The Smalitalk Report

The International Newsletter for Smalltalk Programmers

September 1993 Volume 3 Number 1

bject system architects have long understood the value of frame-
works. Frameworks provide a powerful way to organize and build

BUILDING

OBJECT-ORIENTED

~ FRAMEWORKS

by Nik Boyd

Contents:

Features/Articles

1 Building object-oriented
frameworks
by Nik Boyd

Columns

8 Smalltalk idioms:
Inheritance: the rest of the story
by Kent Beck

10 The best of comp.lang.smalftalk:
Extending the environment (part 1)
by Alan Knight

23 GUIs: Keeping multiple views

up-to-date
by Greg Hendlley & Eric Smith

26 Book review: SMALLTALK
PROGRAMMING FOR WINDOWS
reviewed by Dan Lesage

Departments

27 Highlights

interactive object systems. While classes define the structure and
behavior of individual objects, frameworks define the structure
and behavior of interactive object systerns and subsystems (archi-
tectures). Just as classes provide leverage from the reuse of solutions to compo-
nent problems, frameworks provide leverage from the reuse of solutions to sys-
temic problems. Classes and frameworks complement each other for object
modeling coordination.

Object system architects have sought ways to discover, describe, and define
useful frameworks. This article explores some issues related to designing and
building object systems, especially using frameworks. This article proposes that
frameworks can be made first-class objects and describes the implementation of a
Framework superclass for Smalltalk.

First-class frameworks provide a way to formalize the relationships between

the objects in a system and factor out their patterns of interaction. Framework
classes provide new opportunities for design, development, and reuse in object
systems. They can be used to create very general or specialized event-driven sys-
tems. By making frameworks first-class objects, they derive and supply the same
benefits as other objects: They can be built and reused with existing Lools.

HOW THIS WORK EVOLVED

Smalltalk’s browsers provide essential tools for quickly building and evolving ob-
jects. These tools organize and present objects and their definitions. The internal
workings of these browsers can be quite complex. As a result, the classes that im-
plement these browsers tend to have many methods.

The complexity of these browser classes contributes significantly to the
difficulty of developing new tools for Smalltalk. This observation leads naturally
to the following question: How can these browsers be broken down into more
easily integrated and reusable components? The Model-View-Controller (MVC)
framework! and its alternatives23 provide great value, but do not completely re-
solve the problem of component integration.

Early experiments with refactoring some new tools led to ways of loosely cou-
pling their components using a kind of “smart” linkage. These component con-
nections included their own behavior. After exploring some alternatives, it be-
came obvious that these experiments had produced a way of implementing
mediators.? Patterns began to emerge when the browser components were cou-
pled together using mediators. This observation led naturally to the realization
that some of these interaction patterns could be factored out and reused. Such
refactoring created first-class framework objects whose behaviors are governed by
interaction contracts.> Framework classes map interaction contracts directly onto
inheritance hierarchies.

contintied on page 4.

EDITORS’
CORNER

Paul White

John Pugh

t’s been a busy spring and summer for conferences. Here are a few Smalltalk-related per-
spectives on those that one or the other of us has attended recently.

In May, Digitalk held their second conference for developers, DEVCON93 in Costa
Mesa, CA. The audience, which was populated by many representatives from banking and
insurance companies, reflected very much the move of the MIS community into Smalltalk
development. The conference program catered to this community with a heavy emphasis on
the use of Smalltalk/V and PARTS in client-server computing. In one of the liveliest presen-
tations, Amarjeet Garewal from the Bank of America described his firm’s client-server de-
velopment, ACA (A Cooperative Application). ACA facilitates distributed computing using
Smalltalk and legacy systems, and was an award winner in the Object Applications categary
at the recent ObjectWorld conference. Watch for an upcoming atticle from Amarjeet in the
RerorT. For Smalltalk aficionados who wanted to learn more of the “meta-world” of
Smalltalk, Dave Smith from IBM give an inimitable reprise of his “Behavior of Behavior”
presentation. SMALLTALK REPORT columnist Kent Beck dispelled a few Smalltalk myths and
provided some invaluable insights into how to write high-performance Smalltalk programs.
It was also Digitalk’s 10th anniversary—they threw a good party!

June was the month for the large ObjectWorld conference in San Francisco. The
Smalltalk story of note there was the demonstration of Hewlett-Packard’s Distributed
Smalltalk product—the first complete implementation of the Object Management
Group’s CORBA specification for distributed computing. Using Distributed Smalltalk,
programmers can access distributed objects transparently without regard for whether the
objects are local or remote. At the conference, users of Distributed Smalltalk in the HP
booth were able to access objects residing in a Gemstone database in the Servio booth.
Distributed Smalltalk consists of approximately 150 classes that sit on top of ParcPlace
Systerns’ VisualWorks product. Watch out for upcoming articles on distributed comput-
ing with Smalltalk in future issues.

For the past few years, many people have been discussing the issue of frameworks as a
mechanism for achieving reuse in object-oriented systems. For most, however, the issue of
finding these framewarks is elusive, to say the least. As this month’s lead article, Nik Boyd
provides a description of how frameworks can be made first-class objects by introducing a
Framework abstract class to Smalltalk and provides examples illustrating how best to use it.

Three of our columnists check in this month. Alan Knight addresses the issue we
raised in our last editorial, namely making extensions to the base Smalltalk environment,
In his column, he reports on “home-brewed” enhancements that have been posted to the
Internet news group. In his column this month, Kent Beck continues his discussion of
using inheritance effectively by introducing a pattern to be applied when attempting to
make decisions concerning the factoring of subclasses. Greg Hendley and Eric Smith are
back, describing how to take advantage of the object-dependents mechanism provided
by Smalltalk when trying to keep multiple windows that are displaying inter-dependent
information in sync. Finally, Dan Lesage reviews Dan Shafer’s new book, SMALLTALK
PROGRAMMING FOR WINDOWS.

Enjoy the issue—and welcome to our third year!

Tur Ssaritaik Report (188N#2 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec
combined issucs. Published by SIGS Publications Inc., 588 Broadway, New York, NY 10012 212.274.06-K0. ¢ Copyright 1993 by SIGS
Publications. All rights reserved. Reproduction of this material by electronic transmission, Xerox or any other method will be treated as
4 willful violation of the US Copyright Law and is (latly prohibited. Material may be repraduced with express permission from the pub-
lisher. Mailed First Class. Subscription rates I year (9 issues): domwstic, 565; Foreign and Canada, $90; Single copy price, $8.00. POST-
MASTER: Send address changes and subscription orders to: Tur Smariiaik Rerort, Subscriber Services, Dept. SML, .0, Box 3000,
Denville, NJ 07834. For service on current subscriptions call B00.783.4903. Submil articles la the Editors a1 509-885 Meadawlands
Drive, Oltawa, Ontario K2C 3N2, Canada, 613.225.8812 (v), 613.225.5943 (f).

PRINTED IN THE UNITED STATES.

2

f

The Smalltalk Report

Editors

| John Pugh and Pauf White

|
|

Carleton Universily & The Object People

SIGS PusLIcATIONS
Advisory Board

Tom Atwood, Object Design

Grady Booch, Rational

George Bosworth, Digilalk

Brad Cox, Information Aga Consulling
Adele Goldberg, ParcPlace Sysiems
Tom Love, (@M

Bertrand Meyer, ISE

Meilir Page-Jones. Wayland Systems
Sesha Pratap, CenterLine Software
Cliff Reeves, IBM

Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

THE SmaLLTALK REPORT

Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalh

Dave Thomas, Object Technology International

Columnists

Kent Beck, First Class Software

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Systems Carp.
Ed Klimas, Linea Engineering Inc.

Alan Knight, The Object People

Eric Smith, Knowledge Systems Corp.
Rebecca Wirls-Brock, Digilalk

l SIGS Publications Group, Inc.

Richard P. Friedman
Founder & Group Publisher

Art/Praduction
Kristina Joukhadar, Managing Editor

Susan Culiigan, Pilgrim Read, Ltd., Creative Direction

Karen Tongish, Praduction Editar

Gwen Sanchirico, Production Caordinator
Robeni Stewart, Compuier Systems Coordinalor
Circulation

Stephen W.Soule, Circulation Manager
Marketing/Advertising

James O. Spencer, Director of Business Development
Jason Weiskopt, Advertising Mgr—East Coast/Canada

Holly Meintzer, Advertising Mgr—Wesl Caast/Europe
Helen Newling, Recruitment Sales Manager

Sarah Hamilton, Promations Manager—Publications
Jan Fulmer, Promotions Manager—Conferences
Caren Polner, Promotions Graphic Artist
Administration

David Chatterpaul, Accounling Manager
James Amenuvor, Bookkeeper

Margot Patrick, Assistant lo the Publisher
Claire Johnston, Conference Manager

Cindy Baird, Conference Technical Manager

Margherita R. Monck
General Manager

PUBTLC Vo

|
WSIGS
l

Publishers af JouRNAL OF OBIECT-ORIENTED PRO-
GRAMMING, OBJECT MAGAZINE, THE C++ REFORT, THE
SMmaLLTALK RePORT, THE INTERNATIONAL OOP DiRec-

TuEe SMALLTALK REPORT

Lo

ADVANCED TRAINING

ANALYSIS & DESIGN

APPRENTICE PROGRAM

TEAM REQUIREMENTS

CUSTOM CONTRACTS
3

Object Technology Potential
Object Technology can provide a
company with significant benefits:
* Quality Software

* Rapid Development

* Reusable Code

¢ Model Business Rules

But the transition is a process that
must be designed for success.

Translition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern
California Cdison and Texas Instru-
ments to successfully transition to
Object Technology.

MEN TOHING

TEAM TOOLS

KSC Transltion Services

KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

¢ [ntroductory to Advanced

Programming in Smalltalk

e STAP™ (Smalltalk Apprentice
Program) Project Focus at KSC

* 00 Analysis and Design

* Mentoring: Process Support

SOLUTIONS

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of “Best of Breed” third
party tools and KSC value-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server
environment.

Design your Transition

Begin your successful “Object
Transition by Design” For more
information on KSC's products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
Software Assets by Design.

IS

Knowledge Systems Corporation

OBJECT TRANSITION BY DESIGN

w 1992 Knowledge Systems Corporation.

114 MacKenan Dr.
Cary, NC 27511
(919) 481-4000

...continied from page |

This article describes the results of these experiments: The
role that frameworks can play in system design, and how
framework classes can be used to define the structure and co-
ordinate the behavior of objects in systems. We begin by ex-
ploring some issues related to object design and system design.

OBJECT DESIGN AND SYSTEM DESIGN

We often solve large problems by breaking them up into
smaller problems and combining the solutions (divide, under-
stand, integrate: solve e coagula). Just so, we can divide large
systems of interacting objects into smaller collaborations, or
subsystems. This allows us to better understand and manage
the structure and behavior of the larger system.

