The Smalltalk Report

The International Newsletter for Smalltalk Programmers

October 1993 Volume 3 Number 2

PRAGMATIC
- MULTIPLE
INHERITANCE

by Bob Beck

Contents:

Features/Articles

1 Pragmatic multiple inheritance
by Bob Beck

4 Coping with single inheritance:
building tree classes
by Bruce Samuelson

9 Interfacing Smalltalk with
real-time systems: part 1
by Edward Klimas

Columns

14 Smalltalk idioms:
Helper methods avoid
unwanted inheritance
by Kent Beck

16 Getting Real:
Abstract classes
by Juanita Ewing

18 The Best of comp.lang.smalftalk:
Extending the environment: part 2
by Alan Knight

HIS ARTICLE DISCUSSES pragmatic multiple inheritance (PM1),
which provides a useful subset of full multiple inheritance functional-
ity in Smalltalk. PMI does this without burdening the Smalltalk system
with complex multiple-inheritance semantics or otherwise damaging
the nice single-inheritance model of Smalltalk. PMI adds instance
variables in target classes, which refer to instances of additional superclasses, and
adds methods to forward messages to these instances. A new browser provides a user
interface to support browsing and maintenance of PMI relationships.

Many cases where multiple inheritance is desired involve mixing-in properties
of some sort. Mixing in a property implies adding this property to a class as if the
class fully supports the messages and state of this property. PMI provides a means
to mix-in properties in a class definition, where these property classes aren’t ap-
propriate as a unique superclass. While in some cases a single-inheritance class hi-
erarchy can be refactored to avoid using the mix-in model, in many cases the re-
sult is neither reasonable nor intuitive. Further, even if the properties can be
added to a single-inheritance class hierarchy, it is often difficult to arrange that
only the desired properties are inherited, without picking up unnecessary (or un-
desired) properties in the process. PMI addresses these difficulties.

An example of such a property is dirtiness: a binary state that implies an object
has been modified relative to a more permanent copy of that object. This is an
often-used property (e.g., in a View to know if the state of the view has been
modified from that of the model it represents), but is awkward to place correctly in
a single-inheritance hierarchy. A common result is various forms of abstract
DirtyXxx classes (e.g., DirtyView, DirtyModel), where each duplicates the dirtiness code.

The technique used in PMI can be done manually using existing Smalltalk
browsing tools, but it is difficult to maintain and browse this way. The PMI
browser provides an interface that makes the creation, maintenance, and removal
of PMI easy to do.

PMI as discussed in this article has been implemented in VisualWorks v1.0.
The source code for PMI has been placed in the public domain, and may be found
via fip in the Manchester/UI Smalltalk goodies archives (mushroom.cs.man.ac.uk
(130.88.13.70) or st.cs.uiuc.edu (128.174.241.10)) as /pub/goaodies/visual/pmi.st.
These archives may also be reached via email by sending mail to goodies-
lib@cs.man.ac.uk with the word help in the subject line.

DESCRIPTION

PMI is basically inheritance by delegation. It works by storing a reference to an in-

stance of the PMI-superclass (the class being inherited from), and providing a means

to forward messages to that instance. A class doesn't directly inherit from another

class via PMI; rather, it includes an instance of that class among its instance variables.
PMI creates an instance variable in the new class (the PMI-subclass: The class

inheriting from the PMI-superclass), which references an instance of the PMI-su-

contintied on page 21...

R

The Smalltallt Report

EDITORS’ | &=
John Pugh and Paul White
C o R N E R Carleton University & The Objecl People

; SIGS PuBLICATIONS
ohn Pugh i .
J & Paul White Advisory Board
Tom Atwood, Object Design |
wo of the articles featured this month focus on the issue of multiple inheritance. Inheri- g’a"'y B;"ch' ““:°"“'
- - . . eorge Boswaorth, Digitalk
tance, of course, is sold as one of the l‘:ug features offer?d by object-oriented technology, Bt gCox, swarln, ¢ f; ! g
and when used effectively allows for significant reductions in the amount of code needed Adele Goldberg, ParcPlace Systems

Tom Love, I1BM
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems

to be written for a software project. There is little argument put forward as to the merit of
inheritance as a development technique. Discussions abound, however, over whether

multiple inheritance—the natural extension of single inheritance—is usable. “Why is it Sesha Pratap, CenterLine Software
that C++’s got it, and Smalltalk doesn’t?” “Well, Smalltalk could have it if it wanted it.” Cliff Reeves, IBM
“well. why d % i7" Bjarne Stroustrup, AT&T Bell Labs
ell, why doesn t1ef Dave Thomas, Objecl Technology International

There will never be a definitive answer to these questions, since the answer always de-
pends on context. It will always be possible to come up with examples where multiple in- Editorial '
heritance is the way to go. String as a subclass of both Magnitude and Collection, and the Jim An:]learsoEnDDaigilalk
implementation of ReadWriteStream are two obvious examples taken from the base Adele Goldberg, ParcPlace Systems
Smalltalk class library. Similarly, one can always cite examples where the use of multiple Reed Phillips, Knowledge Systems Corp.
inheritance is a disaster waiting to happen. Religious wars always have these examples Mike Taylor, Digttalk

i P o & Y i . P ’ Dave Thomas, Objecl Technology Inlemational

At the heart of the question, though, is what we are actually trying to gain by using
multiple inheritance (or inheritance for that matter!). If it’s code reduction and reuse Columnists
1 ith reduced int ¢ find that - ingle inherit bl Kent Beck, First Class Software
along with reduced maintenance costs, we find that managing single inheritance problems | ;.. Fwing, Digiak
is difficult, let along multiple inheritance. The problem lies with the simple fact that ob- Greg Hendley, Knowledge Systems Corp.

jects change over time. As a particular class of object changes, or a family of objects in a Ed Klimas, Linea Engineering Inc.
Alan Knight, The Object People

THE SMALLTALK REPORT

hierarchy evol_res, their characteristics and responsibilities change and so must the.ir hier- Eric Smith, Knowledge Systems Gorp.
archies. Pinpointing where these changes should be made, and how to do so effectively, is Rebecca Wirfs-Brock, Digitalk
challenging and usually represents a considerable undertaking. Multiple inheritance A
hallenging usually represents a conside ble under g Multiple i .rlt nce only SIGS Publications Group, Inc.
compounds the problem because the evolution of a class may impact others inheriting Richard P. Friedman
from it in ways that are not at all obvious or predictable; class relationships are now repre- | Founder & Group Publisher
sented as a lattice rather than a tree. : i\(t/?njdu;tion
- - . . P - . ristina Joukhadar, Managing Editor
So, is multiple inheritance a good thing? VYell,_ pefrhaps, but realize that what you gain Susan Culigan, Pigrim Road, Li., Greaiive Directon
now may actually cost you much more to maintain in the future. . .. Karen Tongish, Praduction Editor
These comments aside, the two articles presented in this month'’s issue present inter- Gwen Sanchirico, Production Goordinator
. Robert Stewart, Computer Systems Coordinator
esting discussions on how to best use inheritance. Bob Beck describes a means for attain- Circulation
ing a limited form of multiple inheritance, where developers can explicitly “mix in” addi- Stephen W.Soule, Circulation Managsr
tional classes to an existing class. Bruce Samuelson discusses the implementation of a K.S. Hawkins, Fulfilment Manager
family of tree classes exhibiting a variety of properties, highlighting the design choices Marketing/Advertising
faced duri h devel t James O. Spencer, Director of Businass Development
aced during such development. . _ o Holy Meintzer, Advarising Mgr—Wast Coast/Exrope
Also in this issue, Ed Klimas returns with a pragmatic description of how Smalltalk can Thomas Tyre, Adveriising Mgr—Eas! Coast/Canada
be used in the construction of real-time systems. Kent Beck presents a pattern for dealing Helen New’ing, Recnitment Gaise Manager

. Sarah Hamilton, Promotions M: —Publicatiol
with the tricky problem of better controlling what code gets inherited in a deep inheritance | o P:E;r";mm:im Gm:hn;g:' st restons

tree. Juanita Ewing explains how abstract classes can actually serve in tow different roles— Administration

as a design mechanism or as an implementation-based code-sharing mechanism. And David Chatterpaul, Accounting Manager

finally, Alan Knight continues his exploration of extensions to the Smalltalk environment. James Amenuvor, Bookkeeper
Margot Patrick, Assistant to the Publisher

Christina Thodt, Administrative Assistant

(\ f_ argherita R. Monc
"'j-; (A - ?Lj(—\ Q 3\ N)L){ Henen Man::;e'rVI *

combined issues. Published by SIGS Publications Inc., 588 Broadway, New York, NY 10012 212.274.0640. © Copyright 1993 by SIGS
Publications. All rights reserved. Reproduction of this material by electronic transmission, Xerox or any other method will be treated as FURTICATTONS

a willful violation of the US Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the pub- —
lisher. Mailed First Class. Subscription rates 1 year (9 issues): domestic, $65; Foreign and Canada, $90; Single copy price, $8.00. POST-
MASTER: Send address changes and subscription orders to: THE SMaLLTALK RepORT, Subscriber Services, Dept. SML, P.O. Box 3000, Publishers of JourRNAL oF OBJECT-ORIENTED PRO-
Denville, N] 07834. For service on current subscriptions call 800.783.4903. Submit articles to the Editors al 509885 Meadowlands GRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
Drive, Ottawa, Ontario K2C 3N2, Canada, 613.225.8812 (v), 613.225.5943 (f). SMALLTAL REPORT, THE INTERNATIONAL OOP DiRec- |
PRINTED IN THE UNITED STATES. TORY, and THE X JouRNAL.

Tue SMALLTALK REPoRT (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec . S I G S

2 THE SMALLTALK REPORT

SWALSAS

Smalltalk/V developers have come Lo rely on

WiNnDOWBUILDER PR

The New Power in Smalltalk/V Interface Development

WindowBuilder Pro/V is available on Windows for $295

and 0872 for $495. Our stan-

WindowBuilder as an L s

[-]2

essential tool for develop-
ing sophisticated user inter-

o

dard WindowBuilder/V is
still available on Windows
for $149.95 and OS8/2 for

faces. Tedious hand coding
of interfaces is replaced by
interactive visual composi-
tion. Since its initial release,
WindowBuilder has
become the industry stan-
dard GUI development tool
for the Smalltalk/V environ-
ment. Now Objectshare
brings you a whole new

BB e

$295. We ofter full value
trade-in for our

F WindowBuilder customers
wanting to move up to Pro.
These products are also
available in

| ENVY */Developer and
Team/V™ compatible for-
mats. As with all of our

level of capability with

products, WindowDBuilder

WindowBuilder Pro! New

functionality and power

abound in this next genera-
tion of WindowBuilder.

Pro comes with a 30 day
moncy back guarantee, full
source code and no Run-
Time fees.

Some of the exciting new features...

e ComposijtePances: Create custom controls as composites
; of other controls, treated as
Sirc:l:L

B a single object, allowing the
T
Zl

developer higher leverage
of reusable widgets.
CompositePanes can be

" used repeatedly and
becuuse they are Class based, they can be easily sub-
classed; changes in a CompositePane are reflected any-
where they are used.

