J

.—

10

32-bit call. As many developers may still need to use 16-bit

APIs and Smalltalk/V-PM, the 16-bit equivalent is:

!DosDUmethods !
dos16DwIOCtk data

perametm parameters
functioncodx aFunfionCode
devieeCetagory aDeviceCatagory
deviceltandk aDeviceHandle

-pti ‘#53’struct atmct uahoct ushort short ushort >
“self irtvalidhgument

To make the resultant code fully portable across both 32- and

16-bit versions of Smalltalk, we implement our own generic

devIOCtL method that will call up the correct API, based upon

the fact that VPMVMDLLfi\eName will return the version of

Smalltalk/V being used as a string, (e.g., for Smalltalk/VPM

2.0, VPMVMDLLfileName = ‘VPMVM20’).

!DosDLLmethods !
devIOCtkdata

paranreta~ parameters
funetissrtCodx aFunctionCode
devieecatagoxy aDeviceCatagory
dwiceHandlw aDeviceHandle
“If this code is not rurucingunder VPM2.o then call a 16 bit api call
to read/write to the 1/0 device, otherwise call the 32 bit APIcall”
I retumedParameterLengthInOutretumedDataLengthInOut I

“GetVPMversion”
((VPMVMDLLtileNameat: 6) as.%-ingasInteger >= 2)

iffalze: [%elf dos16DevIOCtl:data
paramete~ parameters
functionCode:aFunctionCode
dwiceCatagoqt aDeviceCatagory
deviceHandle:aDeviceHandle]

ifhue: [“self dos32DevIOCtEaDeviceHandle
deviceCatagory aDeviceCatagory
furcclionCode:aFunfionCode
parameter: parameters
parameterLengthMax:parameters size
retumedParameterLengthtnOuk

retumedParameterLengthInOut
dataArea data
dataLengthMarc:data size

retumedDataLength2nOut]

For performance purposes, the VPMVMDLLversion test might be

determined at initialization time and cached in an instance

variable, but in reality, this is not an expensive call under nor-

mal use.

Moving along the bottom up hierarchy, the calls to open

the 1/0 device and read, write, and manipulate the resultant

data are examined next.

The 1/0 channel is opened using a call to the DosLibrary

class with the proper parameters in the call’s mode. The ability

to handle a broad spectrum of devices with little or no non-

Smalltalk code is counterbalanced by myriad parameter selec-

tions. The most common parameters are implemented as PM-

Constants that can be referenced directly from within Smalltalk

itself. Table 1 conveniently lists all of the different modes avail-
.

THE SMALLTALK REPORT

— ——. —————— .— — —— —.

and
just

a-

ues

-

e

able for the DosIibrary open: method, whether they are imple-

mented as PMConstants, and the equivalent byte codes that can

be used for those modes having no PMConstant.

BytaArrayvaziableByteSubclass: #FileHandle
classVasiableNanres: ‘FileHandles’
poolDictiozraries: ‘PMConstants’

!FlleHandlectass methods !
openCorsrDmdce:astring

“Answera FileHandlefor the device named aStrirsg.”
of I d-tandle result anActionCodeI

aHandle:= self new 2.
aoActionCode:=BytAray new .2.
result:= DosLibraryopen: aString asParameter

handle: at-kindle
action: anActionCode
inifilze: O
attribute: O
flags: 1
mode:

“report errors via return code”
OpenFlagsFailOnErrorI

“OpenFlagsNocache-
1/0 is not cached-(no need to reread info)”
16r1000I
“filehandle is private to current process and may
not be inherited by child processes”
OpenFlagsNoinheritI
“permitread write sharing”
OpenShareDenynoneI
“read/write access”
OpenAccessReadwrite

reserved: O.
(result = O)

ifFalse: [“DosDLL0S2Error result].
“aHandle

An unsuccessful attempt to open the device will contain a non-

zero error code as the result value from the DosLibrary open:

message. The 0S2Erroc method will help in explaining what the

problem was.

Once the 1/0 device has been successfully opened, we read

the device as follows:

!SerialPort class methods !
read
‘Tocatch serial input during this read operation, read the contents of
the serial port receivebuffer recursivelyuntil there is nothing in the
buffer”
I result aString qSise d.agniappe bytes 1
qSize := self numRecQCha.
(qSize < 1) itTnre:[finil].

a.string := String new qSize.

“Dependingupon 16or 32bit versionsuse the appropriatecallto read input”
“GetVPMversion”
((VPMVMDLLtileNameat: 6) as.%ing asInteger >= 2)

iffake: [self comPortHandle“16bit VPM”
readInto: aString
atposifion: 1.]

ifTrue:[result := DosLibrary
read self cornportffandle“32bit VPM”
OCTOBER 1993
buffw aString

bufsise: aString sise
bytesRead: (bytes:= PMShucture new 2) asPmameter.
(result = O)

iffalse: [‘DosDLL0S2ErroKresult]].

“Checkif any more data came in while we were reading the buffers
recursivelyread the data in. Normallythis should never occur, but
in case.”
atagniappe := self read.
aLagniappeisNilifhue: [“aString].
“(aString , aLagniappe)

THE SUPPORTING FRAMEWORK

The effective interaction with a real-world signal requires a

supporting infrastructure of commands to set and get the p

rameters for input and output (1/0). The following methods

show several examples of opening, reading, and writing val

to the 1/0 device. Although these examples provide the sup

porting framework for serial 1/0, most other devices will us

simple permutations on most of the same types of program

calls.

Objectsubclass: #SerialPort
inetanceVafibIeNames:”
classVariableNames: ‘ComPortHandle’
poolllictiomaries: ‘CharacterConstants’

!SeriaLPortclass methods !
baud
“Returnbaud rate”
I result aDataArea I
“Thedatatirea contains or receives the data”
aDataArea:= ByteArraywith: Owith: O.
result := DosLibrarydevIOCtkaDataArea

parameten nil
fonctionCode:16r61 “querybaud rate”
deviceCatagory 1
deviceHandlwself comPortHandle.

(result = O)
iffalae: [ADosDU0S2Erronresult].

A(aDataAreaasPMLonglowHalf)

baud anInteger
“Setbaud rate”
I result aparameter I
“Createa word parameter with the baud rate in it”
aparameter:= (PMStnrcturenew. 2)

shortAtOffset:O
puti anInteger.

result:= DosLibrarydevIOCtknil
parameter: aparameter asParameter
functionCode:16r41 “set baud rate”
deviceCatagory 1
deviceHandle:self comPortHandle,

(result = O)
ifFalse: [ADosDLL0S2Erroc result]

closeComPortHandk
self comPortHandIeclose.
ComPortHandle:= nil
—————— ..———

11

■ INTERFACINGSMALLTALKwlTH REAL-TIMESYSTEMS:PAftT1
eosnportlkindks
‘Uselazy initialisation to setup the comporthandle the lirst tie the
handle is required”
(ComPortHandleisNil)

ifhue: [ComPortHandle:=
(FileHandleopenComDevice:‘COM2’)].