Two key concerns of object systern architects are the right
factoring of behavior and the right coupling of objects. Al-
though different aspects of a design, factoring and coupling de-
cisions often influence each other. For example, creating a new
object class presents a question that arises frequently in object
system design: Where does the new class belong in a class hier-
archy? This critical design activity incorporates both factoring
and coupling decisions because objects serve as the essential
unit for both factoring and coupling in object systems.

The class location decision can be made easier by looking at
the proposed service responsibilities of the new class and asking
some questions. Does the new class provide the same (or sub-
stantially similar) services when compared to another existing
class? Does it add new services or change the implementation of
some services? Daes it remove any services? When a new class
shares (and perhaps adds to) the public interface of an existing
class, the new class is a good candidate for subclassing the exist-
ing class. When the public interface of the new class is not sub-
stantially similar, but needs the services of an existing class, the
new class should be a client of the existing class. When a new
class shares some portion of the public interface of an existing
class, the hierarchy may need to be revised, splitting out the
shared interface into a new, more general superclass shared by
both the existing and newer subclasses. Finding the best loca-
tion for object behaviors is the essence of right factoring.

RIGHT FACTORING

Factoring characterizes how well responsibility for services are
distributed throughout an object system or class hierarchy.
Ideally, each unique piece or pattern of behavior has a unique
location within each object system or class hierarchy.

Classes may be organized initially based on data and the
operations on that data. However, classes should finally be or-
ganized based on their service responsibilities and collabora-
tions. Each object in a system is assigned responsibility for
providing certain services to its clients. Responsibility-based
design (RBD) takes the client/server approach to its logical
conclusion in the design of finegrained objects and collabora-
tive subsystems.5-°

Many experienced object designers have suggested that
good class hierarchies tend to be deep and narrow. A hierarchy
is considered deep when there are many intermediate super-

4

® BUILDING OBJECT-ORIENTED FRAMEWORKS

classes between the most specialized classes and the top of the
hierarchy. A hierarchy is considered narrow when each class in
the hierarchy adds relatively few public services.

Class libraries tend to evolve over time until they becorne
stable and mature. However, we must be careful if we don’t
want such stability to mean that they ossify! This can happen in
large systems when a few basic objects are used repeatedly, cre-
ating many dependencies. The stabilily created by such depen-
dencies may argue against redesign, creating a kind of inertia.

Early design evolution should be encouraged in order to
prevent premature stability. Object modeling!® can help 1o ac-
celerate the process of evolution during class and system de-
sign. Design iteration provides opportunities for revisiting and
revising object and system designs through refactoring.!!

Refactoring applies one or more kinds of behavior preserving
transformation to an object model. The behavior of the modeled
objects is redistributed so that they are simpler and provide bet-
ter opportunities for reuse. Even fairly stable class hierarchies
may be improved by subjecting them to refactoring.!2

One frequently used example of refactoring is generaliza-
tion. When two or more subclasses share some common be-
havior, a new more general superclass can be created by factor-
ing out the shared behavior.

Many of the transformations permitted by refactoring can
be automated. Automating the refactoring process could even-
tually lead to the development of a kind of “lint” eliminator for
object designs.

RIGHT COUPLING

Coupling characterizes the relative visibility and independence
of objects in relation to each other. Ideally, objects and classes
should only be visible to those clients that need to see them.

When one object depends implicitly on another, they are
tightly coupled. Object instances are tightly coupled to their
classes. When one object depends directly on the visibility of
another, they are closely coupled. Smalltalk instance, class, and
pool variables are are closely coupled to the instances that ref-
erence them.

When one object references another anly indirectly through
an opaque reference or through some accessing or structural
traversing message(s), it depends only on some portion of the
other’s public interface and may be loosely coupled. Table 1
summatizes the relationships between visibility and coupling.

Thus, appropriate visibility is essential for achieving right
coupling. Often, the success of a large programming project
hinges on right coupling. Right coupling can only be achieved if
the system architect has an awareness of coupling and visibility

Table 1. Relationships between visibility and coupling.

Visibility Coupling
Tmplicit Tight
Immediate Close
Opague Loose
None None

THE SMALLTALK REPORT

Now! Automatic Documentation

For Smalltall/V Development Teams — With Synopsis

Synopsis produces high quality class documentation
With the combination of Synopsis and
Smalltallk/V, you can eliminate the lag between the

automatically.

production of code and the availability of documentation.

Synopsis for Smalltalk/V

+ Documents Classes Automatically

» Provides Class Summaries and Source Code Listings
+ Builds Class or Subsystem Encyclopedias

+ Publishes Documentation on Word Processors

» Packages Encyclopedia Files for Distribution

+ Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

Decvelopment Time Savings

Coding

Documentation
Without
Synopsis

With
Synopsis

Products Supported:

Digitalk Smalltalk/'V Windows $295

Digitalk Smalltalk/V OS2 $395
(OS/2 version works with Team/V and Parts)

Synopsis Software

8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

3y

issues, and has tools that provide him with real options for deal-
ing with those issues.

Component classes, module classes,’? and framework
classes complement one another in controlling coupling and
visibility in Smalltalk systems. They also provide complemen-
tary mechanisms for factoring. The issues raised regarding the
factoring of behavior and the coupling of abjects can be dealt
with formally by designing objects using contracts.

DESIGNING WITH CONTRACTS
Contracts are design abstractions. They provide high-level de-
scriptions of:

* The behavior (and structure) of a component object

* The collaborations between the components that form a
subsystem

* The interactions between the participants in a framework.

Classes define the service capabilities of their instances.
These services can be organized using protocols. Protocols are
generally used to represent the contracts provided by objects.
Protocols generally characterize the services they organize us-
ing descriptions derived from verb phrases such as initializing-
releasing (instances), accessing (some state information), com-
puting (some value).

Sometimes a complex set of related services can best be im-
plemented and simplified by assigning responsibility for some
contract(s) to a separate class. The set of resulting classes can

SEPTEMBER 1993

then be organized as collaborators in a subsystem. Responsibil-
ity-based design® can be used when defining and refining the
contracts fulfilled by components and subsystems.

In Smalltalk, module classes!? can be used to organize and
provide opaque access to subsystems. Like component classes,
module classes can be instantiated. Whether through the mod-
ule class or one its instances, each module serves as a gateway,
providing access to the services of its internal subsystem.

Interaction-oriented design can be used when defining and
refining the interaction contracts fulfilled by frameworks. In
interaction-oriented design, the interactions between objects
are first-class entities in the design space.5 Using framework
classes, these first-class designs can be implementated as first-
class objects.

THE FRAMEWORK SUPERCLASS

Listings 1 and 2 provide the Smalltalk source code that imple-
ments the Framework superclass. The Framework superclass is
intended 10 be subclassed to create both general and special-
ized frameworks. The Framework superclass is responsible for
providing the following services:

* Building a framework {rom participants
* Resolving roles for participants
* Defining roles and their responsibilities
* Validating participants for roles

= Translating events into messages

When a framework instance is built, some of the partici-
pants are components, but some may be other frameworks.
These nested frameworks are given special treatment during the
assembly of the framework in which they are embedded. Each
nested framework is checked for unresolved roles. If any unre-
solved roles are found, they are filled using participants from
the embedding framework by matching their role names. Thus,
naming the roles and participants in a network of frameworks
is an important activity.

This feature allows system architects to design and build net-
works of interlocked frameworks. Small frameworks and their
components can be integrated so that events propagate through
the network to produce the overall behavior of a large system.

Within a framework, each object has a role and must supply
certain services in order to fulfill that role. An interaction con-
tract defines the responsibilities of the objects that form a be-
havioral composition. The services each object must render in
order to participate in a role may be defined explicitly as part
of a framework class. When these specifications are defined for
the roles of a framework class, they are verified when each in-
stance of the framework is assembled.

Although framework role validation is feasible within any lan-
guage system, it is easiest to implement when the language sup-
ports reflection directly. Reflection provides objects with access
to information regarding their own behavior. Sometimes this
language feature is described as object self-knowledge. Smalltalk
is one of the few commercial languages that support reflection.

The use of reflection by framework classes for validating
role participants presents an interesting opportunity. This
reflective information can be used to support the intelligent as-
sembly of object frameworks. In Listing 1, the #assembleAs:
method shows how the Collection class may be extended to
support framework assembly from anonymous participants.

If the service requirements defined for each role differ
sufficiently, they may be used to identify the role players
needed from a collection of anonymous participants. Each
anonymous participant can be exarnined to determine its most
likely role within a framework based on the service require-

list

I
L

component couplings pane menu

)\
NS

subpane inter-framework coupling

O

framework mediator

Figure 1. Key diagram.

m BUILDING OBJECT-ORIENTED FRAMEWORKS

ments of each role. Once the roles of all the participants have
been identified, the framework can be built without any need
to explicitly specify their roles.

EVENT NOTIFICATION AND TRANSLATION

The MVC framework and other similar ones typically broad-
cast event and change notifications to dependents. While this
may be sufficient for simple frameworks, more complex frame-
works need something more: the ability to target specific
framework participants for event or change notification. For
this reason the Framework class supports both kinds of
notification mechanisms:

self notify: #someParticipant
that: #somethingHappened.

self someParticipant
notifyThat: #somethingHappened.

The #notify:that: request extends the Object class to provide
event notification targeted at specific named dependents. The
#notifyThat: request extends the Object class to provide broad-
casting of events to all dependents (see Listing 1). The Frame-
work class overrides #notify:that: to support targeting specific
named participants. It also overrides #notifyThat: to translate
events into actions.

SOME EXAMPLE FRAMEWORKS

The first two examples are described in Reference 5. Listing 3
shows a framework class that captures the SubjectView contract.
The SubjectView contract manages a collection of views so that
they all reflect the current value of a subject. By factoring out
the behavior related to the contract into a separate framework
class, the services that the subject and view classes must sup-
port are drastically reduced. This factoring allows these classes
to be simplified to their essential behavior without concern for
how they are used in a broader context.

Listing 4 shows how ButtonGroup, a specialization of the
SubjectView contract, can be captured as a framework subclass.
The ButtonGroup shows which button of a group of radio but-
tons is selected. Here again, the behavior required of the Button
class is reduced, eliminating its need to retain any framework
specific behavior.

The next example is derived from efforts to refactor some
browser classes. A brief overview will suggest how such relac-
toring may proceed. The Framework superclass is subclassed by
a hierarchy that supports the redirection and translation of the
SubPane events used in Smalltalk/V. The class SubPaneMediator
guides the interactions between one of the SubPane subclasses
(i.e., Button) and some other component(s).

The component used by these mediators in addition to the
subpanes is a SelectionList. The SelectionList class remembers
the selection of a single item from a list of items. The item list
may be either an IndexedCollection or an OrderedDictionary. The
selection index of the list is either an ordinal number or an or-

continued on page 14...