» Morphing: Allows the developer to quickly change
Tomaitai ' [rom one type of control Yk
oraowullderwd 1) another, allowing for | O smalaik

| powerful “what-if” style | © WindowBulider
visual development. The | © Other
flexibility allowed by
morphing will greatly enhance productivity.

e ScrapBook: Another new feature to leverage visual
component reuse, .Scmpl}()()ks provide a mechanism for
e developers Lo quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
) favorite interface com-
ponents, organized

into chapters and plu,,es

» Rapid Prototyping capa-
hilities: With the new link-

Select m ViewMunger Class:

- e I Link Ty

ing capabilities, a develop- | [PleBrewser P | indepensent

er can rapidly protolype a ermebieeDema Shling

functional interface without | [getder Opcns the aclecrd
i . B . WDISyulem window as a child of

writing a single line of MDITranactipt the current windaw.

code. LinkButtons and 2'!,'}:7‘5"" =

LinkMenus provide a pow-

and Wi

Pro are

erful mechanism for linking
windows together and speci-
tying flow of control.
ActionButtons and
ActionMenues provide a
mechanism for developers to
L attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

Ackan Detishien———— - ——

Wom: [t _IE

e ToolBar: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro tool itself.

o Other new features include: enhanced duplication and
cut/paste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and field level validation, and much more...

s Add-in Manager: Allows developers to casily integrate
extensions into WindowBuilder Pro's open architecture.

Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742

Objectshare Systems, Inc
Fax: (408) 727-6324

5 Town & Country Village
Suite 735

of Obji Y Inc. All other brand and producl names are

CompuServe 76436,1063 San Jose, CA 95128-2026

of thair r

companies

COPING WITH

SINGLE

INHERITANCE:

BUILDING TREE CLASSES

Bruce Samuelson

ow can you develop a class library using single in-
heritance for a problem domain that is most nat-
urally modeled with multiple inheritance?

Smalltalk-80 included partial support for mul-
tiple inheritance in some older versions. Re-
searchers have added experimental support to the current ver-
sion. Digitalk has added some hooks in its current version for
possible support in the future. However, industrial-strength
support is not available in Smalltalk-80 or Smalltalk/V today.

The problem domain under consideration is tree structures.
A tree is a hierarchical organization of nodes with intermediate
branches and terminal leaves. Examples are file systems, hier-
archical databases, parse trees, balanced trees, and the
Smalltalk class hierarchy. The goal is to design tree classes that
are robust, flexible, reusable, clear, simple, and reasonably
efficient in space and time. The constraint is to do so within
Smalltalk’s single inheritance model.

The tree classes have four possible instance variables:

« Key uniquely identifies a node like a database key or a dic-
tionary key

* Value stores data at the node
* SubTrees holds the immediate subnodes

« superTree points to the parent tree

Each needs a public read accessor, and all but one need a public
write accessor. With one exception, each variable is optional
and may be introduced independently of the others. This makes
24, or 16, possible classes. For example, for every class contain-
ing a superTree pointer, another class can be defined without
one. Because a key cannot be defined apart from subTrees, four
combinations are ruled out, resulting in 12 possible classes.
Where should support methods (validate, initialize, access,
test,. . .) for an instance variable be placed? They can either be
in each class defining the variable or in a common superclass.

The only way to organize a single-inheritance class hierarchy

that avoids duplication of support methods would be to place
them in the top-level class. If multiple inheritance were avail-
able, they could be naturally defined in several superclasses.

THREE ATTEMPTS AT IMPLEMENTING TREE CLASSES
The adage is to throw the first one away if you want to get it
right. I threw the first two versions away and am still not sure I
got it right. Figure 1 shows the three design iterations. The
third has the 12 classes resulting from possible combinations of
instance variables. Later, I'll explain the last class, BinaryTree.
There were three problems with the first two design at-
tempts, They lacked an abstract superclass analogous to Collec-
tion, making new application subclasses more difficult to write.
They forced subclasses to inherit instance variables (key and
subTrees) that the subclass might not need. And there were too
many methods with nearly identical code.

DESIGN PRINCIPLES

The third iteration of tree classes worked better. It is based on
familiar design principles. The single inheritance constraint
often forced these principles to be pushed to their limit.

VALIDATE THE CLASSES

A validation suite is implemented in a group of subclasses un-
der a class called Tester. Each subclass corresponds to a tree
class and has methods that exercise the corresponding tree
method. Validation can be applied to an individual tree class or
to the entire class hierarchy.

VALIDATE STRATEGIC ARGUMENTS

When a tree client sends a message that creates or modifies a
tree, its arguments get validated. This protects against building
incorrect trees and catches most errors at their point of origin.
It provides a clearer explanation of the error than would be
possible if it went undetected until later in the processing,

INTRODUCE SERVICES HIGH IN THE
INHERITANCE HIERARCHY
The higher you place a method in an inheritance hierarchy,
the more leverage you get. For example, once a collection
class defines do:, it can use several enumeration methods
defined by Collection. The tree classes work similarly. Most
methods are implemented in Tree and do not need to be
redefined by subclasses.

Three standard techniques are employed to gain leverage:
indirect reference, semantic extension, and weak (or no-op)
polymorphism. Examples include:

- Indirect reference. Subtrees are accessed via a message send
rather than directly, allowing many variations of subtrees
processing to be deployed.

* Semantic extension. A node’s parent (superTree) is also ac-
cessed indirectly. The notion of root is extended to trees not
containing a supertree pointer. They are defined to be their

4

THE SMALLTALK REPORT

Object Transition

by Design

ADVANGED TRAINING

ANALYSIS & DESIGN

APPRENTICE PROGRAM

TEAM REQUIREMENTS

i

CUSTOM CONTRACTS

Object Technology Potential
Object Technology can provide a
company with significant benefits:
¢ Quality Software

* Rapid Development

* Reusable Code

* Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern
California Edison and Texas Instru-
ments to successfully transition to
Object Technology.

MENTORING

TEAM TOOLS

KSC Transition Services

KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

¢ Introductory to Advanced

Programming in Smalltalk

¢ STAP™ (Smalltalk Apprentice
Program) Project Focus at KSC

¢ 0O Analysis and Design

¢ Mentoring: Process Support

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of “Best of Breed” third
party tools and KSC value-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server
environment,

Design your Transition

Begin your successful “Object
Transition by Design” For more
information on KSC’s products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
Software Assets by Design.

IS

Knowledge Systems Corporation

OBJECT TRANSITION BY DESIGN

«. 1992 Knowledge Systems Corporation.

114 MacKenan Dr.
Cary, NC 27511
(919) 481-4000

1 COPING WITH SINGLE INHERITANCE: BUILDING TREE CLASSES

own root, and all methods that manage the pointer work
properly with them.

= Weak polymorphism. Trees use no-ops analogously to the
'close' method for streams in Smalltalk. A client can operate
polymorphically without knowing what kind of tree or
stream it is talking to.

INTRODUCE INSTANCE VARIABLES LOW IN THE
INHERITANCE HIERARCHY

You should avoid introducing an instance variable until you
need it. The flaw in the first two design iterations was to define
instance variables directly in Tree rather than deferring the
definition to subclasses. The third attempt takes this deferred
approach. Instance variables are introduced one at a time as
you descend the class hierarchy, and all possible combinations
are available for anchoring application specific subclasses. The
exception is that there are no classes defining a key without
subTrees because it would make no sense.

The Smalltalk Collection classes again provide a good anal-
opy. The superclasses of Array are Object, Collection, Sequence-
ableCollection, and ArmrayedCollection. As you descend this chain,
capabilities for processing array elements are introduced. But
an indexed instance variable to actually hold the data is not
defined until the Array class itself. Even ArrayedCollection is
dataless, allowing it to anchor several subclasses.

Third iteration shows number of methods defined by each class.

First attempt

Tree (key value subTrees)
GroundedTree (superTree)

Second attempt

Tree (key subTrees)
GroundedTree (superTree)
FullTree (value)
ValueTree (value)

Third attempt

Tree () 100 methods
PTree (superTree) 2 methods
PVTree (value) 2 methods
STree (subTrees) 26 methods
SKTree (key) 40 methods
SKPTree (superTree) 2 methods
SKPVTree (value) 2 methods
SKVTree (value) 2 methods
SPTree (superTree) 2 methods
SPVTree (value) 2 methods
SVTree (value) 2 methods
VTree (value) 2 methods
BinaryTree (left right) 10 methods "defined for pedagogic purposes"

Naming conventions for third attempt
prefix derived from

K'K' in key

P 'p' in superTree

S$'s' in subTrees

V'v' in value

Figure 1. Inheritance hierarchies in three design iterations.

INTRODUCE INSTANCE VARIABLES INTO THE
INHERITANCE HIERARCHY IN THE RIGHT ORDER
One path of descent goes from Tree to STree to SKTree to SKP-
Tree to SKPVTree. The variables are introduced in the order sub-
Trees, key, superTree, and value. The ones requiring the most
supporting methods (subTrees and key) are introduced first
and the ones requiring the least supporting methods (superTree
and value) are introduced last. SubTrees is introduced before
key because a key cannot be defined apart from subTrees.
Figure 1 shows how many methods are defined by each
class. Those with only two methods have basic read and write
accessors for the instance variable they introduce. The hierar-
chy is arranged so that the two variables requiring the most
support, subTrees and key, are introduced only in one class
each, This prevented a major duplication of methods.

ACCESS INSTANCE VARIABLES INDIRECTLY

Kent Beck explains the advantages of accessing instance vari-
ables directly versus indirectly in the June 1993 issue of THE
SMaLLtaLk ReporT. He favors direct access and uses indirect
only when necessary. I'll try to show that for the tree classes,
indirect access via a message send is indeed necessary. Let’s
consider encapsulation violation, availability of a variable, and
interpretation of a variable.

Encapsulation violation is the main reason Kent gives for
avoiding indirect reference. You don’t want to publish a vari-
able’s read accessor unless clients legitimately need it. Other-
wise, internal implementation details are exposed. Publishing
the write accessor is even more serious. However, for the tree
classes, clients need read access to all four variables and write
access to three, so publishing them in a public interface is nec-
essary and does not violate encapsulation.

Each instance variable is not available in each tree class. For
example, several classes do not define or inherit the subTrees
variable. Yet much of the processing done by a tree is per-
formed on its subtrees. By using indirect access, it is possible to
write general purpose methods at the top of the inheritance hi-
erarchy that don’t depend on the variable being present. If ab-
sent, a subtrees collection is synthesized from other data.

Some variables such as subTrees need to be interpreted flexi-
bly. We might want to return its processed contents rather than
raw contents. This can only be done with indirect reference.

INTERPRET INSTANCE VARIABLES FLEXIBLY

Using the subTrees variable again for a case study, we’ll see how
flexible interpretation contributes to the goal of reusability
through subclassing. Three examples are static, dynamic, and
synthetic interpretation.

Static interpretation is used with STree and some of its sub-
classes for branch nodes. They simply return the contents of
their subTrees variable when queried.

Dynamic interpretation is used for an application specific
subclass of STree (actually of SKPVTree) called roughly Directory-
Tree. Rather than returning a static collection, it queries the file
system dynamically for the contents of a directory, returns the

THE SMALLTALK REPORT

Now! Automatic Documentation
For Smalltall/V Development Teams — With Synopsis

Development Time Savings

Synopsis produces high quality class documentation

automatically. With the combination of Synopsis and Coding Documentation

Smalltalk/V, you can eliminate the lag between the Without TP

production of code and the availability of documentation. Synopsis = .
Start Finish

Synopsis for Smalltalk/V

+ Documents Classes Automatically With

» Provides Class Summaries and Source Code Listings Synopsis

+ Builds Class or Subsystem Encyclopedias

+ Publishes Documentation on Word Processors

o Packages Encyclopedia Files for Distribution

» Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

Products Supported:

Digitalk Smalltalk/V Windows $295

Digitalk Smalltalk/V OS2 $395
(OS/2 version works with Team/V and Parts)

gy Synopsis Software

8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

result in response to a subTrees query, and caches it in the sub-
Trees variable for other purposes. This is an approximation of
the actual implementation.