‘ComPortHandle

comPortHandle:aString
“ComPortHandle:= FileHandleopenComDevice:astrircg

dataBits
“get the number of data bits

5 5 data bits
6 6 data bits
7 7 data bits (hitial value)
8 Bdata bits”

“((self lhreCharacteristics)at 1)

datiit arrhteger
“set the number of data bits

5 5 data bits
6 6 data bits
7 7 data bits (initial value)
B 8 data bits”

I aLineCharacteristicI
aLineCharacteristic

:= seMlineCharacterifics.
al,ineCharacteristic

ati 1
puk arhteger.

self lineCharacteristics: aLineCharacterisiic

LrritialiZeCOrcWort
“Irritilize COMport for testa”

selfbaud: 2400.
selJ dataBik 8.
self atopBits:O.
setfpasity O.

numRee9Char

“Returnthe number of characters in the receive (1”
“(seLfreceiverlasPMLonglowHalf)

smmTranQCbm
“Returnthe number of characters in the transmit 0“
‘(self transmitClasPMLongiowHalf)

lheCharaete*s

‘Set he characteristics”

I result lineCharactecistics I
Iinecfraractetics := ByteArTay

Wittt o
WitI-co
Witk o.

result:= DosLibrary
devIOCtkLineCharacterisiics
parameter nil
“querycharaetefics”

funcrionCode:16r62
deviceCatagory I
deviceHandle:self comportl-hndle.

(result = O)
ifFake: [ADosDLL0S2ECTOKresult].
12
“lineCharacteristics

Unecharacteticw aLineCharactenstic
“Setline characteristics for COM2°
I aDeviceHarcdleresult I
result := DosLibracy

dwIOCtLnil
paramete~ aLineCharacteristic
“set Ene clmacteristics”

functionCode:16r42
deviceCatagory I
deviceHandle:seti comPortHandle.

(result = O)
iffalse: [hDosDLL0S2Error:result]

reeeive(l
“Returninfo about the number of characters
in the receive Qand its size”
I result aDataArea I
aDataArea:= ByteArray

wittu Owith: Owith: Owith: O.
result := DosLibray

dwIOCtl: aDataArea
parameter: nil

“get the number of receive queue chars”
fcmetionCode:16r68
deviceCatagogcI
deviceHandle:self comPostHandle.

(result = O)
ifFalse: [aDosDLL0S2Ecror:result].

“aDataArea

parity
“get the line parity

Ono parity
1 odd ptity
2 wen pari~ (initial value)
3 mark parity (parity bit always1)
4 space parity (parity bit alwaysO)”

‘((self lineCharaeteritics) ah 2)

parity ai%sity
“set the line parity

Ono parity
1 odd ptity
2 even parity (initial value)
3 mark parity (parity bit alwaysI)
4 space parity (parity bit alwaysO)”

I aLineCharacteristicI
al.inectcaractesistic:=

self LineCharacteristics.
aLineCharacteristicak 2 puti aPari&.
self lircecharacteristics: aLineCharacteristic

The combination of all of these methods should be integrated

into a test method for debugging purposes and regression test-

ing of changes, as well as for documenting the appropriate use

of the tlamework.T An example follows:

!SerialYortclass methods !
selfTest
‘Testscript for debugging interl%ceto the DosDevIOCtlAPI”

“Serialloct selffest”
I inspectData I
THE SMALLTALK REPORT

CursorMamgerexecute change.
“InitializeCOMport for tests”
seJfisritializeCoroPort.

“Testvalid baud rates”
#(110 150300600120018002000 24003600480072009600 19200)

do:[:aValidBaudRateI
selI baud aValidBaudRate.
(self baud = aValidBaudRate)

ifFalse:[seLferror
‘Baudrate set/get failure’]].

“Testvalid data bits”
#(5 6 78)

do:[:aValidDataBitI
self dataBit: aValidDataBit.
(seKdataBits = aValidDataBit)

iffalsa [self erron
‘Databit set/get failure’]].

‘Testvalid stop bits
Note: 1,5 stop bits onlyvatid for 5 bit wordlength

z stop bits not valid with 5 bit wordlength”
#(o 2)

do:[:aValidStopBitI
seti stopBits: aValidStopBit.
(self stopBits = aValidStopBit)

ifFalse: [self erroc
‘Stopbit set/get failure’]].

“Testparity bits”
#(o1234)

do:[:aVaJidParityBitI
selfparity aValidParityBit.
(selfparity = aValidParityBit)

ifFalse: [self erron
‘Paritybit set/get failure’]].

setf sizeOfhsrsndti2.
sewnumTranRChar,

“Resetthe comport to receive some characters”
self iniliali7,eCorr@ort.

“Senda string to test a modem on COM2m
seJfcorrWor-tI-fandledeviceWrit&‘AT13\’withRealCrs.

“Wait3/4 of a second for the modem to test SIrespond”
DosLibraryrealsleep: 750.
inspectData:= self read.

“Besure to close the Cornport handle or a subsequent
se~est will I%ilto open it successfully”
self closeComPortNandle.

“openup an inspector on the data. Thisline should be commented out
once the frameworkhas been debugged”
inspectData MIil iEalae: [irapectData inspect].

CursorManagernormal change,
“retumra true value if we reach this point with no errors, otherwise
wallrbacksshould have appeared”
tie
OCTOBER 1993
An extension to class String for adding a carriage return to a

string is provided for sending messages to the COM port:

FixedSizeCollectionvariableByteSubclass: #Stcing
claasVarlableNaznes:”
poolDictionasies: ‘CharacterConstants’

!Wing methods !
withRealCrs

“Answerthe receiverstring where each occurrenceof the character\
has been replaced with a carriage return character.”

I to self size do: [:index I
(self ati index)= $\

ifTme: [self ak index puti Cr]]

Depending upon the device that is being communicated to, a

Iinefeed may also be required.

CONCLUSION

The expressive power of Smalltalk and its class libraries can be

used to deal with real-time data just as easily, simply and effec-

tively as with graphical uwr interfaces and database information.

The next article in this series will deal with the issues associ-

ated with moving the real-time data efficiently through the

Smalltalk event system. El

Acknowledgments
The support of Digitalk’s Michael Chin and Krss Severson is

gratefully acknowledged.

References
1.

2.

3.

4.

5.

6.

Harmon, P. Texas Instruments chooses O-O technology for a
CIM project, OBJECT-ORIENTED TECHNOLOGIES, 2 (10): 1-13,
1992,
Dotts et. al. Experience report—development of reusable test
equipment software using Smalltalk and C, Addendum to
00PSLA 92 Proceedings.
Barry, B. Real-time object-oriented programming systems,
AMERICAN PROGRAMMER, October, 1991.