THE SMALLTALK REPORT

SWALSAS

Smallalk/Vv devcl()p(.rs have come to rely on

WINDOWBUILDER P

The New Power in Smalltalk/V Interface

RO

Development

WindowBuilder Pro/V is available on Windows for $295

WindowBuilder as an

1IEE and OS8/2 lor $495. Qur stan-

essential tool for develop-
ing sophisticated user inter-
faces. Tedious hand coding
of interfaces is replaced by
interactive visual composi-
tion. Since its initial release,
WindowBuilder has
become the industry stan-
dard GUI development tool
for the Smallealk/V environ-
ment. Now Objectshare
brings you a whole new

.Eile Edin ylew Align ﬁlze Qplluns ﬁcuphnnk Add

dard WindowBuilder/V is
still available on Windows
for $149.95 and OQS/2 for
$295. We offer [ull value
trade-in for our
WindowDBuilder customers
winting to move up to Pro.
These products are also
available in

. ENVY+/Developer and
Team/V™ compatible for-
mats. As with all ol our

level of capability with
WindowBuilder Pro! New

products. WindowBuilder
Pro comes wilh a 30 day

functionality and power
abound in this next genera-
tion of WindowBuilder.

money back guarantee, full
source code and no Run-
Time fees.

Some of tbe excitz‘ng new features. ..

. (;()In])()\l[L‘l)LlnL‘\ Create custom controls as composites

g of other controls, treated as
a single object, allowing the
developer higher leverage
of reusable widgets.
CompositePanes can be
used repeatedly and
because they are Class based, they can be casily sub-
classed; changes in a CompositePane are reflected any-
where they are used.

* Morphing: Allows the developer to quickly change
T from one type of control Tsums ———=F

to another, allowing for | © smataik
powerful “what-if™ style | O WindowBulldes
visual development. The | © Other

flexihility allowed by
morphing will greatly enhance productivity.

s ScraplBook: Another new feature to leverage visual
L()mp()m.n[reuse, ScrapBooks provide a mechanism for
= developers to quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents, organized

into chapters and pages.

* Rupid Prototyping capa-
bhilities: With the new link-
ing capabhilitics, a develop-
er can rapidly prototype a
functional interface without
writing a single line of
code. LinkButtons and

Link Attributes

DiskHowser 3] [Link Type
FileFlnder Independem
FreeDrawing

GraphicaDema Sibling
IconE ditor

Opena the selecied
Moo window a3 a child of
MDISystem ph
MDMranscript the current window.

erful mechanism for linking
windows together and speci-
fying flow of control.
ActionButtons and
ActionMenues provide
mechanism for developers to
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

* ToolBar: Developers can Create sophisticited toolbars

just like the ones in the WindowBuilder Pro tool itself.

e Other new feawres include: enhanced duplication and
cut/paste functions, size and position indicaors,
c¢nhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and ficld level validation, and much more...

= Add-in Manager: Allows developers 1o easily integrate
extensions into WindowBuilder Pro's open architecture.

Cartch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742

Objectshare Systems, Inc
Fax: (40B) 727-6324

5 Town & Country Village
Suite 735

LinkMenus provide a pow-

WindowBuilder and Wi

Pra are of Obj e

Inc. All other brand and producl names are regi: ir

CompuServe 76436,1063 San Jose, CA 95128-2026

af their respi companies

MALLTALK IDIOMS

Kent Beck

Inheritance: the rest of the story

stated that there was no such thing as a truly private mes-

sage. | got a message from Nikolas Boyd reminding me
that he had written an earlier article describing exactly how to
implement really truly private methods. One response I made
was that until all the vendors ship systems that provide
method privacy, Smalltalk cannot be said to have it. Another
is that I'm not sure I'd use it even if I had it. It seems like
some of my best “reuse moments” occur when I find a sup-
posedly private method in a server that does exactly what I
want. I don’t yet have the wisdom to separate public from pri-
vate with any certainty.

On a different note, I've been thinking about the impor-
tance of bad style. In this column, I always try to focus on good
style, but in my programming there are at least two phases of
project development where maintaining the best possible style
is the farthest thing from my mind. When I am trying to get
some code up and running I often deliberately ignore good
style, figuring that as soon as I have everything running I can
simply apply my patterns to the code to get well-structured
code that does the same thing. Second, when I am about to
ship a system I often violate good style to limit the number of
objects I have to change to fix a bug,

What got me thinking about this was a recent visit I made
to Intelliware in Toronto. Turns out Intelliware is two very
bright but fairly green Smalltalkers, Greg Betty and Bruno
Schmidt (he’s not nearly as German as his name). They hired
me to spend two days going over the code they had written for
a manufacturing application. The wonderful thing was, they
had made every mistake in the book. It’s no reflection on their
intelligence; everyone makes the same mistakes at first.

What made their boo-boos so neat was that [was able to go
in and, in two days, teach them a host of the most advanced
Smalltalk techniques just by showing them how to correct er-
rors. I'd say, “Oh, look, an isKindOf:. Here’s how you can get
rid of that and make your program better at the same time.”

I n the June issue where I took on accessor methods, I

Because [had a concrete context in which to make my obser-
vations, they could learn what I was teaching both in the con-
crete (“Yes, that does clean up the design™) and the abstract
(“Oh, I see. I can do that any time I would have used
isKindOf:™).

So, go ahead. Use isKindOf:. Use class == and == nil. Access
variables directly. Use perform: a lot. Send a message to get an

8

object that you send a message to. Just don’t do any of these
things for long. Make a pact with yourself that you won't stand
up from your chair (or go to bed, or ship the system, or go to
your grave. . .) without cleaning up first.

Some people are smart enough to write clean code the first
time. At least, that’s what they tell me. Me, I can’t do that. [
write it wrong, and then fix it. Hey, it’s not like we’re writing in
C++ and it takes an hour to compile and link our programs.
You may as well be making your design decisions based on
code that works. Otherwise, you can spend forever speculating
about what the right way to code something might be.

PATTERN: FACTOR A SUPERCLASS

As an alternative to the Separate Abstract from Concrete pattern,
I'd like to present the way Ward Cunningham taught me to make
inheritance decisions. It is very much in keeping with what I
wrote above about letting your “mistakes” teach you the “right”
thing to do. When you are programming like this, it feels like the
program itself is teaching you what to do as you go along.

CONTEXT

You have developed two classes which share some of the same

methods. You have gotten tired of copying methods from one

to the other, or you have noticed yourself updating methods in
both in parallel.

PROBLEM

How can you factor classes into inheritance hierarchies that
share the most code? (Note that some people will say that this
isn’t the problem that inheritance should be solving. You
wouldn't use this pattern if that was your view of inheritance.)

CONSTRAINTS
You'd like to start using inheritance as soon as possible. If you’re
using inhetitance you can often program faster because you
aren’t forever copying code from one class to another (what Sam
Adams calls “rape and paste reuse™). Also, if you are using inher-
itance, you don't run the risk of a multiple update problem,
where you have two identical methods, and you change one but
not the other. [deally, for this constraint, you’d like to design
your inheritance hierarchy before you ever wrote a line of code.
On the other hand, designed inhcritance hierarchies (as op-
posed to derived inheritance hierarchies) are seldom right. In

THE SMALLTALK REPORT

fact, by making inheritance decisions too soon you can blind
yourself to the opportunity to use inheritance in a much better
way. This constraint suggests that you should make inheritance
decisions only after the entire system is completed.

SOLUTION

If one of the objects has a superset of the other object’s vari-
ables, make it the subclass. Otherwise, make a common super-
class. Move all of the code and variables in common to the su-
perclass and remove them from the subclasses.

EXAMPLE

It is difficult to come up with an example of inheritance that
isn't totally obvious. The problem is that before you see it, you
can’t imagine it, and after you see it, you can’t imagine it any
other way. So, if this example seems contrived, don’t worry,
your own problems will be much harder.

Here is an example in VisualWorks I ran across a couple of
months ago. I had Figure1, a subclass of VisualPart. [t had to be
dependent on a several other objects, and it had to delete those
dependencies when it was released.

Class: Figurel
Superclass: VisualPart
Instance variables: dependees

Figure>>initialize
dependees := OrderedCollection new
Rather than use the usual addDependent: way of setting up de-
pendencies, I implemented a new message in Figure1 called de-
pendOn..
Figure1>>dependOn: anObject
dependees add: anObject.
anObject addDependent: self
When the figure goes away, it needs to detach itself from every-
one it depends on.

Figure1>>hreakDependents
dependees do: [:each | each removeDependent: self].
super breakDependents

Then I created a Figure2. To get it up and running quickly I
just copied the three methods above to Figure2 and set about
programming the rest of it.

It was when [went to create Figure3 that I decided to take a
break and clean up. I created DependentFigure as a subclass of
VisualPart, gave it the variable dependees and the three meth-
ods above, made Figurel and Figure?2 subclasses of it, deleted
their implementations of initialize, dependOn: and breakDepen-
dents, and then implemented Figure3.

OTHER PATTERNS

While you are factoring the code is often a good time to ap-
ply Compose Methods so you can move more code into the
superclass.

CONCLUSION
I have presented a pattern called Factor a Superclass as an al-
ternative to Separate Abstract from Concrete for creating in-

SEPTEMBER 1993

DO YOU KNOW
SMALLTALK?

At Boole & Babbage, we talk big about
our UNIX and mainframe products.
if you want an unparalleled technical
opportunity to work with a world-class
team in a company with 25 years
experience as an innovator, bring your
Smalltalk and OOD skills and talk big to:

Boole &
Babbage

Group Staffing DRRSR
510 Oakmead Parkway
Sunnyvale, CA 94086
FAX: (408) 737-2649
or email (ASCIl and Postscript only):
info@boole.com

EOE
principals only

heritance hierarchies. Using Factor a Superclass, you will end
up with superclasses that have more state. I'm not sure if this
is a good thing or not. On the plus side, you will probably be
able to share more implementation. On the minus side, you
may find yourself applying the pattern several times to get the
final result. You might factor two classes to get a third, then
notice that once you look at the world that way you can factor
the superclass with a previously unrelated class to get a fourth,
and so on.

Beware of juggling inheritance hierarchies too much. You
can waste lots of time factoring code first one way, then an-
other, and find that in the end you aren’t that much better off
than you were when you started. Objects can survive less-than-
optimal inheritance much better than they can encapsulation
violations or insufficient polymorphism. Most expert designers
agree that great inheritance hierarchies are only revealed over
time. Make the changes that you can see are obvious wins, but
don’t worry about getting it instantly, absolutely right. You are
better off getting more objects into your system so you have
more raw material from which to make decisions. &

Kent Beck has been discovering Smalitalk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. He is also the
founder of First Class Software, which develops and distributes reengi-
neering products for Smalltalk. He can be reached at First Class Soft-
ware, P.O. Box 226, Boulder Creck, CA 95006-0226, 408.338.4649
(voice), 408.338.3666 (fax), or 70761,1216 an Compuscrve.