Synthetic interpretation is used for classes that do not have
a subTrees variable. They synthesize a collection from other
variables. For example, a BinaryTree class is defined for peda-

gogic purposes. Its left and right variables each stores a subtree.

When queried for subTrees, a branch node returns an array
containing the left and right nodes and a leaf node returns an
empty array.

Synthetic interpretation is also used by STree, which has a
subTrees variable, when answering queries to a leaf node. This
is explained in the next section.

MAXIMIZE THE DATA CONTENT OF INSTANCE VARIABLES
An instance varijable should hold useful information. Try to
store something more informative than nil. The subTrees vari-
able again provides an example.

For a branch node, subTrees holds a collection of subnodes.
For a leaf node, it holds a collection class such as Armray, Or-
deredCollection, SortedCollection, or Set. A leaf uses this class to
know what kind of collection to instantiate if it later becomes a
branch. Tree clients may specify the class when creating a node.
Listing 1 provides sample code.

Other implementations are less effective. If a leaf stored nil
in the subTrees variable, it would not have maximized the in-
formation content and would have denied clients the choice of
collection class. If a leaf stored an empty collection instance in
the variable, it would have taken more memory. It would also

make it harder to distinguish between a branch with no subn-
odes and a leaf in a manner analogous to the way a file system
distinguishes an empty directory from a file. If leaves and
branches were implemented as distinct classes, the inheritance
hierarchy would become unwieldy with leaf versus branch bi-
furcations. If a new variable were defined to hold the collection
class for leaves, it would waste memory.

Listing 1: How STree interprets the subTrees variable.

STree: testing
isLeaf
"Return a boolean indicating whether
the receiver is a leaf node."
“self basicSubTrees isBehavior
STree: converting
makeBranch
"Coerce the receiver to a branch node
and retumn it."
self isLeaf ifTrue: [self basicSubTrees: self basicSubTrees new]
STree: public accessing
subTrees

"Return the subtrees, reporting an
empty collection for a leaf node."

~self isLeaf
ifTrue: [self basicSubTrees new]

ifFalse: [self basicSubTrees] J

OCTOBER 1993

Looking for an affordable Smalltalk?

7o
%t

b

Digitalk Smalltalk/V for Windows, v2.0, list $499 $295
Digitalk Smalltalk/V for OS/2, v2.0, list $995 $595

plus shipping and handling. Prices subject to change without noetice.

Th 405 El Camino Real, #106
e Menlo Park, CA 94025

voice: 415-854-5535

Smalltalk fax: 415-854-2557
compuserve: 75046,3160

email: ...'uunet!smlltlk!info

S tore Ask to be put on our mailing list.

... devoted exclusively to Smalltalk products.

Developers: The Smalltalk Store is looking for Smalltalk products
to sell. If you would like us to sell your product (present or
future) please contact us. We want to make you money.

DISTINGUISH PUBLIC AND PRIVATE METHODS

Although Smalltalk-80 does not enforce access restrictions to
private methods, it at least allows them to be placed in a sepa-
rate protocol. There are several reasons the tree classes make
this distinction.

1. The superTree pointer is managed automatically. A public
write method is not defined. Internal methods that need to
set it use a private method.

2. A public read method provides processed access to the sub-
Trees variable while the private method provides raw access.

3. Raw read and write access to all variables is needed in the
tree copying machinery. It must be private.

4. Public write methods validate their arguments, while pri-
vate write methods bypass validation for efficiency.

ASSESSMENT OF DESIGN PRINCIPLES

How well did these design principles contribute to the original
goals? The intention was to create a hierarchy of Tree classes
within the constraints of single inheritance that are robust,
flexible, reusable, clear, simple, and reasonably efficient.

* Robust. The trees validate strategic arguments and offer a
class validation suite.

« Flexible. The classes offer several measures of flexibility.

1. All four instance variables are optional and are avail-
able in all legitimate combinations, enabling a client to
store only the data needed for a particular problem.

m COPING WITH SINGLE INHERITANCE: BUILDING TREE CLASSES

2. A client can access subtrees statically, dynamically, or
synthetically.

3. A client can choose from among several collection
classes for storing subtrees.

4. The various nodes within a single tree structure may
use different collection classes for storing their subtrees.

5. A branch node can store a full or empty collection of
subtrees.

6. It is possible to mix instances of different tree classes,
such as STree and SKTree, in the same tree structure.

7.1t is possible to convert from one subtrees collection
type to another or from one tree type to another.

» Reusable. There are several abstract tree classes. Most services
are defined high in the hierarchy. All logical combinations of
instance variables are available. They are accessed indirectly.

Clear. The classes push the design principles to limits that
might be unfamiliar to some programmers. To achieve
clarity, I tried to write explanatory comments, use consis-
tent naming conventions, and otherwise make consistent
design choices.

Simple. 1deally, each service should be implemented once.
Single inheritance forced some services to be duplicated.
This occurred in the nine classes labeled '2 methods' in Fig-
ure 1. Their read and write accessors resulted in 2 duplicate
lines of code per class, or 18 tatal. This is acceptable.

Efficient. Space is saved by defining instance variables low
in the inheritance hierarchy and by storing maximal infor-
mation in them. More savings come by common substruc-
ture sharing for applications not requiring a superTree
pointer. Execution time is saved by bypassing argument val-
idation whenever it is safe to do so. Although the cost for
validation is modest, it can be bypassed entirely if necessary.
A moderate penalty is incurred by implementing most of
the methods with sufficient generality to place them at the
top of the inheritance hierarchy.

CONCLUSION

I think the third design iteration satisfied these goals. Other
programmers can confirm this by reusing the classes for
their applications.

SOURCE CODE

Version 1.1 of the tree classes and their validation suites is
available by anonymous ftp from the Smalltalk archives at the
University of Illinois (st.cs.uiuc.edu 128.174.241.10) or the
University of Manchester (mushroom_cs.man.ac.uk
130.88.13.70). Look in the directories for ParcPlace’s Visual-
Works or Objectworks. B

Bruce Samuelson (bruce@utafll.uta.edu) uses ParcPlace Smalltalk for
linguistic applications at the University of Texas at Arlington and
with the Summer Institute of Linguistics.

THE SMALLTALK REPORT

INTERFACING
SMALLTALK WITH
REAL-TIME SYSTEMS:
PART |

Edward Klimas

he development of complex real-time automa-
tion systems that must interact with client-server
based factory information systems is one of the
most promising applications of Smalltalk. Cur-
rent applications of this technology not only in-
clude real-time commodity trading and financial transaction
applications, but sophisticated instrumentation, mission criti-
cal biomedical, and process automnation systems as well. The
high productivity! and improved reliability? of this technology
offer an impressive foundation for cost effectively deploying
complex systems in the future.

Technically commendable real-time systems have been fiel-
ded in many of the currently available Smalltalk dialects.3-8
One of the drawbacks to the wider application of this technol-
ogy is the scarcity of documentation and example frameworks.
The goal of this article is to explain a framework that can be
used as a starting point for intermediate level Smalltalk devel-
opers to begin designing and developing Smalltalk-based real-
time applications.

This article, the first of two on this topic, will follow the
path of the messages from the low-level operating system ap-
plication programming interface (API) calls up to the high-
level Smalltalk event messages required to open, write to, and
read from a device. A subsequent article will describe the mes-
sage flow through the Smalltalk event mechanism as well as
optimal multitasking issues.

This article will document a number of the steps that a typi-
cal real-time signal might take into and out of an OS/2-based
Smalltalk/V-PM program. Due to its ready availability on many
systems, the examples employed in this article are based on a se-
rial port connection to an internal modem. Alternate sources for
real-time signals can come just as easily from named pipes con-
nected to external signals, real-time process 1/0 modules pro-
viding serially encoded ASCII data or from other coprocessor
cards in the automation hierarchy.

LOW-LEVEL API CALLS

The basic path a real-world signal takes into the OS/2 system is
typically dependent upon a specific device driver. Serial port
signals, including those of internal modems, are routed
through an 0S5/2 device driver called dos16DevIOCt] for 16-bit
systems and dos32DevIOCtl for 32-bit applications. The archi-
tecture of this driver is based upon a curious singularity, in
that the driver, for efficiency purposes, does not support inter-
rupts to user programs. In an I/O-intensive application, the
overhead of supporting an interrupt call can become a
significant percentage of the processor’s total computing re-
quirements at maximum throughput rates. Hence, high speed
communications are handled much more efficiently by filling
I/0 buffers and having programs asynchronously access the
contents of those I/O buffers as soon as they are available. For
support of multiple high-speed serial I/O streams, this ap-
proach is not only superior, but becomes imperative. An OS/2
serial port signal accesses Smalltalk via a call to the appropriate
DevIOCtl API call. The calling conventions for the DevIOCtl API
require the placement of parameters into registers. These pa-
rameters include a special parameter denoted by an ordinal
number that identifies the specific system call being requested.
When the registers are set, a software interrupt instruction is
then issued transferring control to the OS/2 kernel. Using the
ordinal number, the OS/2 kernel dispatches the system call to
the appropriate routine. Upon completion, control returns to
the requesting program with a return code that indicates the
status of the requested operation.

Calls to APIs are typically quite straightforward, but they
are also prone to excessive debugging time in any language be-
cause of the cryptic operating system error messages and frus-
trating system traps or halts that can result from incorrect API
parameters. The following set of calls show debugged examples
of working API calls into the DosDevIOCtl API. Upon inspecting
the IBM documentation for the 32 bit OS/2 DosDevIOCt system
call in the on-line programmer’s reference, one will find the C
calling convention information to include:

/* DosDevIOCtl performs control
functions on a device specified
by an opened device handle. */
#define INCL_DOSPROCESS
#include <o0s2.h>

HFILE DevHandle;

ULONG ulCategory;

ULONG ulFunction;

PVOID pParmList;

ULONG ulParmLengthMax;
PULONG pParmLengthInOut;
PVOID pDataArea;

ULONG ulDatalengthMax;
PULONG pDatalengthInQut;
APIRET rc; /* Return code */

1c = DosDevIOCtl(DevHandle, ulCategory,
ulFunction, pParmlList,
ulParmLengthMax,
pParmLengthInOut, pDataArea,
ulDataLengthMax, pDataLengthInOut);

OCTOBER 1993

m INTERFACING SMALLTALK WITH REAL-TIME SYSTEMS: PART 1

The equivalent C-to-Smalltalk API call can be derived with the
following “translation™:

C Smalltalk api: parameter
HFILE handle

ULONG ulong

PVOID struct

PULONG ulong

APIRET ushort

APIRET apiret (also for /VOS2)

The basic procedure is to match up the OS/2 API call parame-
ters with the corresponding Smalltalk api: parameters. The or-
dinal number for the corresponding IBM-defined API func-
tion, #284 for 32-bit DosDevIOCtl, is supplied in an ancillary file
that comes with the Smalltalk/V-PM system. The equivalent
Smalltalk/V version 2.0 for OS/2 code is:

DynamicLinkLibrary variableByteSubclass: #DosDLL
classVariableNames: '0S2Emrors '
poolDictionaries:

'DosDLL methods !
dos32DevIOCtl: aDeviceHandle
deviceCatagory: aDeviceCatagory
functionCode: aFunctionCode
parameter: parameterListAddress
parameterLengthMax: parameterLengthMax
returnedParameterLengthInOut: returnedParameterLengthInOutb
dataArea: dataAreaAddress
dataLengthMax: datalengthMax
returmedDataLengthInOut: returnedDataLengthInOut
<api: '#284' handle ulong ulong
struct ulong ulong struct ulong ulong ushort >
~self invalidArgument

Unfortunately, the equivalent 16-bit call is different from the

Table |. DosOpen/DosSet state flags.