Duimovich et al. Smalltalk and Embedded Systems, DR.

DOBB’S JOURNAL, October 1991.

Dehli et al. STEAMEX: a real-time expert system for energy op-
timization, AIENG 89-APPLICATIONS OFARTIFICIAL INTELLI-

GENCE IN ENGINEERING, Cambrige U.K. 11–14 July1989.
Klimas, E. Qualiry assurance issues for Smalltalk-based appli-
cations, THE SMALLTALK REPORT 1(9): 3–7, 1992.

Ed Klimas is Mana@sg Director of Lines Engineering Inc., a supplier
of custom object on.ented solutions for automation and industn”al ap-
plications, Ed, along with coauthors Dave Thomas and Suzsnne
Skublics of OTI, is writing a book on developing commercial
Smalltalk-based system~ titled SMALLTALK WITH STYLE. He can be
reached at 216.381.8493.
13

MALLTALK IDIOMS Kent Beck

Helper methods avoid
unwanted inheritance
T
HE TOPIC OF this issue’s column on Smalltalk idioms,

following the general theme of inheritance, is how to

manage the use of super. Several issues back I wrote a

column entitled “The Dreaded Super” in which I cataloged all

the legitimate (and otherwise) uses of super in the existing

Smalltalk/V and VisualWorks images. I’m still very proud of

that column, but a couple of days ago I discovered I had left

out one very important technique in dealing with super.

The pattern that follows, Helper Methods Avoid Unwanted

Inheritance (not my best name ever), tells how to resolve this

problem. The first time I remember anyone talking about the

problem was when Richard Peskin of Rutgers brought it up on

the net several years ago. A lively “discussion” ensued. The so-

lution is one many Smalltalkers have discovered over the years.

Before I jump into the pattern itself, let me say a word

about patterns in general. Hot. That’s the word. Grady Booth

and Dick Gabriel have both been trumpeting patterns in other

SIGS publications. Ralph Johnson has had a couple of

ECOOP/OOPSLA papers published on them. Pete Coad has

jumped on the bandwagon in his 00P book (although I think

he’s missing the point). I have gotten a half dozen calls in the

last month or so from people who have heard about my inter-

est and want to tell me what they are doing with patterns.

I think patterns will be the next big buzzword in the object

world. If you want to get involved, now is a great time to try

writing some patterns of your own. Don’t get discouraged if

your first efforts don’t sparkle. It took me six years to get my

first pattern that I didn’t want to immediately crumple up and

throw away. It shouldn’t take you nearly as long.

Here are some criteria I use when evaluating a pattern:

“ Does it make me change my program? The best patterns

don’t just say, “Hey, here is a useful configuration of ob-

jects.” The patterns I !ind most powerful say, “If you find

yourself with this problem, create this useful configuration

of objects and it will be solved, ”

. Does it explain its assumptions? Each pattern implicitly

contains assumptions about what is most important about

the decision it describes. If a pattern says, “We want simple

programs, we want fast programs, we want programs we

can write quickly, but in this case the most important thing

is getting the program running quickly,” I have a much bet-

ter basis for evaluating it.
14
“ Does it contain an illustration? Good patterns can invari-

ably be reduced to a single picture. Drawing that picture, or

writing a code fragment example can sharpen your under-

standing considerably,

Give it a try. I’d be glad to critique your efforts, or you could

try passing them around to other Smalltalk or C++ program-

mers you know.

PAllERN: HELPER M~HODS AVOID

UNWANTED INHERITANCE

Context

When you are using “super” at the bottom of a three-deep in-

heritance tree, you may find yourself wanting to inherit the

root class’s behavior, but not the immediate superclasses.

Problem

In this case, you almost want to be able to say something

stronger than super, like “give me that class’s method but no

one else’s.” Experience with C++, which has such a facility, says

that using such a feature is a maintenance nightmare. How can

you take advantage of inheritance, share code, and remain

within Smalltalk’s simple control structures?

Constraints

“ Code sharing. The resulting program should contain as

much code sharing as possible.

“ Use inheritance. The resulting code should use inheritance.

Inheritance may be important for simplifying the imple-

mentation of the rest of the class.

“ Simple code. The result should be no more complex than

necessary. This recommends against usingDelegation or

some other pattern that requires extensive code changes.

Solution

Put the behavior you don’t want to inherit in its own method.

Invoke that method from the method that contains the send to

“super”. Override the new method in the subclass to either do

nothing, or replace its behavior with behavior appropriate to

the subclass (Figure 1).

Example

This problem oflen occurs in initialization code.

runtinmd mI p. 2(J,.,

THE SMALLTALK REPORT

Juanita EwingmETTING REAL

Abstract classes
T his month, I will discuss abstract classes and talk about

why they are really useful. Abstract classes are classes

that don’t have any instances and can be grouped into two cat-

egories implementation-based and design-based. Implementa-

tion-based abstract classes otlen have many methods that are

inherited and used directly by subclasses. A design-based ab-

stract class may not have any methods that can be used directly

by subclasses.

The example code in this article is from version 2,0 of

Smalltalk/V for Macintosh. Classes have been simplified for the

purpose of illustration.

ABSTRACT VS. CONCRETE CLASSES

Concrete classes usually have both behavior and state. Point is

a concrete class. It has state, two instance variables x and y, and

it has behavior, such as + and -.

Design-based abstract classes provide a specification for sub-

classes. This is like having a detailed on-line design document. A

design-based abstract class usually has behavior, but not state.

That is, there are no instance variables, and there is no indexable

part defined by the class. Abstract classes are most useti.rl when

they are as general as possible. hy state provided by an abstract

classes limits subclasses, since they inherit specification of the

state. Design-based abstract classes are otlen part of a framework.

Implementation-based abstract classes are generally based

on the behavior of existing classes and are created afterwards.

Common methods are identified in two classes, and moved to

a new superclass. The new superclass is generally an imple-

mentation-based abstract class. It contains many concrete

methods, formerly duplicated in the subclasses. An implemen-

tation-based abstract class may have state that corresponds to

its behavior. The motivation for creating an implementation-

based abstract classes is to locate common code in one place,

which is therefore easier to maintain.

DESIGN-BASED ABSTRACT CLASS EXAMPLE

The well-known Smalltalk class Magnitude is the focus of this

section and can be found in every Smalltalk image. Magni-

tude, a design-based abstract class, has no state. Magnitude is

part of the informal framework of objects in the Smalltalk

image: it supports requests for ordering. For example, the

default collaboration between SortedCollection and its ele-
OCTOBER 1993
ments requires elements to respond to the C= message.

Magnitude is a generic class that could be specialized for

many applications. The pitch of musical notes and the latitude

and longitude components of map coordinates are possible

domain specific subclasses of Magnitude. Date, Time, and Num-

ber are subclasses of Magnitude in the Smalltalk class library.