HE BEST OF comp.lang.smalltalk

Alan Knight

Extending the environment

(part 1)

he Smalltalk development environment is excellent in
many ways, but stagnant. The basic tools haven't

changed much from when I first used Apple Smalltalk-
80 on a Lisa in 1986. At that time Smalltalk and LISP systerns
led the way in interactive development environments. Now
these environments exist for many languages, some of them
very competitive with Smalltalk.

To be fair, there have been great improvements in some ar-
eas, mostly in the area of add-on products. These include GUI
builders, team programming tools, profilers, and database in-
terfaces. The basic tools—the browsers, inspectors and the de-
bugger—remain almost unchanged. This is not because they
defy improvement.

Fortunately, one of Smalltalk’s strengths is the ease with
which it can be customized and extended. In this column, the
first of two parts, I'll discuss some simple extensions to these
tools. Part two will look at some of the packages available that
make more substantial changes. The main focus will be on
ideas or on code available over the net rather than commercial
products which are better covered in a product review.

AREN'T IMPROVEMENTS THE VENDOR’S JOB?

Ideally, users shouldn’t have to write or acquire extended tools.
The development environment is a strong selling point for
Smalltalk, and one might expect the vendors to put some effort
into improving it. From the vendor’s point of view, however,
there are good reasons not to change the environment.

* Backward compatibility. Everybody gets annoyed when
system code changes. If users don’t think the changes are
worth breaking their code for, they’ll be upset.

Disagreement. Any vendor-imposed changes to the envi-
ronment will be unpopular with some users, and ques-
tionable changes run the risk of a bacldash rivaling that
was received by the New Coke.

Priorities. Vendors have limited resources, and are kept
very busy developing new products and fixing the major
problems with existing ones. The base environment isn’t
bleeding too badly, so resources go elsewhere.

* Lack of competition. With the recent growth in Smalltalk’s
popularity, many users are new to the language and come
from areas such as mainframe COBOL or 4GL development.

10

They're still too dazzled by the very idea of an incremental
development environment to complain about its deficien-
cies. Competition from other languages isn’t strong enough
yet to inspire changes. The most likely source of improve-
ments may be new Smalltalk vendors who need to worry
more about carving a niche than backward compatibility.

« Extensibility. There are relatively few complaints about
the environment, because any user with sufficient time
and skill can change it to suit themselves.

ITSUPTO YOU

You can’t count on the vendors for improvements, so it’s up to
you to take responsibility for your own development environ-
ment. You don't have to rewrite the debugger, but don’t be afraid
to make changes or to explore the changes others have made.

At this point, careful readers may recall my March/April
1993 column, where I urged great caution in making system
changes. This appears to be a contradiction, but it’s really just a
trade-off. To be sure, there are risks in changing the system.
New releases or add-on products will need to be checked more
carefully for conflicts and small mistakes can destroy an image.
Frequent back-ups are in order.

On the other hand, changing the browsers or inspectors is
much less risky than changing deep systern components such
as the compiler or the process scheduling mechanisms. Cven
with the risks, the increased productivity can be well worth the
trouble. As always, it’s best to limit changes in system methods
to small “hooks” that call your own code. This helps minimize
the problems with new releases.

WHAT NEEDS CHANGING
Development environments are a religious issue, and everyone
has a different opinion on the perfect environment. Neverthe-
less, here’s a short wish list of ideas. Note: Not all these ideas
have been implemented, and if they have, the author is not
necessarily in a position to distribute the code. The best place
to look for code is the Smalltalk ftp archives (st.cs.uiuc.edu or
mushroom.cs.man.ac.uk), where the authors have gone to the
trouble of cleaning things up and releasing them to the public.
Code written for personal use ofien requires significant effort
to adapt and separate from other extensions.

This column mentions extensions from three different peo-

THE SMALLTALK REPORT

ple on the net. Deeptendu Majumder (dips@cad gatech.edu)
has released his extensions up in a package called ISYSE, avail-
able from the archives.

Bruce Samuelson (bruce@ling.uta.edu) may get around to
cleaning up and releasing his code, but is not in a position to do
so at this time. Gene Golovchinsky (golovch@ie.toronto.edu)
hasn’t packaged his extensions, but is willing to be pestered
about them.

Automatically writing access methods

One of the most common system extensions is a mechanism to
generate access methods for instance variables. These methods
aren’t difficult to write by hand, but they occur so frequently
that a tool can be very convenient.

It’s important that the tool be selective. Not all variables
should have access methods (or some of them should be
clearly marked private, depending on your philosophy) so the
user must be able to select which methods to generate. The
tool should also provide documentation in the method. The
user should be able to (if not forced to) provide information
on the type of the variable and its purpose. This information
should already be in the class comment, but it doesn’t hurt to
duplicate it. A really sophisticated tool would check the class
comment for the information and update it if necessary.

Find class

I use the “Find class” feature very frequently, especially in Dig-
italk dialects. Unfortunately, the basic Digitalk implementation
is brain-dead, and the ParcPlace one, while better, still doesn’t

do what [want.

= Ignore case. This is much faster and more convenient. (Is
it Filename or FileName?)

* If the name matches a class (e.g., set), go directly to it
without presenting a useless list of one class to choose
from. In general, I prefer tools that can skip over lists with
only one item.

« If the name doesn’t match a class, append a wildcard and
present a list of those it matches (e.g., sett gives me a list of
#(Settee Setter Settlement).

= If 1 explicitly type a wildcard, always give me the list (e.g.,
set* gives #(Settee Setter Settlement)).

Smalltalk/V’s debugger

If you've used both Smalltalk-80 and Smalltalk/V, onc of the
most frustrating things about V is its debugger. To the un-
trained eye, both debuggers are very similar, and in fact V offers
the nice additional feature of breakpoints. The problem is that
when evaluating an expression inside the debugger, V evaluates
it as a method in self (the receiver of the current message), not
the context of the current method. In the Smalltalk-80 debug-
ger you can highlight any text in the current method and evalu-
ate it. In the Smalltalk/V debugger this only works if the text
doesn’t reference method arguments or locals.

The most irritating thing about this problem is that 1 don’t
know how to fix it. Digitalk hides the source to their compiler,
and although I've come up with a few bizarre ideas that might
work, I've never had time to really work on it. If anybody has a
fix for this, please let me know.

Browsing inherited methods

I don’t know how many requests I’ve seen for a for a browser
that shows all methods in a class, including inherited methods.
The basic functionality is very simple, and the real problem is
providing a good user interface. ParcPlace does provide this
capability with the FullBrowser, but it’s a poor implementation
and only available in the APOK add-on package. It's a good ex-
ample of why we might not want the vendors deciding for
themselves how to improve the environment. Most of the ex-
tended environiments described in part 2 provide this capabil-
ity in some form.

Resizing panes
Bruce Samuelson describes a useful feature to augment the
browser with:

...buttons for resizing browser windows horizontally and
vertically, and reproportioning the line separating the up-
per panes from the method

This is an increasingly common feature in user interfaces, and
one that can be very useful. Smalltalk/V Mac has a convenient
“zoom” feature that makes the text editing area fill the entire
window, but this would be more flexible.

Gene Golovchinsky writes:

I would like to see more buttons on the screen for common
commands rather than entries in pop-up menus. I invari-
ably pick the wrong one, or keep moving between copy,
paste, and accept. Then I accidentally pick cancel, and have
to repeat the whole process again!

I'm not sure we want to add too many buttons, but a few in the
right place would be nice. Certainly, it’s much nicer having
buttons in the debugger for single stepping than having to use
a pop-up menu. For operations like cut and paste I prefer to
have keyboard short-cuts.

Renaming classes in Smalltalk/V

Smalltalk/V still doesn’t support renaming classes or changing
the definition of classes with instances. It shouldn’t be that
hard to implement, and 1 believe the capabilities are available
as part of their Team/V package. Why is such a basic capability
bundled into a team programming too! and not in the base im-
age? Only Digitalk can tell.

COGNITIVE OVERLOAD

While all of the above are useful, they are only minor improve-
ments. There are more general issues that need Lo be ad-
dressed. Deeptendu Majumder raises the issuc of cognitive
overload in the Smalltalk environment:

SEPTEMEER 1993

11

One thing that irritates me more and more these days is
how my screen gets out of control with a multitude of win-

dows. ... I sometimes wonder if there is some kind of
study...about determining the most suitable ST program-
ming environment. . . . I sometimes very strongly feel the

environment can be “smarter” about...reducing the cogni-
tive overload and maintaining easily identifiable cues
about what info is available only for a mouse click.

Controlling windows
The largest single factor in cognitive overload must the num-
ber of windows Smalltalk produces. I usually have 10 to 20
windows open simultaneously and I'm sure I get as high as 50
now and then. With this many windows, it’s vital to have
mechanisms to control the complexity.

Craig Latta (latta@xcf.berkeley.edu) writes:

I find that simply having a good window manager goes a
long way toward reducing the cognitive load. The main
problem I would have otherwise is with hordes of windows
crowding the screen, and subsequently losing track of par-
ticular windows. Things like icon managers (as in ‘twm’ on
X platforms) reduce this problem significantly.

A good window manager and a large screen are vital elements
for Smalltalk work. One technique I use is to make use of win-
dow and icon positions. Certain windows (e.g., the system
transcript, a workspace with useful expressions, my list of
things to do) are always open, and I make a point of always
keeping them in the same place. [also try to keep their icons in
standard places, but not all window managers maintain the po-
sition of icons (MS-Windows doesn't).

(=9 Writing Smalltalk code is akin to
authoring hypertext %

Another technique is to put more information into window
titles. By hooking into the browser selection mechanism, the
window title can be made to indicate the current class and
method. This makes navigating among icons easier, and can
also be used with window managers that allow you to find win-
dows by title. With a bit more effort, it should be possible to
change the window icon to convey more information.

If your window manager doesn't manage windows and
icons well, it's possible to make up some of the difference in
Smalltalk. Gene Golovchinsky writes:

I added an entry to the Launcher menu that displays a list of
all current Smalltalk windows, and indicates the minimized
ones. If I pick from this menu, it raises that window. Just to-
day I saw that something similar is available in the archives!

m THE BEST OF COMP.LANG.SMALLTALK

Reducing the number of windows

Managing windows is all very well and good, but do we really
need all those windows in the first place? Jaap Vermeulen
(jaap@sequent.com) doesn’t think so. He writes:

With new tools to replace the browsers that allow better in-
dexing, searching, shortcuts, and backtracking, you might
need fewer windows. Finally, if the inspectors and debug-
ger would become a little smarter and not throw up win-
dows all over the place, we really would start talking.

Inspectors are one of the worst culprits in creating excess win-
dows. A tool that allowed graphical inspecting of many objects
at once, following links between them, could reduce this con-
siderably. There is a simple tool of this type included with the
HotDraw application framework. I believe First Class Software
(408.338.4649 (voice), 408.338.3666 (fax), or 70761.1216 on
CompuServe) has a graphical inspecting tool for Smalltalk/V.