32-bit call. As many developers may still need to use 16-bit
APIs and Smalltalk/V-PM, the 16-bit equivalent is:

!DosDLL methods !
dos16DevIOCtl: data
parameter: parameters
functionCode: aFunctionCode
deviceCatagory: aDeviceCatagory
deviceHandle: aDeviceHandle
<api: '#53' struct struct ushort ushort short ushort >
~self invalidArgument

To make the resultant code fully portable across both 32- and
16-bit versions of Smalltalk, we implement our own generic
devIOCtl: method that will call up the correct API, based upon
the fact that VPMVMDLL fileName will return the version of
Smalltalk/V being used as a string, (e.g., for Smalltalk/VPM
2.0, VPMVMDLL fileName = 'VPMVM20').

'DosDLL methods !
devIOCtl: data
parameter: parameters
functionCode: aFunctionCode
deviceCatagory: aDeviceCatagory
deviceHandle: aDeviceHandle
"If this code is not running under VPM 2.0 then call a 16 bit api call
to read/write to the I/0 device, otherwise call the 32 bit API call"
| returnedParameterLengthInOut returnedDataLengthInOut |

"Get VPM version"

((VPMVMDLL fileName at: 6) asString asInteger >= 2)
ifFalse:[~self dos16DevIOCtl: data
parameter: parameters
functionCode: aFunctionCode
deviceCatagory: aDeviceCatagory
deviceHandle: aDeviceHandle]

ifTrue:[~self dos32DevI0Ctl: aDeviceHandle
deviceCatagory: aDeviceCatagory
functionCode: aFunctionCode
parameter: parameters

. parameterLengthMax: parameters size
PM Constants vHEX Bit Pattern
Implemented returnedParameterLengthInQut:
returnedParameterLengthInOut
OpenAccessReadonly Y 0000 | ---- ---- ---- -000 dataArea; data
OpenAccessWriteonly Y 0001 | ---- -em- - -001 datalengthMax: data size
returnedDatalengthInOut]
OpenAccessReadwrite Y 0002 | -----e-m —ee- -010
OpenShareDenyReadwrite Y 0010 | ---v ---- -001 ----| . .
P Y For performance purposes, the VPMVMDLL version test might be
OpenShareDenywrite Y 0020 | ---- ---- -010 ---- . T . . .
—] determined at initialization time and cached in an instance
OpenShareDenyread | Y 0030 | -~ 1) variable, but in reality, this is not an expensive call under nor-
OpenShareDenynone Y 0040 mal use.
OpenFlagsNoinherit Y 0080 Moving along the bottom up hierarchy, the calls to open
OpenFlagsNolocality N 0000 the I/O device and read, write, and manipulate the resultant
OpenFlagsSequential N 0100 data are examined next.
OpenFlagsRandom N 0200 The /O channel is opened using a call to the DosLibrary
OpenFlagsRandomSequential N 0300 class with the proper parameters in the call's mode. The ability
OpenFlagsNocache N 1000 to handle a broad spectrum of devices with little or no non-
OpenFlagsFailOnError Y 2000 S_malltalk code is counterbalanced by myr_iad parameter selec-
OpenFlagsWriteThrough " 2000 tions. The most common paramet_ers are 1mpler-ne1.1ted as PM-
e v 4000 Constants that can be referenced directly from within Smalltalk
nrlagsljas . . . - .
| pentis _JL______ itself. Table 1 conveniently lists all of the different modes avail-
10 THE SMALLTALK REPORT

able for the DosLibrary open: method, whether they are imple-
mented as PMConstants, and the equivalent byte codes that can
be used for those modes having no PMConstant.

ByteArray variableByteSubclass: #FileHandle
classVariableNames: 'FileHandles '
poolDictionaries: 'PMConstants '

'FileHandle class methods !
openCombDevice: aString
"Answer a FileHandle for the device named aString."
of | aHandle result anActionCode |
aHandle := self new: 2.
anActionCode := ByteArray new; 2.
result -= DosLibrary open: aString asParameter
handle: aHandle
action: anActionCode
initSize: 0
attribute: 0
flags: 1
mode:
"report errors via return code"
OpenFlagsFailOnError|
"OpenFlagsNocache-
1/0 is not cached-(no need to reread info)"
16r1000|
“file handle is private to current process and may
not be inherited by child processes"
OpenFlagsNoinherit |
"permit read write sharing"
OpenShareDenymone |
"read/write access"
OpenAccessReadwrite
reserved: 0.
(result = 0)
ifFalse: [*DosDLL 0S2Error: result].
~aHandle

An unsuccessful attempt to open the device will contain a non-
zero error code as the result value from the DosLibrary open:
message. The 0S2Error: method will help in explaining what the
problem was.

Once the 1/0 device has been successfully opened, we read
the device as follows:

!SerialPort class methods !
read
"To catch serial input during this read operation, read the contents of
the serial port receive buffer recursively until there is nothing in the
buffer"
| result aString gSize aLagniappe bytes |
qSize := self numRecQChar.
(gSize < 1) ifTrue:["nil].
aString := String new: gSize.

"Depending upon 16 or 32 bit versions use the appropriate call to read input"
"Get VPM version"
((VPMVMDLL fileName at: 6) asString asInteger >= 2)
ifFalse:[self comPortHandle "16 bit VPM"
readInto: aString
atPosition: 1.]
ifTrue:[result := DosLibrary
read: self comPortHandle "32 bit VPM"

buffer: aString
bufSize: aString size
bytesRead: (bytes := PMStructure new: 2) asParameter.
(result = 0)
ifFalse: [“DosDLL 0S2Ermor: result]].

"Check if any more data came in while we were reading the buffers and
recursively read the data in. Normally this should never occur, but just
in case.”

alagniappe := self read.

alagniappe isNil ifTrue: [“aString].

~(aString , aLagniappe)

THE SUPPORTING FRAMEWORK

The effective interaction with a real-world signal requires a
supporting infrastructure of cornmands to set and get the pa-
rameters for input and output (I/O). The following methods
show several examples of opening, reading, and writing values
to the I/O device. Although these examples provide the sup-
porting framework for serial I/0, most other devices will use
simple permutations on most of the same types of program
calls.

Object subclass: #SerialPort
instanceVariableNames: "
classVariableNames: 'ComPortHandle '
poolDictionaries: 'CharacterConstants '

!SerialPort class methods !
baud
"Return baud rate"
| result aDataArea |
"The dataArea contains or receives the data"
aDataArea := ByteArray with: 0 with: 0.
result := DosLibrary devIQCtl: aDataArea
parameter: nil
functionCode: 16161 “query baud rate"
deviceCatagory: 1
deviceHandle: self comPortHandle.
(result = 0)
ifFalse: [*DosDLL 0S2Error: result].
~(aDataArea asPMLong lowHalf)

baud: anInteger
"Set baud rate"
| result aParameter |
"Create a word parameter with the baud rate in it"
aParameter := (PMStructure new: 2)
shortAtOffset: 0
put: anInteger.
result := DosLibrary devIOCtl: nil
parameter: aParameter asParameter
functionCode: 16r41 "set baud rate"
deviceCatagory: 1
deviceHandle: self comPortHandle.
(result = 0)
ifFalse: [*DosDLL 0S2Error: result]

closeComPortHandle
self comPortHandle close.
ComPortHandle := nil

OcTOBER 1993

11

u INTERFACING SMALLTALK WITH REAL-TIME SYSTEMS: PART 1

comPortHandle

"Use lazy initialization to set up the comport handle the first time the

handle is required"
{ComPortHandle isNil)
ifTrue: [ComPortHandle :=
(FileHandle openComDevice: 'COM2')].
~ComPortHandle

comPortHandle: aString

~ComPortHandle := FileHandle openComDevice: aString

dataBits
"get the number of data bits
5 5 data bits
6 6 data bits
7 7 data bits (initial value)
8 B data bits"
~((self lineCharacteristics) at: 1)

dataBit: anInteger
"set the number of data bits
5 5 data bits
6 6 data bits
7 7 data bits (initial value)
8 8 data bits"
| aLineCharacteristic |
alineCharacteristic
:= self lineCharacteristics.
aLineCharacteristic
at: 1
put: anInteger.
self lineCharacteristics: aLlineCharacteristic

initializeComPort
"Initialize COM port for tests"
self baud: 2400.
self dataBit: 8.
self stopBits: 0.
self parity: 0.

numRecQChar
"Return the number of characters in the receive Q"
~(self receiveQ asPMLong lowHalf)

numTranQChar
"Retumn the number of characters in the transmit Q"
~(self transmitQ asPMLong lowHalf)

lineCharacteristics
"Set line characteristics"
| result lineCharacteristics |
lineCharacteristics := ByteAmay
with: 0
with: 0
with: 0.
result := DosLibrary
devIOCtl: lineCharacteristics
parameter: nil
"query characteristics”
functionCode: 16162
deviceCatagory: 1
deviceHandle: self comPortHandle.
(result = 0)
ifFalse: [*DosDLL 0S2Error: result |.

~lineCharacteristics

lineCharacteristics: aLineCharacteristic
"Set line characteristics for COM2"
| aDeviceHandle result |
result := DosLibrary
devIQCtL: nil
parameter: aLineCharacteristic
"set line characteristics"
functionCode: 16r42
deviceCatagory: 1
deviceHandle: self comPortHandle.
(result = 0)
ifFalse: [*DosDLL 0S2Error: result]

receiveQ
"Return info about the number of characters
in the receive Q and its size"
| result aDataArea |
aDataArea := ByteArray
with: 0 with: 0 with: 0 with: 0.
result := DosLibrary
devIOCtl: aDataArea
parameter: nil
"get the number of receive queue chars"
functionCode: 16168
deviceCatagory: 1
deviceHandle: self comPortHandle.
(result = 0)
ifFalse: [*DosDLL 0S2Error: result].
~aDataArea

parity
"get the line parity
0 no parity
1 odd parity
2 even parity (initial value)
3 mark parity (parity bit always 1)
4 space parity (parnty bit always 0)"
*((self lineCharacteristics) at: 2)

parity: aParity
"set the line parity

0 no parity

1 odd parity

2 even parity (initial value)

3 mark parity (parity bit always 1)

4 space parity (parity bit always 0)"
| aLineCharacteristic |
aLineCharacteristic :=

self lineCharacteristics.

alineCharacteristic at: 2 put: aParity.
self lineCharacteristics: aLineCharacteristic

The combination of all of these methods should be integrated
into a test method for debugging purposes and regression test-
ing of changes, as well as for documenting the appropriate use
of the framework.” An example follows:

!SerialPort class methods !

selfTest

"Test script for debugging interface to the DosDevIOCti API"
"SerialPort selfTest"

| inspectData |

12

THE SMALLTALK REPORT

CursorManager execute change.
"Initialize COM port for tests"
self initializeComPort.