Because it is an abstract class, there are never instances of Mag-

nitude in a Smalltalk system, but there are instances of its con-

crete subclasses Date and Time.

Let’s examine some of the details of Magnitude that make it

a good example of a design -based abstract class. The comment

for Magnitude indicates its purpose:

The class Magnitude is an abstract class defining behavior

common to all objects for which an ordering is defined.

The role of an design-based abstract class is to provide a

specification for subclasses. Subclasses of Magnitude must pro-

vide an implementation of the methods that Magnitude specifies

<
<.
>
>.

betweenand
comparableWith
InaX
mill:

The implementation of a method can be inherited. Magnitude

provides default implementations for all methods except <. If

you examine the class (see Listing I), you will notice that all

the other methods are defined in terms of<, = and their deriva-

tives. All subclasses of Magnitude inherit a default implementa-

tion of= from Magnitude’s superclass Object.

The default implementations make it easier to extend hier-

archies because developers only need to implement a small

number of methods. Subclasses can inherit the rest of the

methods. In the case of Magnitude, a developer would only

have to implement<. It is likely that developers would also

want to override = to complete the ordering algorithm for their

subclass. (If you override = then you must also override hash to

match, or you will get errors when you attempt to use contain-

ers, such as Set and Diciiona~, that are based on hash.)

Several key characteristics make Magnitude a good example

of a design-based abstract class:
15

Learn SmaUtalk from the Expert!

Wilf LaLonde’s

Discovering Smalh.lk

“ Features an in-depth

to Smalltalk using S

“ Demonstrates funda
oriertted developmen

● Encourages experim
solving problems.

For more information, vis

technical bookstore or ca

@

THE BENJAMIN/C,,
PUBLISHING COM
390 BridgeParkw
RedwoodCitv,CA

0-8053-2720-7, Softbound. 400 pages. BOO1562-2496

■ GEmING REAL
. Magnitude has the right amount of behavio~ not too much to

understand but enough to perform a usefil set of functions.

■ Magnitude’s behavior is cohesive. AN methods are related to

ordering. Its role is clear, which makes it easier to use and

understand Magnitude.

■ New subclasses are much easier to add to the hierarchy if the

required methods are specified by a superclass using a special

designator such as implemented BySubclass. The alternative is

to require a developer to deduce the required set of methods.

“ Magnitude has no state, which avoids implementation limi-

tations on subclasses.

■ Magnitude provides default implementations, which make it

easier to develop new subclasses. Developers need only

write a minimal number of methods.

Most design-based abstract classes arise because a developer has

made a conscious effort to create an abstract class that fills a role.

Design methodologies, such as responsibility-driven design, de-

tail how to translate a specifi=tion into a design, which are im-

plemented with both abstract and concrete classes. An interesting

example is the evolution of the MVC framework, which is dis-

CUSSAin the article, “Reimplementing Model-View-Controller”

by Leibs and Rubin (Smalltalk Report, Volume 1 Number 6).

DISCOVERING ABSTRACT CLASSES

Have you ever developed two classes with the same set of public

<altagrdtude
AnswerQrue> ~the receiverislessthan <aMagnitude>.”

“self implementedtlyhbclass

c= alkigsdtude
%lnswer<true> ~the receiverislessthan or equal to<olfagnitude>.”

“self c aMagnitudeor [se~ = dtagnitude]

> aMagsdtude
“tiwer <true> if the rereiver is greater than <aMagnitude>.”

‘(self<= aMagnitude)not
16
introduction

malltalk,W.

mental object-
t concepts.

entation when

it your local

ll 800/552-2499.

UMMINGS
PANY, INC.

ay
94065

messages,but different implementations?

If so, then you have a situation that would

benefit from an implementation-based

abstract class. A good rule of thumb is to

make an implementation-based abstract

superclass whenever you have two hierar-

chically unrelated classes with common

behavior. Implementation-based abstract

classes are typically derived from existing

classes rather than designed from scratch,

Follow these steps to make a com-

mon superclass for the two classes:

1. Create a new superclass.

2. Rearrange the hierarchy so the sub-

classes inherit from the new super-

class.

3. Move all identical methods from the subclasses to the com-

mon superclass. Even if the two classes have radically differ-

ent implementations, there are usually some methods in

common.

4. For each remaining selector that the two classes have in

common, create a method with that selector in the com-

mon superclass. The body of the method should be a desig-

nation for the subclasses to implement the method. In

Smalltalk/V, the body of the method is usually self imple-

mentedBySubclass. In ObjectWorks, the body of the method

is usually self subclassResponsibility

The role of the common superclass, an implementation-based

abstract class, is to contain implementations that are appropri-

ate for all subclasses. For ease of evolution and maintenance,

each piece of functionality should be in exactly one place. If

code is duplicated, it is likely to be fixed or modified in only

one place, introducing new errors and inconsistencies. During

active development, a new subclass is much easier to add to the

hierarchy if a known set of methods must be implemented,

rather than requiring a potentially new developer to deduce

the public set of methods.

CONCLUSION

Using our rule of thumb, developers can create new super-

classes whenever they see unrelated classes with a common set

of public methods. Ofien, these new common superclasses are

implementation-based abstract classes.

Design-based abstract classes are a powerful mechanism for

creating extensible hierarchies. They provide an on-line

specification and default implementations. Well-designed ab-

stract classes allow developers to create new subclasses with

minimal effort.

In my next column, I will show you how to use abstract

classes to write platform-independent code. IX

Juanita Ewing is a senior stafmember of Digitalk Professional Sewices,

921 SW Washington, Suite 3J2, Portfand, OR 97205,503.242.0725.
—. —. .-

THE SMALLTALK REPORT

HE BEST OF comp.lang.smalltalk Alan Knight

Extending the environment:
part 2
L
ast month’s column described a number of improve-

ments to the Smalltalk environment, all of them incre-

mental changes that improved the existing environ-

ment. This month, we discuss some packages that take a more

radical approach, completely overhauling the basic tools.

I’ll limit myself to discussing three packages, all freely avail-

able by tip. I’ve avoided commercial packages, although many of

them make significant changes to the development tools, since

they’re better dealt with in reviews or product news. AI1three are

for ParcPlace Smalltalk (a.k.a. ObjectWorks or VisualWorks)

since it has more packages freely available than Smalltalk/V. Fi-

nally, I’ve arbitrarily chosen three that sounded promising.

There are certainly others, and if you know of one that might be

of interest, please let me know about it. I’d be interested, for ex-

ample, in looking at extended SmaUtalk/V environments.