Too many browser operations spawn a new window in
which to present their results. The only concept of backtrack-
ing is to go back to the window you started the operation from.
For operations like senders, this is simple to change and makes
the function easier to use. Gene Golovchinsky writes:

I've augmented the MethodListBrowser to add the ability to
add a specific method to the list. It works like the Messages
menu item, but instead of spawning a new window, it adds
the entry to the list. If there is more than one item, it
prompts for the one to add. I find this tool handy for
traversing long chains of message sends and keeping them
all in one place.

Unfortunately, it's not so easy to reduce the number of win-
dows generated by some of the other operations.

HYPERTEXT MECHANISMS
Gene Golovchinsky writes:

Writing Smalltalk code is akin to authoring hypertext; per-
haps some insight can be gained from perusing that litera-
ture. Along those lines, this environment seems like an
ideal vehicle for implementing all sorts of hypertext behav-
ior. In fact, the existing browsers have many of these fea-
tures already.

Indeed, Smalltalk browsing shares many characteristics with
hypertext browsing and suffers many of the same problems.
There’s an enormous amount of information, only a small part
of which is relevant at any given time, and it’s easy to become
lost in the irrelevant.

Messages
Many browser improvements are intended to quickly find rele-
vant information while avoiding that which is not relevant. If
you can follow a link directly to what’s important, you don't
need as many windows open looking for it.

One such feature is the messages menu item mentioned
above. This allows you, when browsing a method, to find im-

12

THE SMALLTALK REPORT

plementors or senders of any of the messages sent by that
method. The messages sent become hypertext links.

One problem is that the number of methods found can be
too large to work with. Thus, it's useful to restrict the methods
considered. One way is to allow “local” senders/implementors,
selecting only methods within the current class or perhaps
within its sub/superclasses.

Bruce Samuelson has another mechanism:

.’my senders’, ‘my implementors’ which only look at the
changes file. ..

Also, we may want to browse a method that isn’t sent from the
current message, or we may be in a text editor instead of a
browser. Gene Golovchinksy describes a menu item that opens
a browser on the class or method named by the currently se-
lected text. I have a similar extension, but I separate the
browse/senders/implementors/class references behavior and
use keyboard shortcuts to invoke them. Keyboard shortcuts are
a little faster, and work in workspaces as well as browsers, but
are less mnemonic and not as flexible.

Operating on text is a nice feature, but one that works best
for zero- or one-argument messages. Multi-keyword messages
don’t usually occur in text in the right form. It should be possi-
ble to use the Smalltalk parser to extract possible message
names, but | haven’t tried this.

Deeptendu Majumder added a feature for finding imple-
mentors of a method whose name is not known. The base im-
age allows wildcard searches on method names, but force a
choice from a menu of possible names without seeing imple-
mentations.

...all I did was add an extra list to the browser that grabs
all those things that otherwise show up in the menu. When
I am not sure exactly which method I am looking for, I can
select entries from this list one after another and browse
their various implementations. I can then change the selec-
tion template from within the list and grab a whole new set
of message names.

Searching for strings

The link you need may not be the name of the method or a
message that it sends. Just today | wanted to search for a
method that didn’t send a particular message, but contained
the name of that message in a comment. I had previously com-
mented out that message send, closed the window, and forgot-
ten the method name. Bruce Samuelson writes of a feature he
implemented:

..search for a string (e.g., open:) in methods and class
comments. This can operate on...categories, classes, or
protocols. This is useful for maintaining comments and for
finding code for which standard searches break down.

Lost in hypertext tools
All the mechanisms listed above are valuable tools for search-

Just touch a button to
—w—T puta chart
view in your
window!

Add charts to your VisuaWorks palette

Dynamic Add or change data points, with minimal screen repainting.
Add or remove data series toffrom the chart.

imteractive Sclect data points with the mouse—
your application.

Uses screen space effectively o o
Scroll the chart view in one or both
directions. Mark values of summary

= - functions in the

BT L LR TESTH ST a)(is areas. Show
thresholds using
grid lines.

EC-Charts inlorms

F oy
20m Eaii] 40

1954
1985
1936
1987
1988
1953
1390

New Yoax SuTB'!' EL—H—[—L
Q

i bilfions of dalars

I snn

13 oz oIk 03 o4
M= Helinoame P: Resenue = jooome =

4 Totel budgel 4 Tolal aid lc

['Id (||“ ‘3(;“\\ I
(408) 462-0641

21137 East CIiff Dr - Santa Cruz. - CA 95062

prn
v $350

No runtime license fee

Call for a technical paper
on EC-Charts

VisuaMorks is a Irademark
of ParcPlace Systens, Inc.

ing. Unfortunately, if we implemented them all in a single im-
age I suspect users would merely find themselves lost in hyper-
text mechanisms instead of (or as well as) lost in the code. As
Deeptendu Majumder writes:

There are so many small enhancements that can be done
that I found it is not very productive to undertake the ef-
fort without a serious study of overall needs rather than
trying to attack small segments of the problem.

Next month, we'll examine some more radical extensions that re-
place the basic tools instead of patching or adding a few features.

ERRATA

In the June 1993 column I published code for testing dictio-
nary performance under ObjectWorks\Smalltalk release 4.0.
Unfortunately, I didn't test this code adequately, and Bruce
Samuelson, the author, has pointed out that, due to changes,
this code does not work with release 4.1 or VisualWorks. There
are two problems. First, the way hashing is done has changed,
so the results will be in error. Second, the method sortedEle-
ments has been removed, so the method will produce a walk-
back. A new version, which will also work with other hash
table classes, is available from the Smalltalk archives at
st.cs.uiuc.edu. E

Alan Knight works for The Object People. He can be reached at
613.225.8812 or by email as knight@girco.carleton.ca.

SEPTEMBER 1993

13

continued from page 6

m BUILDING OBJECT-ORIENTED FRAMEWORKS

lectionList selectionList
selectionLis ..
SelectionList
(SelectionList) B T—‘ ()
metaChoice variables
(MetaChoiceToggleBulton) (VariableListView)
A ' .
manager variablesMenu
(CHBManager) (Menu)
— ' a—
selectionList / \ selectionList
(SelectionList) A X AN (SclectionList)
e \ e e
/ widget (Button)
widget widget
hierarchy (ListPanc) widgel (ListPane) methods
. (ClassListView) (ListPane) (McthodListView)
classesMenu methodsMenu
(Menu) text (TextPane) (Menu)

dered dictionary key. SelectionLists also notify their dependent
mediators when their list or selection changes:

"from within #list:"
self notifyThat: #listChanged.

"from within #select:"
self notifyThat: #selectionChanged.

Listing 5 shows the code for the SubPaneMediator classes. The
kinds of SubPaneMediators that use SelectionLists include those
depicted in the following hierarchy:

Object
Framework
SubPaneMediator
ListItemChooser

ListViewer

ListButton
MenuButton
ToggleButton

The ListItemChooser class manages the interactions between a
SelectionList and a SubPane (GUI widget). The ListViewer class
manages the interactions between a SelectionList and a ListPane.
The ListButton classes manage the interactions between a Selec-
tionList and a Button in two varieties. The MenuButton class pops
up a menu of the list items when clicked, allowing one of the

14

Figure 2, CHB frameworks.

itemns to be selected. The ToggleButton cycles through the list of
items, showing the next item description on the button face.

Now, consider how these small framework classes might
be used to refactor a browser such as the Smalltalk/V
ClassHierarchyBrowser (CHB). The CHB has five subpanes:

a class hierarchy ListPane, a variables ListPane, a methods
ListPane, a RadioButton group, and a TextPane.

For this discussion, we will replace the RadioButton group
with a specialization of the ToggleButton. This MetaChoiceTog-
gleButton framework will use a two item list: #(class instance)
for selecting either class methods or instance methods.

For each of the ListPanes, we specialize the ListViewer frame-
work with ClassListViewer, VariableListViewer, and Method-
ListViewer frameworks. Each of thesc small frameworks scrves
as the owner for their respective subpanes. As such, they ac-
crete the behavior from the CHB related to those panes, in-
cluding menus, list maintenance, item selection, and propaga-
tion of notifications and changes throughout the overall
framework network (see Figures 1 and 2).

This brief outline indicates how such refactoring can pro-
ceed. However, note that further evolution and improvements
can be made through additional refactoring and framework
creation. In the end, the responsibility of the browser class can
be reduced to assembling a network of objects that together
produce the overall browser behavior.

THe SMALLTALK REPORT

TUNING COMPONENT COUPLING

The Framework superclass uses loose coupling as a technique
for achieving component integration and coordination. The
implementation suggested in this article makes use of a kind of
Dictionary to bind framework participants into their roles. This
technique of loose binding allows frameworks to be evolved
and extended quickly through several iterations.

Although this technique requires little in the way of over-
head, a small amount of performance can be lost when the
role participants are resolved dynamically. A number of op-
tions exist for tuning the performance of frameworks built us-
ing these techniques.

The Framework class uses a class named SmartDictionary (see
Listing 1). In addition to the messages understood by IdentityDic-
tionary, SmartDictionary responds to the typical accessor idioms:

componentName "getter"

componentName: anObject "setter"

These protocols are supported by overriding the #respondsTo:
and #doesNotUnderstand: methods. These protocols are also
supported by the Framework class. In addition to this implicil
form of component access, the Framework class supports the
following form of indirect access:

componentName "indirect getter"
~self partnerNamed: #componentName!

componentName; anObject "indirect setter"
self
for: #componentName
use: anObject.!

This support for the dynamic binding of roles can be replaced
by ordinary instance variables and their accessors. However, in
order to gain the benefits of rapid design evolution, this should
be done (if done at all) only after the design of the framework
class has stabilized.

componentName "direct getter"
~componentName!

componentName: anObject "direct setter"
componentName := anObject.!

PARTICIPANT INTERACTION STYLES

One of the principal uses of any framework class is to mediate
the interaclions of its participants. Because participants are
loosely coupled, the methods of a framework class have this
peculiar aspect: Participants are always accessed through re-
quests to self. So, some of the framework methods provide ac-
cess to components or their state(s), while others translate
events into actions.

The event handling methods of a framework class serve as
templates that guide the exchange of information between
the framework participants. The expressions used by these
event handling methods generally fall into one of the follow-
ing basic patterns:

SEPTEMBER 1993

eventName
"Request information or a change of state."
~self someComponent request

eventName
"Exchange information between components."
self someComponent binaryKeyword:
self anotherComponent request.

eventName
"Notify another participant (framework) that something happened
(translating the event name)."
~self
notify: #frameworkX
that: #somethingHappened

eventName
"Forward this event to another participant (framework)."
~self
notify: #frameworkX
that: #eventName

SPECIALIZING FRAMEWORKS

New frameworks can often be discovered when reusing exist-
ing ones. Sometimes it is more convenient to attach custom
behavior to an existing framework rather than create a new
framework subclass.