"Test valid baud rates”
#(110 150 300 600 1200 1800 2000 2400 3600 4800 7200 9600 19200)
do:[:aValidBaudRate |
self baud: aValidBaudRate.
(self baud = aValidBaudRate)
ifFalse:[self error:
'Baud rate set/get failure']].

"Test valid data bits"
#(5678)
do:[:aValidDataBit |
self dataBit: aValidDataBit.
(self dataBits = aValidDataBit)
ifFalse: [self error:
'Data bit set/get failure']].

"Test valid stop bits
Note: 1,5 stop bits only valid for 5 bit word length
2 stop bits not valid with 5 bit word length "
#(02)
do:[:aValidStopBit |
self stopBits: aValidStopBit.
(self stopBits = aValidStopBit)
ifFalse: [self error:
'Stop bit set/get failure']].

"Test parity bits"
#(01234)
do:[:aValidParityBit |
self parity: aValidParityBit.
(self parity = aValidParityBit)
ifFalse: [self error:
'Parity bit set/get failure']].

self sizeOfTransmitQ.
self numTranQChar,

"Reset the com port to receive some characters"
self initalizeComPort.

"Send a string to test a modem on COM2"
self comPortHandle deviceWrite: 'ATI3\' withRealCrs.

"Wait 3/4 of a second for the modem to test & respond"
DosLibrary realSleep: 750.
inspectData := self read.

"Be sure to close the Com port handle or a subsequent
selfTest will fail to open it successfully"
self closeComPortHandle.

“open up an inspector on the data. This line should be commented out
once the framework has been debugged"
inspectData isNil ifFalse: [inspectData inspect].

CursorManager normal change.

"return a true value if we reach this point with no errors, otherwise
walkbacks should have appeared"

“rue

An extension to class String for adding a carriage return to a
string is provided for sending messages to the COM port:

FixedSizeCollection variableByteSubclass: #String
classVariableNames: "
poolDictionaries: 'CharacterConstants'’

!String methods !
withRealCrs
"Answer the receiver string where each occurrence of the character \
has been replaced with a carriage return character.”
1 to: self size do: [:index |
(self at: index) = $\
ifTrue: [self at: index put: Cr]]

Depending upon the device that is being communicated to, a
linefeed may also be required.

CONCLUSION

The expressive power of Smalltalk and its class libraries can be

used to deal with real-time data just as easily, simply and effec-

tively as with graphical user interfaces and database information.
The next article in this series will deal with the issues associ-

ated with moving the real-time data efficiently through the

Smalltalk event system.

Acknowledgments
The support of Digitalk’s Michael Chin and Kris Severson is
gratefully acknowledged.

References

1. Harmon, P. Texas Instruments chooses O-O technology for a
CIM project, OBjecT-ORIENTED TECHNOLOGIES, 2 (10): 1-13,
1992,

2. Dotts et. al. Experience report—development of reusable test
equipment software using Smalltalk and C, Addendum to
OOPSLA 92 Proceedings.

3. Barry, B. Real-time object-oriented programming systems,
AMERICAN PROGRAMMER, October, 1991.

4. Duimovich et al. Smalltalk and Embedded Systems, Dr.
Doss’s JournaL, October 1991.

5. Dehli et al. STEAMEX: a real-time expert systern for energy op-
timization, AIENG 89-APPLICATIONS OF ARTIFICIAL INTELLI-
GENCE IN ENGINEERING, Cambrige U.K. 11-14 July1989.

6. Klimas, E. Quality assurance issues for Smalltalk-based appli-
cations, THE SMaLLTALK ReponrT 1(9): 3-7, 1992.

Ed Klimas is Managing Director of Linea Engineering Inc., a supplier
of custom object oriented solutions for automation and industrial ap-
plications, Ed, along with coauthors Dave Thomas and Suzanne
Skublics of OTI, is writing a book on developing commercial
Smalltalk-based systems titled SMALLTALK WITH STYLE. He can be
reached at 216.381.8493.

OCTOBER 1993

13

MALLTALK IDIOMS

Kent Beck

Helper methods avoid
unwanted inheritance

following the general theme of inheritance, is how to

manage the use of super. Several issues back [wrote a
column entitled “The Dreaded Super” in which I catalogued all
the legitimate (and otherwise) uses of super in the existing
Smalltalk/V and VisualWorks images. I'm still very proud of
that column, but a couple of days ago I discovered I had left
out one very important technique in dealing with super.

The pattern that follows, Helper Methods Avoid Unwanted
Inheritance (not my best name ever), tells how to resolve this
problem. The first time I remember anyone talking about the
problem was when Richard Peskin of Rutgers brought it up on
the net several years ago. A lively “discussion” ensued. The so-
lution is one many Smalltalkers have discovered over the years.

Before I jump into the pattern itself, let me say a word
about patterns in general. Hot. That’s the word. Grady Booch
and Dick Gabriel have both been trumpeting patterns in other
SIGS publications. Ralph Johnson has had a couple of
ECOOP/OOPSLA papers published on them. Pete Coad has
jumped on the bandwagon in his OOP book (although I think
he’s missing the point). I have gotten a half dozen calls in the
last month or so from people who have heard about my inter-
est and want to tell me what they are doing with patterns.

I think patterns will be the next big buzzword in the object
world. If you want to get involved, now is a great time to try
writing some patterns of your own. Don’t get discouraged if
your first efforts don’t sparkle. It took me six years to get my
first pattern that I didn't want to immediately crumple up and
throw away. It shouldn’t take you nearly as long.

Here are some criteria I use when evaluating a pattern:

T HE TOPIC OF this issue’s column on Smalltalk idioms,

* Does it make me change my program? The best patterns
don’t just say, “Hey, here is a useful configuration of ob-
jects.” The patterns I find most powerful say, “If you find
yourself with this problem, create this useful configuration
of objects and it will be solved.”

* Does it explain its assumptions? Each pattern implicitly
contains assumptions about what is most important about
the decision it describes. If a pattern says, “We want simple
programs, we want fast programs, we want programs we
can write quickly, but in this case the most important thing
is getting the program running quickly,” I have a much bet-
ter basis for evaluating it.

* Does it contain an illustration? Good patterns can invari-
ably be reduced to a single picture. Drawing that picture, or
writing a code fragment example can sharpen your under-
standing considerably.

Give it a try. I’d be glad to critique your efforts, or you could
try passing them around to other Smalltalk or C++ program-
mers you know.

PATTERN: HELPER METHODS AVOID

UNWANTED INHERITANCE

Context

When you are using "super” at the bottom of a three-deep in-
heritance tree, you may find yourself wanting to inherit the
root class’s behavior, but not the immediate superclass’s.

Problem

In this case, you almost want to be able to say something
stronger than super, like “give me that class’s method but no
one else’s.” Experience with C++, which has such a facility, says
that using such a feature is a maintenance nightmare. How can
you take advantage of inheritance, share code, and remain

within Smalltalk’s simple control structures?

Constraints

* Code sharing. The resulting program should contain as
much code sharing as possible.

* Use inheritance. The resulting code should use inheritance.
Inheritance may be important for simplifying the imple-
mentation of the rest of the class.

* Simple code. The result should be no more complex than
necessary. This recommends against using Delegation or
some other pattern that requires extensive code changes.

Solution

Put the behavior you don’t want to inherit in its own method.
Invoke that method from the method that contains the send to
"super". Override the new method in the subclass to either do
nothing, or replace its behavior with behavior appropriate to
the subclass (Figure 1).

Example

This problem often occurs in initialization code.
contined on p. 20...

14

THE SMALLTALK REPORT

ETTING REAL

Abstract classes

his month, I will discuss abstract classes and talk about
l why they are really useful. Abstract classes are classes
that don’t have any instances and can be grouped into two cat-
egories: implementation-based and design-based. Implementa-
tion-based abstract classes often have many methods that are
inherited and used directly by subclasses. A design-based ab-
stract class may not have any methods that can be used directly
by subclasses.

The example code in this article is from version 2.0 of
Smalltalk/V for Macintosh. Classes have been simplified for the
purpose of illustration.

ABSTRACT VS. CONCRETE CLASSES

Concrete classes usually have both behavior and state. Point is
a concrete class. Tt has state, two instance variables x and y, and
it has behavior, such as + and -.

Design-based abstract classes provide a specification for sub-
classes. This is like having a detailed on-line design document. A
design-based abstract class usually has behavior, but not state,
That is, there are no instance variables, and there is no indexable
part defined by the class. Abstract classes are most useful when
they are as general as possible. Any state provided by an abstract
classes limits subclasses, since they inherit specification of the
state. Design-based abstract classes are often part of a framework.

Implementation-based abstract classes are generally based
on the behavior of existing classes and are created afterwards.
Common methods are identified in two classes, and moved to
a new superclass. The new superclass is generally an imple-
mentation-based abstract class. It contains many concrete
methods, formerly duplicated in the subclasses. An implemen-
tation-based abstract class may have state that corresponds to
its behavior. The motivation for creating an implementation-
based abstract classes is to locate common code in one place,
which is therefore easier to maintain.

DESIGN-BASED ABSTRACT CLASS EXAMPLE

The well-known Smalltalk class Magnitude is the focus of this
section and can be found in every Smalltalk image. Magni-
tude, a design-based abstract class, has no state. Magnitude is
part of the informal framework of objects in the Smalltalk
image: it supports requests for ordering. For example, the
default collaboration between SortedCollection and its ele-

Juanita Ewing

ments requires elements to respond to the <= message.

Magnitude is a generic class that could be specialized for
many applications. The pitch of musical notes and the latitude
and longitude components of map coordinates are possible
domain specific subclasses of Magnitude. Date, Time, and Num-
ber are subclasses of Magnitude in the Smalltalk class library.
Because it is an abstract class, there are never instances of Mag-
nitude in a Smalltalk system, but there are instances of its con-
crete subclasses Date and Time.

Let’s examine some of the details of Magnitude that make it
a good example of a design-based abstract class. The comment
for Magnitude indicates its purpose:

The class Magnitude is an abstract class defining behavior
common to all objects for which an ordering is defined.

The role of an design-based abstract class is to provide a
specification for subclasses. Subclasses of Magnitude must pro-
vide an implementation of the methods that Magnitude specifies

<

<=

>

>=

between:and:

comparableWith:

max:

min:
The implementation of a method can be inherited. Magnitude
provides default implementations for all methods except <. If
you examine the class (see Listing 1), you will notice that all
the other methods are defined in terms of <, = and their deriva-
tives. All subclasses of Magnitude inherit a default implementa-
tion of = from Magnitude’s superclass Object.

The default implementations make it easier to extend hier-
archies because developers only need to implement a small
number of methods. Subclasses can inherit the rest of the
methods. In the case of Magnitude, a developer would only
have to implement <. It is likely that developers would also
want to override = to complete the ordering algorithm for their
subclass. (If you override = then you must also override hash to
match, or you will get errors when you attempt to use contain-
ers, such as Set and Dictionary, that are based on hash.)

Several key characteristics make Magnitude a good example
of a design-based abstract class:

OCTOBER 1993

15

Learn Smalitalk from the Expert!

..:) ‘ 8
EJISCOVERING
" SMALLTALK §

solving problems.