Development environments are a religious issue, and I’m

sure most readers will disagree with my ideas. I’ll try to be

more informative than judgmental, but please bear in mind

that much of what I’ll say is subjective. This is particularly true

of the sections on weaknesses, which contains many things that

aren’t necessarily problems. You should also bear in mind that

my impressions of all these packages are based on limited use. I

would have preferred to spend a couple of days doing real

work in each package, but didn’t quite dare. My work at the

time required use of ENVY/Developer and I didn’t want to risk

work that other people were paying for with my limited knowl-

edge of the ENVY internals. Finally, these packages are evolv-

ing and there may be new and improved versions available by

the time you read this.

Enough excuses, If you want to try these for yourself, all are

available from the standard fip servers at st.cs.uiuc.edu (Uni-

versity of Illinois) and mushroom.cs.man. ac.uk. (University of

Manchester). I’ll list directories for the Illinois server. The cor-

responding directories can be found on the Manchester server

under Ipublgoodiesluiuc.

CLASSBROWSERS

This package was written by Carl Watts (carl@parcplace.tom).

Carl works at ParcPlace, but this is an independent project of

his, not a ParcPlace product. On the UIUC server it’s available

in the directory /pub/st80_w/ClassBrowsers.st. There is no

README or help file, but I’ve extracted some remarks from

the class comments:
OCTOBESI 1993
The most important features of the ClassBrowser is that it
always shows you inherited attributes as well as attributes
locally defined in the class. Attributes (Iiie representation

variables and methods) that are locally defined are shown

in bold.

. . .The menus are more context-sensitive than many other

Smalltalk applications. The menus are constructed to be sen-

sitive to whatever you have selected. The menu iterns are very

different if you have something selected than if you don’t.

The metaphor for moving something (like a method) to a

different place (like a different protocol) is to select the item

you want to move, select ‘take it...’ from the menu, select the

place you want to move it to (like the protocol), and then se-

lect ‘and move it here...’ from the menu of the destination.

This package is the least disorienting of the three for someone

accustomed to the standard browsers. It simplifies the system

by reducing the number of browsers to two, a class browser

and a system organization browser. The system organization

browser has only two panes: one showing categories and one

showing the classes in the selected category. From here it’s pos-

sible to open a class browser, similar to the standard class

browser, but with additional features. It shows inherited meth-

ods and variables at all times, with a button to control the visi-

bility of Object methods. It also has a list of instance/class vari-

ables that can be manipulated through the menus.

Notable Feetures

. Allows browsing inherited methods and variables

● Reduces the number of different browsers

* Changes the menus to be more consistent and more con-

text-sensitive

- Good extended navigation tools, such as “self senders,” “self

messages,” and “browse overrides”

“ Very nice install/uninstall feature. Once the code has been

filed into the image, a one line “doit” switches between the

normal and extended browsers.

- The concept of a globally selected object. In most places

that an object can be selected, the “take it...” menu item is

available. Once taken, the object can be used as an argu-

ment for many other operations. This is very nice for binary
17

■ THE BESTOF COMP.IANG.SMALLTALK

-.
operations such as moving classes between categories, rear-

ranging inheritance hierarchies, or changing the protocols

of methods. It’s far better than the standard method of

prompting for the name of another needed object.

■ Allows manipulation of the representation through menus.

Rather than editing the text representation of the class,

menus can be used to add, remove, or rename instance

variables.

Weaknesses

“ Some of the features that sounded most interesting were

not yet implemented in the version I used. That may have

changed by the time this is printed.

. I like to have more control than this allows over browsing

inherited features. The class browser does show inherited

methods, but you can’t find out what class they are actually

implemented in and the only control over which inherited

methods are shown is the toggle for Object methods. There is

also no hierarchy browser, which I found awkward. Never-

theless, while my initial reaction is to consider these prob-

lems, they could also be considered features. They force you

to consider a class only in terms of what it defines and what

it inherits, ignoring the implementation detail of where in-

herited features originate. I might

like it once I get used to it.

“ There’s not enough overlap in fea-

tures between the two browsers. I
found myself jumping back and

forth between them to do opera-

tions where I didn’t think it

should be necessary.

. Since there’s a pane listing in-

stance/class variables, I’d like to

see a feature similar to the Dig-

italk class browser, where select-

ing a variable in that pane can be

used to limit visibility to methods

accessing that variable.

ISYSE

This was written by Deeptendu Ma-

jurnder (dips@cad.gatech. edu) and is

available in the directory

pub/st80_r41/ISYSE. The help file

describes its objectives:

I developed this as a tool to en-
hance the programming environ-
ment for my research work, and

many of the features are there be-

cause I felt the need for them.

You may or may not have a simi-

lar working style and needs, and
18
IBYSE:Intagrsted Sy8te

/

WwkSpace

Figure 1. One of the ISYSE browsers.
-.

hence the usefulness of this tool will vary. The high-level

requirements that drove this effort include

“ Reduce the need for opening new windows. I want to

open windows only when needed.

- Introduce graphical information access capabilities. (I am

a great believer in graphical information access)

“ Provide some amount of history management.

“ Provide some support for saving and restoring ongoing

changes. Let the user switch work contexts when looking
for information and go back to a previous context when

ready.

■ Allow users to follow a thought process in their tasks.

In contrast to the ClassBrowsers, this system is radically different

from the normal Smalltalk environment, and quite intimidating

at first glance. There are seven panes in the main browser, includ-

ing a bright green graphical view of the class hierarchy across the

top (Figure 1). This minimizes the number of windows required

at the cost of greatly increasing the size and complexity of the

windows used. Don’t expect to use this on a small screen.

I wasn’t able to get completely comfortable with this envi-

ronment in the limited time I had to play with it. My overall

impression was that of a tool written by someone for their own
THE SMALLTALK REPORT

use that isn’t too polished yet. To the author it’s entirely natu-

ral, but it can be very confusing for others. I’ve written enough

of those tools to know the feeling. This is, however, very pow-

erful, and might well be worth the effort of learning or cus-

tomizing it to your own intuition. It builds on the work of sev-

eral smaller “goodies” to provide a wealth of features.

Notable Features

Apart from the features described eariler, I also noted

. On-line help

. Sliders to resize text views dynamically

. Use of graphical views to present information

. Easy switching of work contexts

“ Addition of many advanced features

. More use of buttons (as opposed to pop-up menus)

Weaknesses

“ Robustness.The system is not as polished as the other two I

exam ined. It was written on a SPARC, and I had some

problems getting it to run under MS-Windows (filenames,

hard-coded X font names, and a few mysterious system

crashes).

. Speed of graphics. The graphical view of the class hierarchy

is quite nice, but very slow for large hierarchies. The first

thing I figured out how to do was switch it to the hierarchy

for Object, and it took me several minutes afler doing that to

bring the system back to a usable state, since every screen

update required a long wait.

. Confusion. The system is very confusing at first glance, and

has some unusual concepts. The purpose of the browser

buttons isn’t immediately clear, and when the system starts

up many of them do nothing. Once you understand the sys-

tem, this makes sense, since these buttons are part of the his-

tory mechanism, and there’s no history yet. Un-

til you understand the system it’s very annoying.