The Framework superclass supports the prototyping of new
behavior by allowing the usage of blocks as components. When
a message is redirected through #doesNotUnderstand:, the
Framework superclass checks to see if a block has been defined
to handle the message selector. If the framework can handle
the message with a block, the block is evaluated with the mes-
sage recciver and its arguments (if any).

After a new framework has stabilized, the developer may
decide to create a new framework subclass, moving its special-
ized behavior from blocks into methods. When this occurs, the
developer is faced with a decision: What should the scope of
visibility for the new class be? Very general frameworks should
probably be visible to the whole Smalltalk system. However,
some frameworks should only be visible to the class(es) that
need them. Module classes' can be used to hide specialized
framework subclasses.

For example, in our consideration regarding browsers, we
found that they will often need specialized frameworks for
managing the interactions between the subpanes from which
they are composed. Each of the ListIitemChoaser subclasses can
be further specialized to create customized mediators that
manage the overall interactions between the various subpanes
that make up a browser. Rather than expose these specialized
frameworks to the whole of Smalltalk, they can be hidden
within the browser class if it is implemented as a module.

GENERAL OBSERVATIONS

Many patterns of interaction between objects in a system ap-
pear over and over again in other systems. Sometimes these
patterns are formed into a loose composition of abstract classes
like the MVC framework.! Following the flow of messages

15

through such an implicit “second-class™ framework can be
difficult. However, these patterns of interaction can be cap-
tured and reused explicitly by framework classes. Because the
message flow is more explicit in framework classes, they are
much easier to understand.

As noted perviously, good class hierarchies tend to be deep
and narrow. The hierarchies created by framework classes tend
to be deep, narrow, and thin. The methods themselves tend to
be small (thin), because they coordinate only the interactions
between the objects that participate in the framework.

Many object designers have claimed that frameworks are
difficult to find. Actually, frameworks are not hard to find at all!
They simply have not been noticed much. They tend to be like
thin oils that lubricate the meshings of larger objects. Any pat-
tern of interactions between objects may be captured as a frame-
work. However, the resulting framework may be so specialized
that it is better to leave the interactions built into the collaborat-
ing classes. Frameworks serve best when they capture and factor
out the semantics of event-driven interactive systems.

Sometimes it is expedient during prototyping to develop a
system that is closely coupled. After completing the prototype,
some parts of the design can be revisited and the coupling
loosened for better reusability. Loosely coupled objects tend to
be more reusable and more resilient to design and system evo-
lution. Framework classes provide a new option for refactoring
through decoupling.

FUTURE WORK

The current implementation of the Framework superclass uses a
simple collection of method names for role validation. It would
be better if each role were defined using a specification object,
in particular an object type. Object types use method signatures
to specify the types of each argument and the method result.
When these specification objects become available, framework
role validation can evolve to use them. Object types will provide
better constraints to qualify components for roles.

CONCLUSION

This article has presented a new view of abject frameworks;
How framework classes can simplify the design of component
classes by factoring out the behavior found in interactive sys-
tems. Component objects become simply clients and/or service
providers, reducing or eliminating the additiona!l responsibili-
ties of complex coordination between objects. In addition to
simplifying existing components, refactoring may create new
components. Such refactoring improves the reusability of all
the components that form a system and creates reusable
framework objects. B

Acknowledgments

Several individuals inspired me with their interest and
thoughtful critiques during the evolution of these ideas. Special
Lthanks to Jean-Francois Cloutier, Tracy Tondro, Oleg Arsky,
and Jim Carlstedt.

16

m BUILDING OBJECT-ORIENTED FRAMEWORKS

References

1. Krasner, G.E., and §.T. Pope. A cookbook for using the model-
view-controller user interface paradigm in Smalltalk-80, Journar
OF OB ECT-ORIENTED PROGRAMMING 1(3):26-49, 1988.

2. Shan, Y-P. An event-driven model-view-controller framework for
Smalltalk, ORjECT-OriENTED PROGRAMMING SYSTEMS, LAN-
GUAGES, AND APPLICATIONS CONFERENCE, ACM, New Orleans,
LA, 1989.

3. Shan, Y-P. MoDE: A UIMS for $malltalk,. OBjrcT-OriENTED PRO-
GRAMMING SYSTEMS, LANGUAGES, AND APPLICATIONS CONFER-
ENCE, ACM, Ottawa, ON'T, 1990.

4. Sullivan, K.J., and D. Notkin. Reconciling environment integration
and component independence, TnansacTIONS ON SoFTwane En-
GINEFRING, ACM, Ottawa, ONT, 1990.

5. Helm, R, .M. Holland, and D. Gangopadhvay. Contracts: Specity-
ing behavioral compositions in object-oriented systems, Ounjzcr-
ORIENTED PROGRAMMING SYSTEMS, LANGUAGES, AND APPLICA-
TIONS CONFERENCE, ACM, Ottawa, ON'T, 1990,

6. Wilkerson, B. How to design an object-based application, De-

veLor, Apple Computer, Cupertino, CA, April, 1990.

~1

Wirfs-Brock, R., and R.E. Johnson. A survey ol current research in
object-oriented design. COMMUNICATIONS OF THE ACM
33(9):104-124, 1990.

8. Wirfs-Brock, R., and B. Wilkersan. Object-oriented design: A re-
sponsibility-based approach, OnrecT-ORIENTED PROGRAMMING

SysTEMS, LANGUAGES, AND APPLICaTIONS CONFERENCE, ACM,
New Orleans, LA, 1989,

9. Wirfs-Brock, R., B. Wilkerson, .. Wicner. DEsiGNING Onjrcr-
OrieNTED SorTwane, Prentice Hall, Englewood Cliffs, NJ, 1990.

10.

<

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, W. Lorensen.
OnjecT-ORIENTED MODELING AND DEsiGN, Prentice Hall, Engle-
wood Cliffs, NJ, 1991.

11. Opdyke, W.F. Refactoring object-oriented frameworks, Ph) thesis,
University of [linois at Urbana-Champaign, 1992,

12. Cook, W.R. interfaces and specifications for the Smalltalk-80
collection classes, OmECT-OMENTED PROGRAMMING SYSTEMS,
LANGUAGFS, AND AprrLicaTions CoNecnence, ACM, Vancouver,
BC, 1992,

13. Boyd, N. Modules: Encapsulating behavior in Smalltalk, Tr
SMALLTALK REPORT 2(5), 1993,

Nik Boyd is a Principal Member of the Techunical Staff at Citicorp
Transaction Techuology in Santa Monica, CA. His research in-
terests include instance-centered and class-centered object sys-
tems, as well as tools and techniques that support object-orieniced
software enginecring. Nik may be contacted via crmail at
74170.2171@compuserve.com or through the American Informa-
tion Exchange (AMIX).

THE SMALLTALK REPORT

Listing 1. Framework Support.

"The following code extends the baseline Smalltalk classes to support
certain aspects of framework assembly, event handling, and role
validation."

!Collection methods !

assembleAs: frameworkClass

"Answer a new framework assembled from the receiver."
| framework |
framework := frameworkClass new.
self do: [:each | view useBestRoleFor: each].
~framework resolveRoles! !

!'Object methodsFor: 'accessing named dependents’ !

dependentNamed: name
"Answer the named dependent, or nil."
~self dependentNamed: name ifNone: [nil]!

dependentNamed: name ifNone: aBlock
"Answer the named dependent, or evaluate aBlock."
~self namedDependents
detect: [:d | d name = name] ifAbsent: aBlock!

namedDependents
"Answer any named dependents attached to the receiver."
~self dependents
select: [:each | each respondsTo: #name]! !

!Object methodsFor: 'performing optional behaviors' !

ifUnderstood: selector do: aBlock
"Evaluate aBlock if the receiver understands selector."
~(self respondsTo: selector)
ifTrue: aBlock
ifFalse: [self]!

ifUnderstoodPerform: selector

"Answer the result of the selected method, or the receiver.
(self respondsTo: selector) ifFalse: [“self].
~self perform: selector!

ifUnderstoodPerform: selector with: argument

"Answer the result of the selected method, or the receiver.
(self respondsTo: selector) ifFalse: [*self].
~self perform: selector with: argument!

ifUnderstoodPerform: selector withAll: arguments
"Answer the result of the selected method, or the receiver.
(self respondsTo: selector) ifFalse: [“self].
~self perform: selector withArquments: arguments! !

'0bject methodsFor: ‘notifying dependents of events' !
notify: name that: eventName

~(self dependentNamed: name)
notifyThat: eventName!

SEPTEMBER 1993

notify: name that: eventName with: arqument
~(self dependentNamed: name)
notifyThat: eventName
with: argument!

notify: name that: eventName withAll: arguments
~(self dependentNamed: name)
notifyThat: eventName
withAll: arguments!

notifyThat: eventName
"Answer the final result of notifying all the dependents that eventName
occurred."
| result |
self dependents do: [:d |
result := d notifyThat: eventName].
“result!

notifyThat: eventName with: argument
"Answer the final result of notifying all the dependents that eventName
occurred."

| result |

self dependents do: [:d |

result := d notifyThat: eventName
with:argument].
~result!

notifyThat: eventName withAll: arquments
"Answer the final result of notifying all the dependents that eventName
occurred."
| result |
self dependents do: [«d |
result := d notifyThat: eventName
withAll: arguments].
~result! !

!Object methodsFor: 'Tesponding to requests' !

respondsToAll: symbolSet
"Answer whether the receiver responds to all of the messages in
symbolSet."
symbolSet do: [:each |
(self respondsTo: each) ifFalse: [“false]].
~true!

servicesRejectedFrom: symbolSet
"Answer those service requests from symbolSet to which the receiver
does not respond.”

~symbolSet reject: [:each | self respondsTo: each]!

value
"Answer the receiver.”
~self! !

!UndefinedObject methodsFor: 'catching dependents access' !

namedDependents
"nil has no dependents."
~Array new!

17

notifyThat: eventName
"Do nothing, as nil has no dependents."!

notifyThat: eventName with: argument
"Do nothing, as nil has no dependents."!

notifyThat: eventName withAll: arguments
Do nothing, as nil has no dependents."! !

IdentityDictionary subclass: #SmartDictionary
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

!SmartDictionary methods !

respondsTo: selector
"Answer whether the receiver can respond to the message selector.”
| colons |
(super respondsTo: selector) ifTrue: [“true].
(self includesKey: selector) ifTrue: [“true].
colons := selector occurrencesOf: ($:).
colons =1

doesNotUnderstand: aMessage
"If the receiver can handle aMessage selector, do so. Otherwise, treat
aMessage like super would."
| name |
name := aMessage selector.
(self respondsTo: name) ifFalse: [
~super doesNotUnderstand: aMessage.].
"handle getter."
(self includesKey: name) ifTrue: [“self at: name].
"handle setter."
name := name asString copyWithout: ($:).
~self at: name asSymbol
put: aMessage arguments first.! !

Listing 2: Framework class.

Object subclass: #Framewark
instanceVariableNames: 'name parts '
classVariableNames: "
poolDictionaries: " !