Wilf LaLonde's
~ Discovering Smalltalk
0-8053-2720-7. Softbound. 400 pages.

800/552-2499

* Features an in-depth introduction
to Smalltalk using Smalltalk/V.

* Demonsirates fundamental object-
oriented development concepts.

* Encourages experimentation when

For more information, visit your local
technical bookstore or call 800/552-2499.

390 Bridge Parkway
Redwood City, CA 94065

m GETTING REAL

messages, but different implementations?
If so, then you have a situation that would
benefit from an implementation-based
abstract class. A good rule of thumb is to
make an implementation-based abstract
superclass whenever you have two hierar-
chically unrelated classes with common
behavior. Implementation-based abstract
classes are typically derived from existing
classes rather than designed from scratch,

Follow these steps to make a com-
mon superclass for the two classes:

1. Create a new superclass.

2. Rearrange the hierarchy so the sub-
classes inherit from the new super-

* Magnitude has the right amount of behavior: not too much to
understand but enough to perform a useful set of functions.

* Magnitude’s behavior is cohesive. All methods are related to
ordering. Its role is clear, which makes it easier to use and
understand Magnitude.

* New subclasses are much easier to add to the hierarchy if the
required methods are specified by a superclass using a special
designator such as implemented BySubclass. The alternative is
to require a developer to deduce the required set of methods.

« Magnitude has no state, which avoids implementation limi-
tations on subclasses.

* Magnitude provides default implementations, which make it
easier to develop new subclasses. Developers need only
write a minimal number of methods.

Most design-based abstract classes arise because a developer has
made a conscious effort to create an abstract class that fills a role.
Design methodologies, such as responsibility-driven design, de-
tail how to translate a specification into a design, which are im-
plemented with both abstract and concrete classes. An interesting
example is the evolution of the MVC framework, which is dis-
cussed in the article, “Reimplementing Model-View-Controller
by Leibs and Rubin (Smalltalk Report, Volume 1 Number 6).

DISCOVERING ABSTRACT CLASSES
Have you ever developed two classes with the same set of public

Listing 1. The implementation of some of Magnitude's

instance methods.

< aMagnitude
Answer <true> if the receiver is less than <aMagnitude>. "

~self implementedBySubclass

<= aMagnitude
“Answer <true> if the receiver is less than or equal to<aMagnitude>."

~self < aMagnitude or: [self = aMagnitude]

> aMagnitude
“Answer <true> if the receiver is greater than <aMagnitude>."

~(self <= aMagnitude) not

class.

3. Move all identical methods from the subclasses to the com-
mon superclass. Even if the two classes have radically differ-
ent implementations, there are usually some methods in
common.

4. For each remaining selector that the two classes have in
common, create a method with that selector in the com-
mon superclass. The body of the method should be a desig-
nation for the subclasses to implement the method. In
Smalltalk/V, the body of the method is usually self imple-
mentedBySubclass. In Objectworks, the body of the method
is usually self subclassResponsibility.

The role of the common superclass, an implementation-based
abstract class, is to contain implementations that are appropri-
ate for all subclasses. For ease of evolution and maintenance,
each piece of functionality should be in exactly one place. If
code is duplicated, it is likely to be fixed or modified in only
one place, introducing new errors and inconsistencies. During
active development, a new subclass is much easier to add to the
hierarchy if a known set of methods must be implemented,
rather than requiring a potentially new developer to deduce
the public set of methods.

CONCLUSION

Using our rule of thumb, developers can create new super-
classes whenever they see unrelated classes with a common set
of public methods. Often, these new common superclasses are
implementation-based abstract classes.

Design-based abstract classes are a powerful mechanism for
creating extensible hierarchies. They provide an on-line
specification and default implementations. Well-designed ab-
stract classes allow developers to create new subclasses with
minimal effort.

In my next column, I will show you how to use abstract
classes to write platform-independent code.

Juanita Ewing is a senior staff member of Digitalk Professional Services,
921 SW Washington, Suite 312, Portland, OR 97205, 503.242.0725.

16

THE SMALLTALK REPORT

HE BEST OF comp.lang.smalltalk

Alan Knight

Extending the environment:

part 2

ast month’s column described a number of improve-
L ments to the Smalltalk environment, all of them incre-

mental changes that improved the existing environ-
ment. This month, we discuss some packages that take a more
radical approach, completely overhauling the basic tools.

I'll limit myself to discussing three packages, all freely avail-
able by fip. I've avoided commercial packages, although many of
thern make significant changes to the development tools, since
they're better dealt with in reviews or product news. All three are
for ParcPlace Smalltalk (a.k.a. ObjectWorks or VisualWorks)
since it has more packages freely available than Smalltalk/V. Fi-
nally, I've arbitrarily chosen three that sounded promising.
There are certainly others, and if you know of one that might be
of interest, please let me know about it. I'd be interested, for ex-
ample, in looking at extended Smalltalk/V environments.

Development environments are a religious issue, and I'm
sure most readers will disagree with my ideas. I'll try to be
more informative than judgemental, but please bear in mind
that much of what I'll say is subjective. This is particularly true
of the sections on weaknesses, which contains many things that
aren’t necessarily problems. You should also bear in mind that
my impressions of all these packages are based on limited use. [
would have preferred to spend a couple of days doing real
work in each package, but didn’t quite dare. My work at the
time required use of ENVY/Developer and I didn’t want to risk
work that other people were paying for with my limited knowl-
edge of the ENVY internals. Finally, these packages are evolv-
ing and there may be new and improved versions available by
the time you read this.

Enough excuses. If you want to try these for yourself, all are
avaijlable from the standard fip servers at st.cs.uiuc.edu (Uni-
versity of Illinois) and mushroom.cs.man.ac.uk. (University of
Manchester). I'll list directories for the Illinois server. The cor-
responding directories can be found on the Manchester server
under /pub/goodies/uiuc.

CLASSBROWSERS

This package was written by Carl Watts (carl@parcplace.com).
Carl works at ParcPlace, but this is an independent project of
his, not a ParcPlace product. On the UIUC server it’s available
in the directory /pub/st80_vw/ClassBrowsers.st. There is no
README or help file, but I've extracted some remarks from
the class comments:

The most important features of the ClassBrowser is that it
always shows you inherited attributes as well as attributes
locally defined in the class. Attributes (like representation
variables and methods) that are locally defined are shown
in bold.

... The menus are more context-sensitive than many other
Smalltalk applications. The menus are constructed to be sen-
sitive to whatever you have selected. The menu items are very
different if you have something selected than if you don’t.

The metaphor for moving something (like a method) to a
different place (like a different protocol) is to select the item
you want to move, select ‘take it...” from the menuy, select the
place you want to move it to (like the protocol), and then se-
lect ‘and move it here. ..’ from the menu of the destination.

This package is the least disorienting of the three for someone
accustomed to the standard browsers. It simplifies the system
by reducing the number of browsers to two, a class browser
and a system organization browser. The system organization
browser has only two panes: one showing categories and one
showing the classes in the selected category. From here it’s pos-
sible to open a class browser, similar to the standard class
browser, but with additional features. It shows inherited meth-
ods and variables at all times, with a button to control the visi-
bility of Object methods. It also has a list of instance/class vari-
ables that can be manipulated through the menus.

Notable Features
* Allows browsing inherited methods and variables
» Reduces the number of different browsers

+ Changes the menus to be more consistent and more con-
text-sensitive

» Good extended navigation tools, such as “self senders,” “self
messages,” and “browse overrides”

» Very nice install/uninstall feature. Once the code has been
filed in to the image, a one line “doit” switches between the
normal and extended browsers.

= The concept of a globally selected object. In most places
that an object can be selected, the “take it...” menu item is
available. Once taken, the object can be used as an argu-
ment for many other operations. This is very nice for binary

OCTOBER 1993

17

m THE BEST OF COMP.LANG.SMALLTALK

operations such as moving classes between categories, rear-
ranging inheritance hierarchies, or changing the protocols
of methods. It’s far better than the standard method of
prompting for the name of another needed object.

+ Allows manipulation of the representation through menus.
Rather than editing the text representation of the class,
menus can be used to add, remove, or rename instance
variables.

Weaknesses

+ Some of the features that sounded most interesting were
not yet implemented in the version I used. That may have
changed by the time this is printed.

I like to have more control than this allows over browsing
inherited features. The class browser does show inherited
methods, but you can’t find out what class they are actually
implemented in and the only control over which inherited
methods are shown is the toggle for Object methods. There is
also no hierarchy browser, which I found awkward. Never-
theless, while my initial reaction is to consider these prob-
lems, they could also be considered features. They force you
to consider a class only in terms of what it defines and what
it inherits, ignoring the implementation detail of where in-
herited features originate. I might

hence the usefulness of this tool will vary. The high-level
requirements that drove this effort include:

* Reduce the need for opening new windows. I want to
open windows only when needed.

= Introduce graphical information access capabilities. (I am
a great believer in graphical information access)

* Provide some amount of history management.

* Provide some support for saving and restoring ongoing
changes. Let the user switch work contexts when looking
for information and go back to a previous context when
ready.

« Allow users to follow a thought process in their tasks.

In contrast to the ClassBrowsers, this system is radically different
from the normal Smalltalk environment, and quite intimidating
at first glance. There are seven panes in the main browser, includ-
ing a bright green graphical view of the class hierarchy across the
top (Figure 1). This minimizes the number of windows required
at the cost of greatly increasing the size and complexity of the
windows used. Don’t expect to use this on a small screen.

I wasn’t able to get completely comfortable with this envi-
ronment in the limited time I had to play with it. My overall
impression was that of a tool written by someone for their own

likeitonce I getused toit. ~ [Heee——

ISYSE. Integrated System Environent: 2.0

There’s not enough overlap in fea-
tures between the two browsers. I
found myself jumping back and
forth between them to do opera-
tions where I didn’t think it
should be necessary.

Since there’s a pane listing in-
stance/class variables, I'd like to
see a feature similar to the Dig-
italk class browser, where select-
ing a variable in that pane can be
used to limit visibility to methods
accessing that variable.

B Focve: sving Suwporcisases: OFF

=

TwoByteSymbol

Curremt Mesoange Stack Entry: Users Of Mcessage: yourse

ISYSE

This was written by Deeptendu Ma-
jumder (dips@cad.gatech.edu) and is
available in the directory
pub/st80_r41/ISYSE. The help file
describes its objectives:

profaSurmmwyfiter: Bnit

[
|

!

=

"Anzwer a dctionery which maps a summary itisto a ¥
SsquencesbleColiection of report felds far thal summary "

| fistSummary |
flaiSummary .~ Sel new: 129.
raoiTaly add ocal lsageirio; fiskSummary.
“Diclionary new
at: Mroe put' (Array wih: roolTalty),

alv » ki) agScriadCollaction \

; External-interface
I developed this as a tool to en- Iniarfaca-Modols
hance the programming environ- :-bcm
ment for my research work, and """l — "’"‘"""""""‘ s

many of the features are there be- |FEEEEEEEE———
cause I felt the need for them. R

You may or may not have a simi-
lar working style and needs, and

Figure 1. One of the ISYSE browsers.

18

THE SMALLTALK REPORT

use that isn’t too polished yet. To the author it’s entirely natu-
ral, but it can be very confusing for others. I've written enough
of those tools to know the feeling. This is, however, very pow-
erful, and might well be worth the effort of learning or cus-
tomizing it to your own intuition. It builds on the work of sev-
eral smaller “goodies” to provide a wealth of features.