. Similarly, the menu mechanism in the graphical

view can be disorienting. I expected to select

one of the visible classes and then operate on it.

Instead, there is a pop-up menu that changes

depending on where the cursor is at that mo-

ment. It’s more like the way Smalltalk behaves

across views than within a view.

NEWOOL

Netiool was written by Dan Walkowski

(walkowsk@cs.uiuc.edu) and is available in

/pub/st80_r4 l/NewTooL He writes:

NewTool is an alternative Browser. It looks sub-

stantially different, has more of the features at

the top level, and has several nice characteristics:

“.4m

I Ierqth

lengt:
lengt)

ff

ATw1

9tr

run
0CTOB5!SI 1993
“ All NewTool windows update instantly and automatically

to reflect the current state of the system, whether the

change was made from a CodeTool,a debugger, or a filein.

. Screen real estate is used more efficiently. Windows are

tiled automatically, and instead of each window wasting a

third of its area as a navigation mechanism, there is only

one that controls all windows.

Why did you write this thing, Dan?

On a recent visit to UBILAB in Zurich, I was given a demo

of Sniff, a C++ browser/debugger/editor by its original au-

thor, Walter Bischifoberger. It is extremely well done, with

lots ofwell-thought-out features.

If you use NewTool a bit, you’ll realize that I tried to re-
duce the six or so different Browsers in the original image

down to only one CodeTool with lots of features. This

saves screen real estate, and arilong as I don’t try to cram

too much into one wiredow, I think it’s faster and easier to

use, too.

NewTool looks quite different from the standard browsers,

but is pretty easy to pick up. It creates a “Navigator” down

the Ietl hand side of the screen, which is similar to the top

four panes of the system browser. This navigator controls all

of the CodeTools, except the ones that are frozen. Having

half a dozen browsers on the screen all showing the same

code is not very useful, so most browsers are normally frozen.

A CodeTool in which code is being edited is automatically

frozen. Also, from a frozen CodeTool you can change the

navigator to reflect that CodeTool’s information, effectively

switching contexts. This is a nice concept, elegantly imple-

mented, and one that definitely relieves some of the screen

congestion that can be caused by browsers with many panes

(Figure 2),
verstheredver’scontentsaeText.”

I

h=position- runStertPosibn.
hO
hrue:@_19thnetiPWkngth.

emphases next Put: current Emphmis.

runStwl Poaitim:= positii].

ing: super conten 19

s: (RunNrW runs: lengths contents veMes: emphssea contents)

Figure 2. A CodeTool (from the NewTml package).
19

■ 5MALLTALKIDIOMS ...contintiedfrom pfIgc 14

—.

20
— -. -—
Afoo”–

“AUctassesneedthis”
...

B foo D foo
super foo. super foo
“Thisshould not be inherited

\

self helpFoo
...

helpFoo
‘This should not be irherited”
,..

c foo > <deleted>
super foo.
“Thisshould be used instead

!

~he~p~i~ should be used in~tea~..
...

—.
Figure 1. In;ohing helper ‘methodssvoid”u;wanted inheritance. ““-

A>>initialize

“Initilize generic sbucture”
...

B>>tiitialize
super initialize.
‘Allocate machine resources”
...

Jow we want to write C, a subclass of B that uses other ma-

hine resources. If we write

C>>initiatize
super initialize.
“Allocateother machine resources”
...

we will allocate B’s machine resources and C’s, too, which is

ot what we wanted. If we don’t send to super, we don’t get the

eneric initialization from A. If we copy A’s initialization into C,

~ehave a multiple update problem with the code in A and C.

‘he right solution is to use Compose Methods to introduce a

elper method in B that allocates machine resources:

B>>initialize

super initialize.

self initializeMachineResources

B>>initializeMachineResour~es

“Allocate machine resources”

. ..

‘hen we can override initializeMachineResources in C:

C>>iSliljalizeMacKlneResources

“Allocate other rnachlne resources”

.. .

Je can delete initialize in C. The logic in B works just fine to

woke its specialized behavior.

This solution satisfies all of the constraints: Inheritance is still

seal, the maximum amount of code is being shared, and there-

dting code is only slightly more complex than the original.

You may have to invoke Compose Methods before you can

:parate out the method you want to override but not invoke. E

‘ent Beck is the founder of First Class Softwm-e, which develops and

iJtributes reengineering products for Snlallta/k. He can be reached at

irst Clam Software, P. O. Box 226, Boulder Creek CA 95006-0226,

08.338.4649 (v), 408.338.3666 (J, or 70761,12 i6 on ConrpliServe.
.- -. .. .

Noteble Features

o Auto-update of windows (a feature I’ve always wanted)

- Separating the navigation and text-editing windows

- The concept of “freezing” a text-editing view. This allows

you to have one navigation tool, but to still have browsers

open on several different classes/methods and to navigate

among them fairly easily.

Weaknesses

My biggest problem with NewTool is that, while addressing

some issues very nicely it leaves many others open. For exam-

ple, it doesn’t deal with browsing inherited methods. Address-

ing some of these issues without making the windows too large

and complicated is the challenge.

CONCLUSIONS
All three of these systems significantly improve some aspect of

the standard browsers. All have their weaknesses. You’ve prob-

ably skipped to the end wondering which to try out, or which

I’d choose to use in my own work.

To recommend a single best choice is difficult. All have in-

teresting concepts and nice features, and although they all ex-

tend the same environment, they mostly attempt to solve

different problems. Which you want to try depends on which

problems you consider most important,

For me, the answer is simple. I plan to take the pieces I like

from all three and incorporate them in my own personal envi-

ronment along with anything else that strikes my fancy. Two

other ideas I’d like to make use of are ENVY/Developer’s use

of multi-selection and SmalltalkAgents support for saving ex-

tended text attributes with method text.

Finally, I’d like to commend all of these people for having

the courage and the generosity to make their code available for

public use and criticism. I’ll, close with an inspirational quote

from Dan Walkowski:

I think I have made a significant improvement on the orig-

inal Browser. What do you think? Every smalltalk pro-

~ammer I know has some gripes with the Browser, and yet
so few do anything about them. I’m throwing down the

gauntlet with NewTooL Let’s have a contest of sorts. If you

think NewTool isn’t quite right, or isn’t even close to your

ideal browser, fix it! Let’s combine all of our best ideas and
develop the best programming tools around. Then we all

win. E!!

Alan Knight works for The Object People, 509-885 Metsdo wlands

Dr., Ottawa, Ontario, K2C 3N2. He can be reached at 613.225.8812

or as alan_knight@nrindlink. bc. ca.
THE SMALLTALK REPORT

■ PRAGMATICMULTIPLEINHERITANCE., .cmrtinuedfiomp~gcJ

Just touch a button 10

4!!!!II

put a chmi
w“ew in your

,hati Wira+ow!