!Framework class methodsFor: ‘creating instances' !

assemble: frameworkName from: parts
~self new
name: frameworkName;
parts: parts;
resolveRoles!

new
~super new initialize! !

'Framework methodsFor: 'initializing - releasing' !

18

= BUILDING OBJECT-ORIENTED FRAMEWORKS

initialize
name := nil.
parts := SmartDictionary new.!

release
| objects |
objects := self parts.
parts := SmartDictionary new.
objects do: [:each | each release].
~super release! ! -

!'Framework methodsFor: 'accessing components' !

name
~“name!

name: partName
name := partName.!

partNamed: partName
~self partNamed: partName ifNone: [nil]!

partNamed: partName ifNone: aBlock
| part |

part := parts at: partName ifAbsent: [“aBlock value].

part isNil ifTrue: [~aBlock value].
~part!

partNames
~parts keys!

parts
~parts values!

parts: partsCatalog
parts := partsCatalog.! !

'Framework methodsFor: ‘assembling frameworks' !

bestRoleNameFor: part
"Answer the roleName that best fits the part, or nil."
| roleName roleSize roleServices |
roleSize := 0.
roleName := nil.
self class roleNames do: [:each |
self class ifUndersteod: each do: |
roleServices := self class perform; each.
roleServices size > roleSize ifTrue: [
(self canUse: part as: each) ifTrue: [
roleName := each.
roleSize := roleServices size]]]]-
~roleName!

useBestRoleFor: part
| roleName |
roleName := self bestRoleNameFor: part.
roleName isNil ifFalse: |
self for: roleName use: part].! !

Tue SmarLrtaLk REPORT

!'Framework methodsFor: 'defining roles' !

addRolesNamed: roleNames
roleNames do: [:roleName | self for: roleName use: nil].!

for: roleName use: anObject
(self binders includes: roleName) ifFalse: [
~parts at: roleName put: anObject].
self
perform: (self binderFor: roleName)
with: anObject.!

when: eventName do: aBlock
self for: eventName use: aBlock.! !

!Framework methodsFor: 'binding components' !

resolveRales
| framework |
parts associationsDo: [:model |

framework := model value.

(framework isKindOf: Framework) ifTrue: [
framework name: model key.
framework resolveRolesFrom: parts]].

self validateParts.!

resolveRolesFrom: partsCatalog
| part |
self unresolvedRoleNames do: [:roleName |
part := partsCatalog at: roleName ifAbsent: [nil].
self for: roleName use: part .
self validateParts. !

unresolvedRoleNames
~parts keys select: [:roleName |
(self partNamed: roleName) isNil]! !

!Framework methodsFor: 'triggering events' !

notify: partName that: eventName
"Answer the result of notifying the named part that eventName
occurred.”
~(self partNamed: partName)
notifyThat: eventName!

notify: partName that: eventName with: argument
"Answer the result of notifying the named part that eventName
occurred."
~(self partNamed: partName)
notifyThat: eventName
with: argument!

notify: partName that: eventName withAll: arguments
"Answer the result of notifying the named part that eventName
occurred.”
~(self partNamed: partName)
notifyThat: eventName
withAll: arquments! !

SEPTEMBER 1993

'Framework methodsFor: 'translating events to messages' !

respondsTo: selector
(super respondsTo: selector) ifTrue: [“true].
(parts respondsTo: selector) ifTrue: [“true].
~alse!

notifyThat: eventName
"Answer the result of performing eventName, or the receiver if
eventName has not been implemented."

~self ifUnderstoodPerform: eventName!

notifyThat: eventName with: arqument
"Answer the result of performing eventName, or the receiver if
eventName has not been implemented.”

~self ifUnderstoodPerform: eventName with: argument!

notifyThat: eventName withAll: arguments
"Answer the result of performing eventName, or the receiver if
eventName has not been implemented.”
~self ifUnderstoodPerform: eventName
withAll: arquments! !

!Framework methodsFor: 'validating role services' !

canUse: part as: roleName
self class ifUnderstood: roleName do: |
~part respondsToAll:
(self class perform: roleName)].
“true!

validate: part as: roleName
| services |
(self canUse:; part as: roleName) ifTrue: [“self].
services := self class perform: roleName.
services := part servicesRejectedFrom: services.
~self error:
'Supplied ', roleName storeString,
' cant respond to ', services first storeString!

validateParts
parts associationsDo: [:each |
self validate: each value as: each key].! !

!Framework methodsFor: 'binding components - private' !
binderFor: roleName

"Answer the selector that can be used to bind a component to
roleName_"

~(roleName, "') asSymbol!

binders

"Answer all the selectors that can be used to bind the components of a

framework subclass."
| supers methodNames |
methodNames := Set new.
supers := self class allSuperclasses removelast; yourself.
supers size > 0 ifTrue: [supers removelast].

supers do: [:s |
methodNames addAll: s methodDictionary keys].
methodNames := methodNames select: [-n |
n last == (§:)].
methodNames := methodNames collect: [:n |
n copyWithout: (§:)].
~methodNames!

doesNotUnderstand: aMessage
"Try handling aMessage, assuming it is accessing the parts of the
receiver. If the part accessed is a block context, answer the result of
evaluating the block with the receiver and arguments from aMessage as
arguments. Otherwise, answer the accessed part. If aMessage does not
access a part, let the superclass handle aMessage."
| part |
(parts respondsTo: aMessage selector) ifFalse: [
~super doesNotUnderstand: aMessage].
part := self partNamed: aMessage selector ifNone: [
~parts perform: aMessage selector
withArguments: aMessage arguments].
part isContext ifTrue: [
aMessage arguments isEmpty ifTrue: [
~part value: aMessage receiver].
~part value: aMessage receiver
value: aMessage arguments].
~part! !

Listing 3: SubjectView Contract.

"The following example is derived from the contract SubjectView
described on page 171 of [HHG90]."

!SubjectView class methodsFor: 'validating roles' !

roleNames
~ #(subject view)!

subject
~ #(value value:)!

view
~ #(showValue:)! !

!SubjectView methodsFor: 'supporting subject' !

setValue: value
self getValue = value ifTrue: [*self].
self subject value: value.
self notify.!

getValue
~self subject value!

notify
self views do: [:view | self update: view].!

attachView: aView

self validate: aView as: #view.
self views add: aView.!

20

» BUILDING OBJECT-ORIENTED FRAMEWORKS

detachView: aView
self views remove: aView.! !

1SubjectView methodsFor: 'supporting views' !

update: aView
self draw: aView.!

draw: aView
aView showValue: self getValue.!

setSubject: aSubject
self validate: aSubject as: #subject.
self subject: aSubject.
self views == self ifTrue: [self views: Set new].!'!

"sample use of the framework"
SubjectView new
setSubject: ValueHolder new;
attachView: BarGraphView new;
attachView: DialGaugeView new;
attachView: PercentageView new;
setValue: 75.!

Listing 4: ButtonGroup Contract

"The following example is derived from the refinement of the
SubjectView contract called ButtonGroup on page 173 of [HHG90]."

SubjectView subclass: #ButtonGroup
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "!

'ButtonGroup class methodsFor: 'validating roles'

view
~ #(value chosen:)! !

!ButtonGroup methodsFor: 'supporting buttons' !

select: aButton
self setValue: aButton value.!

update: aButton
self getValue = aButton value
ifTrue: [self choose: aButton]
ifFalse: [self unChoose: aButton].!

choose: aButton
aButton chosen: true.!

unChoose: aButton
aButton chosen: false.! !

Listing 5: SubPaneMediators

Framework subclass: #SubPaneMediator
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

THE SMALLTALK REPORT

!SubPaneMediator methodsFor: ‘binding components' !

supportedEventHandlers
N #(

clicked:
doubleClickSelect:
getContents:
getMenu:
getPopupMenu:
select:

)

handlerFor: event
~self supportedEventHandlers detect:
{ :evh | event = (evh copyWithout: ($:))]
ifNome: [mil]!

support: event for: subPane
| selector |
selector := self handlerFor: event.
selector isNil ifTrue: [“self].
subPane when: event perform: selector.!

supportEventsFor: subPane
subPane class supportedEvents do: [:event |
self support: event for: subPane].!

claimOwnership0Of: subPane
subPane ifUnderstood: #supportedEvents do: [
subPane owner: self.
self supportEventsFor: subPane].!

for: partName use: anObject
| selector |
super for: partName use: anObject.
self claimOwnershipOf: anObject. "if SubPane"! !

'SubPaneMediator methodsFor: ‘handling events' !

clicked: subPane
self notifyThat: #clicked.!

doubleClickSelect: subPane
self notifyThat: #doubleClicked.!

getContents: subPane
self ifUnderstood: #getContents do: [
subPane contents: self getContents].!

getMenu: subPane
self ifUnderstood: #getMenu do: [
subPane setMenu: self getMenu].!

getPopupMenu: subPane
self ifUnderstood: #getPopupMenu do: |

subPane setPopupMenu: self getPopupMenu].!

select: subPane
self notifyThat: #selected.! !

SEPTEMBER 1993

SubPaneMediator subclass: #ListItemChooser
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

!ListIternChooser class methodsFor: 'validating roles' !

roleNames
~ #(selectionList widget)!

selectionList
~

list:
items
selections
selectIndex:
selectedIndex
selectItem:
selectedItem
select:
selection

»!
!ListIitemChooser methodsFor: 'accessing component states' !

getContents
~self listItems!

listItems
~self selectionList itemns!

listSelections
~self selectionList selections!

selectedIndex
~self selectionList selectedIndex!

selectedItem
~self selectionList selectedItem!

selection
~self selectionList selection!

selectionList
~self partnerNamed: #selectionList!

widget
~self partnerNamed: #widget! !

!ListItemChooser methodsFor: ‘'changing component state' !

changeList
self selectionList list: self getList.
"note: getList should be implemented by subclass
method or prototype block"!

selectIndex: index
self selectionList selectIndex: index.!

21

BUILDING OBJECT-ORIENTED FRAMEWORKS

selectItem: item widget
self selectionList selectItem: item.! ~super widget, #(contents:)! !
selectObject: selection !ListButton methodsFor: 'translating events' !
self selectonList select: selection.! !
clicked
ListItemChooser subclass: #ListViewer self listSelections size > 1 ifTrue: [
instanceVariableNames: " self widget contents: self nextSelection].!
classVariableNames: "
poolDictionaries: " ! listChanged
self selectionChanged.!
!ListViewer class methodsFor: 'validating roles' !
selectionChanged
widget self widget contents: self selectedItem.! !
) #(
deselect ListButton subclass: #MenuButton
restoreWithRefresh: instanceVariableNames: "
selection: classVariableNames: "
selection poolDictionaries: !
n!