Notable Features
Apart from the features described eariler, I also noted

* On-line help

« Sliders to resize text views dynamically

» Use of graphical views to present information
» Easy switching of work contexts

» Addition of many advanced features

« More use of buttons (as opposed to pop-up menus)

Weaknesses

« Robustness. The system is not as polished as the other two I
examined. It was written on a SPARC, and I had some
problems getting it to run under MS-Windows (filenames,
hard-coded X font names, and a few mysterious system
crashes).

Speed of graphics. The graphical view of the class hierarchy
is quite nice, but very slow for large hierarchies. The first
thing I figured out how to do was switch it to the hierarchy
for Object, and it took me several minutes after doing that to
bring the systemn back to a usable state, since every screen
update required a long wait.

Confusion. The system is very confusing at first glance, and
has some unusual concepts. The purpose of the browser
buttons isn’t immediately clear, and when the system starts
up many of them do nothing. Once you understand the sys-
tem, this makes sense, since these buttons are part of the his-
tory mechanism, and there’s no history yet. Un-

* All NewTool windows update instantly and automatically
to reflect the current state of the system, whether the
change was made from a CodeTool, a debugger, or a filein.

* Screen real estate is used more efficiently. Windows are
tiled automatically, and instead of each window wasting a
third of its area as a navigation mechanism, there is only
one that controls all windows.

Why did you write this thing, Dan?

On a recent visit to UBILAB in Zurich, I was given a demo
of Sniff, a C++ browser/debugger/editor by its original au-
thor, Walter Bischifoberger. It is extremely well done, with
lots of well-thought-out features.

If you use NewTool a bit, you'll realize that I tried to re-
duce the six or so different Browsers in the original image
down to only one CodeTool with lots of features. This
saves screen real estate, and as long as [don’t try to cram
too much into one window, I think it’s faster and easier to
use, too.

NewTool looks quite different from the standard browsers,
but is pretty easy to pick up. It creates a “Navigator” down
the left hand side of the screen, which is similar to the top
four panes of the system browser. This navigator controls all
of the CodeTools, except the ones that are frozen. Having
half a dozen browsers on the screen all showing the same
code is not very useful, so most browsers are normally frozen.
A CodeTool in which code is being edited is automatically
frozen. Also, from a frozen CodeTool you can change the
navigator to reflect that CodeTool’s information, effectively
switching contexts. This is a nice concept, elegantly imple-
mented, and one that definitely relieves some of the screen
congestion that can be caused by browsers with many panes
(Figure 2).

til you understand the system it’s very annoying.

Similarly, the menu mechanism in the graphical

TextStream contents

[X] frozen I histery I navigate | @ method

Oclasadel (O comment (O organization |

view can be disorienting. I expected to select foutonts
one of the visible classes and then operate on it.

Instead, there is a pop-up menu that changes

; : llength |
depending on where the cursor is at that mo- length := position - runStartFosition.
ment. It'’s more like the way Smalltalk behaves length > 0

across views than within a view.

AText

NEWTOOL

NewTool was written by Dan Walkowski
(walkowsk@cs.uiuc.edu) and is available in
/pub/st80_r41/NewTool. He writes:

NewTool is an alternative Browser. It looks sub-
stantially different, has more of the features at

"Answers the receiver ‘s contents as Text.”

ifTrue: fengths nextPut: kength.

atring: super contenls
runs: {AunArray rune: lengtha contents values: emphases contents)

emphases nextPut: currentEmphasis.
runStartPosition = position).

the top level, and has several nice characteristics:

Figure 2. A CodeTool (from the NewTool package).

OCTOBER 1993

19

Notable Features
* Auto-update of windows (a feature I've always wanted)
= Separating the navigation and text-editing windows

« The concept of “freezing” a text-editing view. This allows
you to have one navigation tool, but to still have browsers
open on several different classes/methods and to navigate
among them fairly easily.

Weaknesses

My biggest problem with NewTool is that, while addressing
some issues very nicely it leaves many others open. For exam-
ple, it doesn’t deal with browsing inherited methods. Address-

ing some of these issues without making the windows too large

and complicated is the challenge.

CONCLUSIONS

All three of these systems significantly improve some aspect of
the standard browsers. All have their weaknesses. You’ve prob-

ably skipped to the end wondering which to try out, or which
I’d choose to use in my own work.

To recommend a single best choice is difficult. All have in-
teresting concepts and nice features, and although they all ex-
tend the same environment, they mostly attempt to solve
different problems. Which you want to try depends on which
problems you consider most important,

For me, the answer is simple. I plan to take the pieces I like
from all three and incorporate them in my own personal envi-
ronment along with anything else that strikes my fancy. Two
other ideas I'd like to make use of are ENVY/Developer’s use
of multi-selection and SmalltalkAgents support for saving ex-
tended text attributes with method text.

Finally, I'd like to commend all of these people for having

the courage and the generosity to make their code available for

public use and criticism. I'll, close with an inspirational quote
from Dan Walkowski:

I think I have made a significant improvement on the orig-

inal Browser. What do you think? Every Smalltalk pro-

grammer I know has some gripes with the Browser, and yet

so few do anything about them. I'm throwing down the

gauntlet with NewTool. Let’s have a contest of sorts. If you

think NewTool isn’t quite right, or isn’t even close to your

ideal browser, fix it! Let’s combine all of our best ideas and

develop the best programming tools around. Then we all
win, @

Alan Knight works for The Object People, 509-885 Meadowlands

Dr., Ottawa, Ontario, K2C 3N2. He can be reached at 613.225.8812

or as alan_knight@mindlink.be.ca.

m SMALLTALK IDIOMS ...continued from page 14

A foo
"All classes need this"
B foo E—— foo
super foo. super foo
"This should not be inherited" self helpFoo
\ helpFoo
"This should not be inherited"
—> .
C foo <deleted> ;
super foo.
“This should be used instead" helpFao
T “This should be used instead"

Figure 1. Invoking helper methods avoid unwanted inheritance.

A>>initialize
"Initialize generic structure"

B>>initialize
super initialize.
"Allocate machine resources”

Now we want to write C, a subclass of B that uses other ma-
chine resources. If we write:
C>>initialize
super initialize.
"Allocate other machine resources"

We will allocate B’s machine resources and C’s, too, which is
not what we wanted. If we don’t send to super, we don’t get the
generic initialization from A. If we copy A’s initialization into C,
we have a multiple update problem with the code in A and C.
The right solution is to use Compose Methods to introduce a
helper method in B that allocates machine resources:
B>>initialize
super initialize.
self initializeMachineResources

B>>initializeMachineResources
"Allocate machine resources"

Then we can override initializeMachineResources in C:

C>>initializeMachineResources
"Allocate other machine resources”

We can delete initialize in C. The logic in B works just fine to
invoke its specialized behavior.

This solution satisfies all of the constraints: Inheritance is still
used, the maximum amount of code is being shared, and the re-
sulting code is only slightly more complex than the original.

You may have to invoke Compose Methods before you can
separate out the method you want to override but not invoke.

Kent Beck is the founder of First Class Software, which develops and
distributes reengineering products for Smalltalk. He can be reached at
First Class Software, P.O. Box 226, Boulder Creek CA 95006-0226,
408.338.4649 (v), 408.338.3666 (f), or 70761,1216 on CompuServe.

20

THE SMALLTALK REPORT

® PRAGMATIC MULTIPLE INHERITANCE ...continued from page |

perclass, PMI then creates
methods in the new class
which forward messages to
the PMI-superclass instance.
A method is added to create
this instance, which may be
edited by the programmer
to accommodate special in-
stance-creation needs. All
new methods are placed in a
new method protocol, named to identify it as implementing
PMI. The VisualWorks forms for browsing and editing PMI
relationships are sensitive to these names, and use them to de-
termine what PMI relationships a class has defined.

For example, in the desired class structure shown in Figure 1,
classes C and D both need to inherit from class P, but the class hi-
erarchy doesn’t easily allow classes A and B to each be subclasses
of P. PMI creates instance variables in C and D to refer to (differ-
ent) instances of P, and creates appropriate methods in C and D
to forward relevant messages to their respective instances of P.

A pair of VisualWorks forms are used to allow browsing ex-
isting classes for previously defined PMI relationships, and to
create new or delete existing PMI relationships. One form al-
lows selection of the class to be manipulated (or browsed) by a
pattern match on class names. The other uses a fixed target
class, passed in to the form when it is created.

To create a new PMI relationship, a class is chosen to in-
herit from. This class and all its superclasses (including Object)
are presented in a selection list. The programmer can select
any or all of these classes, and the set of all instance methods
defined by these classes is presented in another selection list.
The programmer chooses the methods to be included with the
definition, and clicks a Generate button. This causes the in-

Figure 1. Simple PMI example.

E PMIBrowser on PMIExample n -
Choose Class Current PMI
Classes: | prri i Classes Methods
PMIAdder + || DirtyProperty | # Jelean il
PMIBrovvser fmv
PMIExample 7"3‘3'33"
PMIManipulator A isDirty |
F | Remove | P
Add PMI
Classes: Pick Methods:
DirtyProperty + |V clean id
v dirty
'+1| initielize
Pick Methods From: v isClean
v isDirty
Object [+] | |
v DirtyProperty hd
1 s

Figure 2. Example of adding dirty property.

Just touch a bution to

EC-Charts EER

Add charts to your VisualWorks palette
Dynamic Add or change data points, with minimal screen repainting.
Add or remove data series toffrom the chart.

Imteractive Sclect data points with the mouse—EC-Charts informs
your application.

£ mobans

Uses screen space effectively o 1m om0 wm .o
Scroll the chart view in one or both
directions. Mark values of summary

functions in the

LT LT NPT l‘

i axis areas. Show

R Jl > thresholds using || "%
> —f e grid lines. 1988
o - 1983
Fa e —
New Yoax Staj 1991 | : . T
- F -
- - tr biors of dollars 0% 0I1% 024 031 O
.rrl ITI‘; I—Ji Iul Il I,-I‘ JJ] mnetinoome & Rewnwa C-Incumez":
JLr]J' lf l"u T 1] 10 3
1 1 74 18
I 8 z 7 I I
B
. . . 4 5 2]
= 5 1 a 1 " 1”
: : 11111
= w5 BT B B 70 T1 T2 73 T4 T
wd“}350 4 Toal budgel & Totsd awd tc

No runtime license fee - -
Call for a technical paper [t CH Seltue

on ECChares (408) 462-0641

i iy 21137 East Cliff Dr - Santa Cruz - CA 95062

stance variable, the new protocol, and all selected methods to
be created in the target class. Note that only instance methods
are presented and defined here. The interface allows the user to
define more methods for a previously existing PMI relation-
ship (in case you don’t get it right the first time ;-).

To browse existing PMI relationships, a target class is chosen
(depending on the VisualWorks form, as noted above). The Vi-
sualWorks form determines existing PMI relationships and
methods from the protocols implemented by this class, and pre-
sents existing PMI superclasses in a selection list. Choosing one
of these classes causes a list of the methods defined specifically for
that class to be presented in another selection list. Indirection
methods can be deleted individually (via a pop-up menu), or the
PMI superclass may be removed completely (all methods, the
protocol, and the instance variable) by clicking a Remove button.