Add charts to your Vlsua/kVork palette
~IIW?l/C Add or change data pnints, with minirnd .scrwm rcpi.iming
Addm mmnvc data seriL% to/from the chart.

/tiftifVe Select dit~dpoints with the mouse—EC-Ctlarts infnrnw
your application.

h

Uses sc~en space e~edveiy
,%-nllthe chdrt view in nrre or hnth
directions. Mark values of summary

Ikkw Voss s, lliE
,,!!

1984

1955

49ffi

1967
/’

1960 f

1989

1990

1991
,.

&
,66 ,67 ,68 ,69 ,70 ,71 .72 ’73 ’74 ‘7!

@ $350
ATotaltnxlgel A Tc.?ulad k

Norunlimelicensefee

Call ror a technical muer A [_ ‘fit (~ Ii[[5r)[lJs ‘II,

m EC-Cfwti - “ (408) 462-0641
U9MWcd-s is a lm&rOrh

21137East Cliff Dr. Santa Cruz CA 95062
.-

perclass, PMI then creates

methods in the new class

which forward messages to

the PM1-superclass instance.

A method is added to create

this instance, which may be

edited by the programmer

to accommodate special in- &
Objet

A
P

B

c D

Figure 1. Simple PMI example.
stance-creation needs. All

new methods are placed in a

new method protocol, named to identify it as implementing

PMI. The VisualWorks forms for browsing and editing PMI

relationships are sensitive to these names, and use them to de-

termine what PMI relationships a class has defined.

For example, in the desired class structure shown in Figure 1

classes Cand D both need to inherit from class P, but the class hi.

erarchy doesn’t easily allow classes A and B to each be subclasses

of P. PM I creates instance variables in Cand D to refer to (differ-

ent) instances of P, and creates appropriate methods in Cand D

to forward relevant messages to their respective instances of P.

A pair of VisualWorks forms are used to allow browsing ex

isting classes for previously defined PMI relationships, and to

create new or delete existing PMI relationships. One form al-

lows selection of the class to be manipulated (or browsed) by a

pattern match on class names. The other uses a fixed target

class, passed in to the form when it is created.

To create a new PMI relationship, a class is chosen to in-

herit from. This class and all its superclasses (including Object)

are presented in a selection list. The programmer can select

any or all of these classes, and the set of all instance methods

defined by these classes is presented in another selection list.

The programmer chooses the methods to be included with the

definition, and clicks a Generate button. This causes the in-

Choose Class

3 ‘: -

Current PMI

Xasses: pmi Classes Methods

MlAdder
+ DirtyPmperty + clean ●

‘MIBrowser
dtiy

3MlEsample isClean
+ .,

‘MIManipuldor

+ E ‘Shfi’ ~

lasses: dirty I Pick Methods:

)irtyProperty ~~ cleen

J ‘fize
Pick Methods From:

J

isClean
istrirty

Objecl +

‘ DittyProparty
u~
ITI I I

Figure 2. Example of adding dirty properly.
OCTOBER 1993
d Pm%= Sy3mrm, kc.

stance variable, the new protocol, and all selected methods to

be created in the target class. Note that only instance methods

are presented and defined here. The interface allows the user to

define more methods for a previously existing PMI relation-

ship (in case you don’t get it right the first time ;-).

To browse existing PMI relationships, a target class is chosen

(depending on the VisualWorks form, as noted above). The Vi-

sualWorks form determines existing PMI relationships and

methods from the protocols implemented by this class, and pre-

sents existing PMI superclasses in a selection list. Choosing one

of these classes causes a list of the methods defined specifically for

that class to be presented in another selection list. Indirection

methods can be deleted individually (via a pop-up menu), or the

PMI superclass maybe removed completely (all methods, the

protocol, and the instance variable) by clicking a Remove button.

KINDS OF PROPERTIES

Two kinds of properties are supported by PMI: proper-ties that

are orthogonal to the subclass and those that are more intimate

with the containing instance. An orthogonal property represents

some state that is completely independent of the containing ob-

ject. The dirtiness property discussed above is a good example.

The state of this property, and all manipulations of it, are inde-

pendent of any state of the containing instance; an object is

dirty or not—it doesn’t depend on other state of the object.

An embedded property in some way knows about the object

that contains it, and its state manipulation is dependent on this
21

■ PRAGMATICMULTIPLEINHERITANCE
—

knowledge. For example, if an embedded property would nor-

mally use methods defined in its subclasses, it must be able to

invoke these in the PMI-subclass. To support embedded prop-

erties, PMI supplies class EmbeddedProperty, with a single in-

stance variable, embedding, intended to refer to the containing

object. All subclasses of EmbeddedProperty are recognized by

PMI when creating a PMI inheritance, and the embedded in-

stance is automatically initialized to refer to the containing ob-

ject. Methods in an EmbeddedF’roperty may use the construct self

embedding to refer to the containing object (i.e., an Embedded-

Property must be coded knowing it may be used this way). For

convenience, if the embedding isn’t initialized, self embedding

answers self, so an EmbeddedProperty may be inherited from and

coded to work independent of whether its actually embedded.

EXAMPLE

To illustrate the use of PMI, this section presents a DirtyRop-

erty class, and an example of how it might be used. The defini-

tion of the simple class DirtyProperty is (edited for brevity):

Class definition:

Objectsubclass: #DirtyRope~
inztanceVariableNames:‘dirty’
clazsVariableNames:“
poolDictionssies:“
category ‘Pragmatic-Multiple-Inheritance’

Instance Methods:

clean
“Assertthe object is clean.”
dirty:= fatze

w
“Assertthe object is di~.”
dirty:= tme

isClean
“Isthe object is clean?”
‘dirty not

isDirty
“Isthe object is dirty?”
“dirty

initilize
“Assertthe object is clean to start with.”
self clean

Class Methods:

new
‘super new initialize

An example of the PMI browser being used to add the

DirtyPrope@ to a class is shown in Figure 2, In this example,

the class PMIExample has added DirtyProperty as a PMI super-

class. The methods clean, dirty, isClean, and isDirty have been

defined in PMIExample, and these will be forwarded to an in-

stance of DirtyRoperty, which is created on demand. In this

manner, a PMIExample instance will respond to the DirtyRop-

erty protocol as if it had directly inherited from DirtyRoperty.

To further illustrate how PMI is implemented, the resulting

PMIExample class code is presented below
22
Object subclass: #PMIExarnple
iostanceVariableNames: ‘aDirtyRopec+yForPMI’
clazzVariableNames: “
pootDictionaries: “
category ‘Ragmatic-Multiple-Inheritance’

aDirlyRope~ForPMI
“aDirtyPropertyForPMI == nil

iflhre: [aDirtyPropertyForPMI := self
createaDir@Roper@ForPMI]

ifFalse: [aDirtyPropertyForPMI]

clean
“self aDirtyPropertyForPMI clean

createaDirtyRopertyForPMI
“Edit this method to customize creation of the Di@Property

instance. ”
‘DirtyPrope~ new

dirty
“self aDirtyPrope@ForPMIdirty

isflesrr
‘seLfaDirtyPropec@ForPMIisClean

isDirty
‘self aDirtyPrope@ForPMIisDirty

The aDirLyProper&ForPMI instance variable and all the pre-

sented instance methods were generated by the PMI browser,

in protocol PMLDirtyProperty. For subclasses of EmbeddedRop-

ew, the createaXxx method also initializes the embedding to be
the containing object.

WHAT PMI DOESN’T DO

PMI does not implement the semantics of full multiple inheri-

tance. For example, the virtual base class concept in C++ isn’t

supported (this allows sharing of a single base class instance

when multiple superclasses each have the same base class). There

is also no support for the PMI-subclass to directly override meth-

ods in a PM1-superclass. An EmbeddedProperty object maybe

used in some cases to provide the desired semantics, albeit using

a different coding technique (self embedding). Class methods are

not supported in the current version of PMI. It is not yet clear

that they are needed, but they should be easy to add (instead of

an instance variable, the class can be referenced directly).

RESULTS AND FUTURE IDEAS

We have applied PMI to an application in which 5 classes (out

of approximately 120) were removed by mixing in the DirtyRop-

erty. This included several classes removed by collapsing the

class hierarchy, since the need for an abstract dirty superclass

was removed. The need for EmbeddedRoperLy was apparent in

trying to refactor some user interface classes needed for database

logon. There were three cases of database usage (two variants of

middleware to access Oracle relational data, and one to access

Servio’s GemStone object data). Prior to PMI, a DBMS access-

ing abstract superclass had been artificially added to the class hi-

erarchy to enable this, which provided the function but not in a

form reusable by possibly different components. Moving the

DBMS logon functions to a separate EmbeddedRoperg subclass

allowed the class hierarchy to reflect the actual desired structure,
THE SMALLTALK REPORT

LEADING EDGE

TECHNO1OGY

Heahhcare App/icafions
HBO & Campany is on the leading edge of technology for the
heah.hcare community. We are currently embarking into a new

development efFort, pulling all healthcare information systems

together to create a fully-integrated systems solution for our

customers. Join our team of development experm in this
exciting endeavor.

The ideal candidate will be responsible for application design

and development and musr have a minimum of two years’

experience in the following arew.

● Object-oriented design and programming wirh Smalkalk

● PC operating systems (0S/2, DOS, Wsndows, Windows
NT, Macintosh)

“ Client/sewer architecture

Join a company committed to customer satisfaction, continuous
quality improvement and employee development,

A Please send cover letter and resume to:.

●
Gail Hiddmass, =tmasG DepL SRIO/93,

A HBO & Company, 301 Perimeter
~TA Center North, Atl~sst., GA

Z- 30346. An equal opportunity ~:

HBO&Cmnpeny ‘mPIOYmI~f/~v-
.. .. .

~

SMALLTALK

DESIGNERS AND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalltalk
Professionals in Various Regions of the Country.

mA
.. -----

Salient Corporation,,,
Smalltalk Professionals Specializing in the

Placement of Smalltalk Professionals

For more information, please send or FAX your resumes to:

salient Corpmatbn
316 S.Omar Ave., SuiteB.

Los Angeles, California 9W13,

VoKe (213) 680~1 FAX @13) 680-4030

.—. .- —

EXPERIENCED SMALLTALK

APPLICATION DEVELOPERS

Knowledge Systems Corporation’s mission
is to help clients attain self-sufficiency in the
real world application of Object Technology
and Smalltalk. We have immediate openings
for individuals with 1.5+ years of Smalltalk

experience (VOS2 or VkualWorksm).
Experience with ENVY@/Developer is

desirable. Excellent communication and
analytical skills are essential.

Please fax or mail your resume to:

Mr. Ken Auer

F?

Knowledge Systems Corporation
114 MacKenan Drive

Cary, North Carolina 26511
fax: (919) 460-9044

email: kauer@ksccary.com

KNOWLEDGE SYSTEMS
CORPORATION

An Equal Opportunity Emplrsyer

.-.
by mixing-in the DBMS logon function where needed. The

DBMS logon class relies upon the subclass to provide other con-

text information (e.g., which actual dialog class to use), and thus

needs to access the containing object via self embedding, PMI

thus enabled the removal of all Gee-multiple-inheritance-

would-be-nice-here comments in this application.

Additional features that might be added to PMI include:

adding support for class methods, integration with the system

browser (perhaps via a spawn-PMI menu item), and providing

additional information for classes to be used as PMI-super-

classes (e.g., to more readily identi~ the methods most likely to

be useful to inherit, for generating forwarding methods). It

could be argued, however, that the class comment should doc-

ument the appropriate methods (since this is part of the class

specification), but an automated mechanism would be helpful.

SUMMARY

PMI supports a useful subset of multiple-inheritance semantics

in Smalltrdk without damaging its intuitive single-inheritance

model. It also supports a notion of mixing-in properties, as

defined by other classes, which seems to be the useful, intuitive,

and understandable subset of multiple-inheritance semantics,

PMI is supported by two VisualWorks forms that make it easy

to create, browse, and remove PMI relationships. ❑

ElobBeck is a l%ifi~~al Engineer in the Object ~echmlogy group

at Sequent Computer Systems, Inc. He maybe reached at rbk@ke-

quent.cotn or Sequent Computer Systems, Inc., 15450 SW Koll

Parkway, Beaverton, OR 97006.
OCTOBER 1993 23

luminaries and Fortune 500
managers aren ‘t the only
ones who have recognized
the value of SmalltalWV
Users have discovered that
Smalltalk7V is the ordy
object-oriented technology
that’s 100% pure objects.
With hundreds of reusable
c/asses of objects, thousands
of methods and 80 object
classes specifically designed
to build GUIS fast. Which
means no more time spent
writing code from scratch.

So it’s no wonder that
so many companies are

In addition, our Team/V Group doing award-wi;ning work with
Development Tool lets large teams of Smalltalk7M Incidentally Smailtalk/V

	By Article Title
	Abstract classes
	Coping with single inheritance: building tree classes
	Extending the environment: part 2
	Helper methods avoid unwanted inheritance
	Interfacing Smalltalk with real-time systems: part 1
	Pragmatic multiple inheritance

	By Author Name
	Beck, Bob
	Beck, Kent
	Ewing, Juanita
	Klimas, Edward
	Knight, Alan
	Samuelson, Bruce

	By Topic
	comp.lang.smalltalk
	Getting Real
	Smalltalk idioms