KINDS OF PROPERTIES
Two kinds of properties are supported by PMI: properties that
are orthogonal to the subclass and those that are more intimate
with the containing instance. An orthogonal property represents
some state that is completely independent of the containing ob-
ject. The dirtiness property discussed above is a good example.
The state of this property, and all manipulations of it, are inde-
pendent of any state of the containing instance; an object is
dirty or not—it doesn’t depend on other state of the object.

An embedded property in some way knows about the object
that contains it, and its state manipulation is dependent on this

OCTOBER 1993

21

m PRAGMATIC MULTIPLE INHERITANCE

knowledge. For example, if an embedded property would nor-
mally use methods defined in its subclasses, it must be able to
invoke these in the PMI-subclass. To support embedded prop-
erties, PMI supplies class EmbeddedProperty, with a single in-
stance variable, embedding, intended to refer to the containing
object. All subclasses of EmbeddedProperty are recognized by
PMI when creating a PMI inheritance, and the embedded in-
stance is autornatically initialized to refer to the containing ob-
ject. Methods in an EmbeddedProperty may use the construct self
embedding to refer to the containing object (i.e., an Embedded-
Property must be coded knowing it may be used this way). For
convenience, if the embedding isn't initialized, self embedding
answers self, so an EmbeddedProperty may be inherited from and
coded to work independent of whether its actually embedded.

EXAMPLE
To illustrate the use of PMI, this section presents a DirtyProp-
erty class, and an example of how it might be used. The defini-
tion of the simple class DirtyProperty is (edited for brevity):
Class definition:
Object subclass: #DirtyProperty
instanceVariableNames: 'dirty '
classVariableNames: "
poolDictionaries: "
category: 'Pragmatic-Multiple-Inheritance'
Instance Methods:

clean
"Assert the object is clean."
dirty := false

"Assert the object is dirty."
dirty := true

isClean
"Is the object is clean?"
~dirty not
isDirty
"Is the object is dirty?"
~dirty
initialize
"Assert the object is clean to start with."
self clean

Class Methods:

new
“super new initialize

An example of the PMI browser being used to add the
DirtyProperty to a class is shown in Figure 2. In this example,
the class PMIExample has added DirtyProperty as a PMI super-
class. The methods clean, dirty, isClean, and isDirty have been
defined in PMIExample, and these will be forwarded to an in-
stance of DirtyProperty, which is created on demand. In this
manner, a PMIExample instance will respond to the DirtyProp-
erty protocol as if it had directly inherited from DirtyProperty.
To further illustrate how PMI is implemented, the resulting
PMIExample class code is presented below:

Object subclass; #PMIExample
instanceVariableNames: 'aDirtyPropertyForPMI
classVariableNames: "
poolDictionaries: "
category: 'Pragmatic-Multiple-Inheritance’

aDirtyPropertyForPMI
~aDirtyPropertyForPMI == nil
ifTrue: [aDirtyPropertyForPMI -= self
createaDirtyPropertyForPMI]
ifFalse: [aDirtyPropertyForPMI]

clean
~self aDirtyPropertyForPMI clean

createaDirtyPropertyForPMI
"Edit this method to customize creation of the DirtyProperty
instance."
~DirtyProperty new
dirty
~self aDirtyPropertyForPMI dirty
isClean
~self aDirtyPropertyForPMI isClean
isDirty
~self aDirtyPropertyForPMI isDirty
The aDirtyPropertyForPMI instance variable and all the pre-
sented instance methods were generated by the PMI browser,
in protocol PMI:DirtyProperty. For subclasses of EmbeddedProp-
erty, the createaXxx method also initializes the embedding to be
the containing object.

WHAT PMI DOESN'T DO

PMI does not implement the semantics of full multiple inheri-
tance. For example, the virtual base class concept in C++ isn’t
supported (this allows sharing of a single base class instance
when multiple superclasses each have the same base class). There
is also no support for the PMI-subclass to directly override meth-
ods in a PMI-superclass. An EmbeddedProperty object may be
used in some cases to provide the desired semantics, albeit using
a different coding technique (self embedding). Class methods are
not supported in the current version of PML. It is not yet clear
that they are needed, but they should be easy to add (instead of
an instance variable, the class can be referenced directly).

RESULTS AND FUTURE IDEAS

We have applied PMI to an application in which 5 classes (out
of approximately 120) were removed by mixing in the DirtyProp-
erty. This included several classes removed by collapsing the
class hierarchy, since the need for an abstract dirty superclass
was removed. The need for EmbeddedProperty was apparent in
trying to refactor some user interface classes needed for database
logon. There were three cases of database usage (two variants of
middleware to access Oracle relational data, and one to access
Servio's GemStone object data). Prior to PMI, a DBMS access-
ing abstract superclass had been artificially added to the class hi-
erarchy to enable this, which provided the function but not in a
form reusable by possibly different components. Moving the
DBMS logon functions to a separate EmbeddedProperty subclass
allowed the class hierarchy to reflect the actual desired structure,

22

THE SMALLTALK REPORT

RECRUITMENT

TO PLACE A RECRUITMENT AD, CONTACT

1

HELEN NEWLING AT 212.2

LEADING EDGE
TECHNOLOGY

Healthcare Applications

HBO & Company is on the leading edge of technology for the
healthcare community. We are currently embarking into a new
development effor, pulling all healthcare informarion systems
together to creare a fully-integrated systems solution for our
customers. Join our team of development experts in this
exciting endeavor.

The ideal candidate will be responsible for application design
and development and must have a minimum of two years’
experience in the following areas:

* Objecr-oriented design and programming with Smalltalk

* PC operating systems (0S§/2, DOS, Windows, Windows
NT, Macintosh)

* Client/server architecture

Join a company committed to customer satisfaction, continuous

quality improvement and employee development.
A Please send cover letter and resume to:
Gail Hinkelman, Recruitment, Dept. SR10/93,

A A HBO & Company, 301 Perimeter

MAIA"AR Center North, Atlanta, GA

AR 30346. An equal opportunity
HBO&Company employer, m/f/d/v.

SMALLTALK
DESIGNERS AND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalitalk
Professionals in Various Regions of the Country.

—~—~

SYANRIS AR

CORPORATION

Salient Corporation...
Smalitalk Professionals Specidlizing in the
Placement of Smalltalk Professionals

For more information, please send or FAX your resumes to:
Salient Corporation
316 S. Omar Ave., Suite B.
Los Angeles, California 90013.

Voice: (213) 680-4001 FAX: (213) 680-4030

by mixing-in the DBMS logon function where needed. The
DBMS logon class relies upon the subclass to provide other con-
text information (e.g., which actual dialog class to use), and thus
needs to access the containing object via self embedding, PMI
thus enabled the removal of all Gee-multiple-inheritance-
would-be-nice-here comments in this application.

Additional features that might be added to PMI include:
adding support for class methods, integration with the systermn
browser (perhaps via a spawn-PMI menu item), and providing
additional information for classes to be used as PMI-super-
classes (e.g., to more readily identify the methods most likely to
be useful to inherit, for generating forwarding methods). It
could be argued, however, that the class comment should doc-
ument the appropriate methods (since this is part of the class
specification), but an automated mechanism would be helpful.

SUMMARY

PMI supports a useful subset of multiple-inheritance semantics
in Smalltalk without damaging its intuitive single-inheritance
maodel. It also supports a notion of mixing-in properties, as
defined by other classes, which seems to be the useful, intuitive,
and understandable subset of multiple-inheritance semantics.
PMI is supported by two VisualWorks forms that make it easy
to create, browse, and remove PMI relationships. H

Bob Beck is a Pririéipal Engineer in the Object Technology g;oup
at Sequent Computer Systems, Inc. He may be reached at rbk@se-
quent.com or Sequent Computer Systems, Inc., 15450 SW Koll
Parkway, Beaverton, OR 97006.

EXPERIENCED SMALLTALK
APPLICATION DEVELOPERS

Knowledge Systems Corporation’s mission
is to help clients attain self-sufficiency in the
real world application of Object Technology
and Smalltalk. We have immediate openings
for individuals with 1.5+ years of Smalltalk

experience (VOS2 or VisualWorks™).
Experience with ENVY ®/Developer is
desirable. Excellent communication and
analytical skills are essential.

Please fax or mail your resume to:

Mr. Ken Auer
Knowledge Systems Corporation
114 MacKenan Drive
Cary, North Carolina 26511
fax: (919) 460-9044
email: kauer@ksccary.com

~

KNOWLEDGE SYSTEMS

CORPORATION
An Equal Opportunity Employer

OCTOBER 1993

23

LOOK WHAT HAPPENED

Congratulations to
Bank of America on their
new 11-state wide area net-
work. A system they call “the
most sophisticated distributed
network in the world.”

With good reason.
Their network configuration
tools have already won the
Computerworld 1993 Award
for Best Use of Object-

Oriented Technology within
an Enterprise or Large
System Environment.

Of course, that’s what
happens when a company
like Bank of America turns
to a powerful technology like
Digitalk’s Smalltalk/V.

LIKE MONEY IN THE BANK.

Why are so many Fortune 500
companies like B of A switching to

A Smalltalk/V?
Smalltalk/V lets

o ——— u Yyou show proto-
types of enterprise-

wide systems in
weeks instead of
months. In fact,

¢ systems as ambi-
tious as Bank of
America’s can be
completed in as
little as 18 months.

GITALK

SMALLTALK/. 100% PURE OBJECTS.

WHEN DIGITALK
BROKE INTO THE BANK.

BANK OF AERICA
WINNER - 1997
COMPETERWORED
CORILCT APPLICATION:

iy AT

Ol OR O]

G WITHHN
RISE OR
S~y ST

N

£

IR
A

In addition, our Team/V Group
Development Tool lets large teams of
programmers use version control to
easily coordinate their work. Plus
you'll be surprised at how quickly your
in-house staff becomes productive
with Smalltalk/V.

The bottom line is Smalltalk/V
helps a company get more done in
less time, Which can save very large
amounts of corporate cash.

RATED #1 BY USERS TOO.

On behalf of Computerworld,
Steve Jobs presented the award to
Bank of America. But industry

luminaries and Fortune 500
managers aren't the only
ones who have recognized
the value of Smalltalk/V.
Users have discovered that
Smalitalk/V is the only
object-oriented technology
that's 100% pure objects.
With hundreds of reusable
classes of objects, thousands
of methods and 80 object
classes specifically designed
to build GUIs fast. Which
means no more time spent
writing code from scratch.

BANK ON SMALLTALK/.

So it’s no wonder that
50 many companies are
doing award-winning work with
Smalltalk/V. Incidentally, Smalltalk/V
applications can be easily ported
between Windows, 05/2 and
Macintosh. And you can distribute
100% royalty-free.

For information on how Digitalk’s
Smalltalk/V can save you time and
money, call 1-800-531-2344
department 310 for our special White
Paper. And be sure to ask about Digitalk’s
Consulting and Training Services.

Call right now, and see how
Smalltalk/V can yield a maximum
return on your investment.

DIGITALK

	By Article Title
	Abstract classes
	Coping with single inheritance: building tree classes
	Extending the environment: part 2
	Helper methods avoid unwanted inheritance
	Interfacing Smalltalk with real-time systems: part 1
	Pragmatic multiple inheritance

	By Author Name
	Beck, Bob
	Beck, Kent
	Ewing, Juanita
	Klimas, Edward
	Knight, Alan
	Samuelson, Bruce

	By Topic
	comp.lang.smalltalk
	Getting Real
	Smalltalk idioms