!MenuButton class methodsFor: 'validating roles' !
!ListViewer methodsFor: 'translating events' !

selectionList
deselected ~super selectionList, #(popUpItems }! !
self widget deselect.!
MenuButton methodsFor: ‘changing component state' !
listChanged
self widget restoreWithRefresh: self selectedItem.! nextSelection
~self selectionlist popUpItems! !
selected
self selectIndex: self widget selection.! ! ListButton subclass: #ToggleButton
instanceVariableNames: "
'ListViewer methodsFor: 'changing component state' ! classVariableNames: "
poolDictionaries: " !
showSelection
self widget selection: self selectedIndex.! ! !ToggleButton class methodsFor: 'validating roles' !
ListItemChooser subclass: #ListButton selectionlist
instanceVariableNames: " ~super selectionList, #(selectNext)! !
classVariableNames: "
poolDictionaries: " ! !ToggleButton methodsFor: 'changing component state' !
!ListButton class methodFor: 'validating roles' ! nextSelection

~self selectionList selectNext! !

TO SUBSCRIBE TO

THE SMALLTALK REPORT

CALL 212.274.0640 OR FAX YOUR REQUEST TO
212.274.0646.

22

Tue SMALLTALK REPORT

Uls

Greg Hendley & Eric Smith

Keeping multiple views up-to-date

n many Smalltalk applications, it is possible for the end-

user to have several independent windows providing

views of the same information (Figure 1). There may be
several instances of one kind of window or parent and child
windows that, though very different in appearance, share
some overlap in the information they present. To prevent in-
consistencies between windows, the changed-update (also
known as Object Dependents) mechanism can be used to in-
sure that all views the end-user has opened on a particular ob-
ject are kept up-to-date with that object’s most recent idea of
what it looks like.

For example, if the user has a view of a Customer object that
he opened directly and another view of the same Customer that
was opened as a consequence of browsing a ServiceAgreement
object, any changes make to one view of the Customer should
be immediately reflected in the other. The user should not see
two different views and be left to figure out which one is the
most current.

BACKGROUND

The application architecture outlined in previous columns
(THE SMALLTALK REPORT, May 1992 and October 1992) will be
employed here. For those who have not yet been exposed to
the Interface-Control-Model architecture, a brief glossary of
terms is provided here.

« Interface. The component of the user interface whose job it
is to present information to the end-user and accept input
events from same. The interface translates user input to se-
mantic actions such as mouse-clicks to selection or menu
selections to commands. The interface has very little
knowledge of the structure of the application of which it is
a part. It has virtually no knowledge of the domain model
(see below).

Control. The control layer of an application is the compo-
nent that understands the semantics of the application as a
whole. This is where commands identified by the interface
are actually carried out. The application control under-
stands the relationships among the various domain model
objects it works with. It also knows about the consequences
of commands. This is the point where all the “brains” of the
application (as the end-user sces it) reside.

* Model. The model is the meat of the system. This is where
the real information is modeled (hence the name). If we
were working with a circuit design application, this layer is
where objects such as Circuit, Transistor, Diode, etc. would be
found. These objects have only the most limited under-
standing that there is a user interface above them. They
have no direct knowledge of user interface issues.

OBJECT DEPENDENTS

Both major dialects of Smalltalk provide essentially the same
Object Dependents facility. The idea is that a client object,
which wants to be informed when some other object changes,
registers itself as a dependent of that abject. Since the requisite
behavior for maintaining dependencies is implemented in the
class Object, all objects may have dependents, be dependent on
other objects, or both.

The detailed operation of Object Dependents is a topic for
another time. We’ll have to be satisfied with just a quick look
at the top level of the behavior. In the simplest terms, an object
which has changed and may have dependents sends itself a
changed message. This results in each of the dependents, if any,
of the object in question being sent a matching update mes-
sage. A list of possible changed messages and their matching
update messages is presented below:

changed message

changed: arg()

changed: arg() with: arg1

changed: arg() with:arg1 with: arg2

< I - -
- Cusomer)] 22-01497-6699

Name: Sifus Cybemeties Corb. |tanager yonn Smith
Addres 1211 One Thousand 5L © -

Mall Stop 2167 ¢ Name: Sirius Cybemetics €

i v us emetics Corp.
CH Sirius Bet !
o :5': il e U addres 1211 One Thousand St.
: . sl Stap 21672
Ciy: Sillu: Bets
. Custor 3% 27511 6445
Detalls! Comtact .

Detalls! Contacf

Figure 1. Two windows on a single Customer.

SEPTEMBER 1993

23

@8 \Whenever some aspect of Domain
Object that might be of some importance
to the outside world changes, the
method of the domain object that
actually changes the value performs an
expression of the form self changed:
attribute, 99

update message

update: sender

update: arg()

update: arg() with: argl

update: arg() with: arg1 with arg2

An object, A, may register itself as a dependent on another ob-
ject, B, by sending B the message addDependent: with itself, A, as
the argument. All dependents of an object are removed by
sending the object the message release.

A NOTE FOR DIGITALK USERS

Digitalk does not provide one method that is very useful in
dealing with Object Dependents. The missing method is
Object>>removeDependent: and a possible implementation is:

Object>>removeDependent: aDependent
"Remove a single object from my list of dependents."

| dependents |

(dependents = Dependents at: self ifAbsent: [* nil])
remove: aDependent
ifAbsent: [].

dependents isEmpty ifTrue: [self release]

Digitalk users should also beware of the confusion possible be-
cause ViewManagers implement their own independent changed-
update framework, which is unrelated to Object Dependents
though it uses much the same protocol. To avoid problems, we
worn't be sending changed messages to view managers.

TWO VIEWS ON ONE OBJECT

To keep all of the windows on a particular domain model ob-
ject current, the domain model objects will generate self
changed: messages whenever some aspect of their state has
changed. It is assumed that when an view is opened on any dy-
namically updatable domain object, that the application control
object registers itself as a dependent of the domain model ob-
ject it is representing to the user. This will insure that the appli-
cation control will receive the update: message when the state of
the domain model object changes. It is also assumed that the
responsibility for undoing the dependency link when the win-
dow is closed also resides with the application control object.

24

m GUIs

SETTING UP
When a window is opened on a domain object, using an
openOn: message for example, the window informs its applica-
tion control object that this domain object is to be its model
object. It is at this time that the application control object
should register itself as a dependent of the domain model. The
following methods illustrate this set up:

CustomerEditor>>openOn: aCustomer

"Scheduling — Open myself up as a window
on the given Customer."

self control domainModel: aCustomer.
self open

CustomerEditorControl>>domainModel: aCustomer
"Accessing — Set my reference to my domain model object.
Make myself a dependent of this object.”

domainModel notNil iffrue: [domainModel removeDependent: self].
aCustomer notNil ifTrue: [aCustomer addDependent: self].
domainModel := aCustomer

Given this set up, Figure 2 provides an illustralion of a generic
scenarijo for what happens when some attribute of a displayed
domain object is changed by the user in one of two views on
that object. In this example Control A and Control B are both de-
pendents of Domain Object.

1. The user uses some control in the window to alter the value
of an attribute of the domain object being presented to him.
For example, a the name of a Customer may be changed.

2. As a result of manipulating a control, a command message is
forwarded to the application control object of the window the
user is working with. In the case of changing the customer’s
name, this might be a message like cidSetCustomerName:,

3. In the course of processing the command message, Control A
sends a message to the Domain Object to inform it that it
must change some of its internal state. To continue the cus-
tomer name example, this would likely involve sending Do-
main Object the message name:.

4. Whenever some aspect of Domain Object that might be of
some importance to the outside world changes, the method
of the domain object that actually changes the value per

User Window B
Attribute

Window A

2
invalidateAttribute cmdSetAttribute: 'foa’

irvalidateAttrioute

Contral A 3 Control B
attribute: ‘foo' |
|
5 !
update:
Domain Object
4
changed:

Figure 2. Keeping two windows up to date.

THE SMALLTALK REPORT

forms an expression of the form self changed: attribute. The
parameter attribute varies depending on just what part of
the domain model object was altered. For the change of
name example, this argument would likely be nanic. In such
a case, the setter method for name in the class Customer
might look like the following:
Customer>>name: aString
"Accessing — Set my name. Update anybody who's interested."
name -= aString.
self changed: name
5. Whenever an object is sent the changed: message, as in
event 4, all other objects which have been registered as de-
pendents on the receiver of the changed: message receive
update: messages. The argument passed along with the

update: message is the same as that passed in with the origi-
nal changed: message which started the process.

6. In processing the update: message, the application control
compares the argument with those identifying aspects of the
domain madel in which it is interested. If a match is found,
then the associated interface object is informed that some of
the data it is displaying is no longer valid and must be up-
dated. This is done by sending the interface object a message
that tells it just what data needs to be redisplayed. If this were
a view on the Customer as in the preceding examples, the
method for update: would look, in part, like the following.
CustomerEditorControl>>update: aspect

"Updating — Some part of my domainModel has changed. See if

it is a part in which I'm interested. If it is, then direct
the userInterface to update it."

aspect = = #name
ifTrue; [self userlnterface invalidateName].
aspect = = #company
ifTrue: [~ self userInterface invalidateCompany].
~ super update: aspect
7. As Control B is also a dependent of Domain Object it will also
receive an update: message of the same form as that received
by Control A in event 5. This provides application B with an
opportunity to keep its view of the domain object up to
date even though application A was the source of the
change. Application B does not need to know the source of
the change. All it needs to know is what change took place.
This update: message provides it with this information. The
two views of Domain Object remain in sync.

8. Control B will handle the update; notification in much the
same way as did Control A in event 6. In fact, if these are the
same kind of views of Domain Object, then it will handle the
message in exactly the same way. The end result is that a
message will be passed on to Window B telling il that it must
refresh the display of the changed item.

After the list of dependents of Domain Object is exhausted, that is
each member of that list has received and processed the update:
message, the process of changing an attribute of the domain

SEPTEMHER 1993

model object is complete. Only at this point does Lthe processing
of the emdSetAtiribute message from event 2 complete.

Note that the domain model object did not need to know
much about the application to provide this notification. All it
needed to know is when to yell, “I've changed!” Other objects
may or may not be interested. 1{ they're not interested, they
just won't listen.

@8 Objects may or may not be
) y y
interested. If they're not interested, they
just won't listen. 9

CLEAN UP

When any of these windows are shut down, the dependency
links with the domain model objects must be broken. This is
best done using the removeDependent: message. When a win-
dow is closed it must, before it goes away entirely, pass on to
its control object a message allowing it to clean up as well. A
message like cleanUp will do nicely:

CustomerEditorModel>>cleanUp
"I'm about to be terminated, clean up
any messes I've left laying about."
self domainModel removeDependent: self

The Object Dependents mechanism can be particularly useful
tor keeping collections of information up to date dynamically.
This will be the topic of a future column. &

Greg Hendley is a member of the techuical staff ar Knowledge Sys-
tems Corporation. His specialty is customn graphical user interfaces
using various dialects of Smalltalk and various image generators. Eric
Smith is also a member of the technical staff at Knowledge Systems
Corporation. His speciality is custom graphical user interfuces using
Smalltalk (various dialects) and C. The authors may be contacted at
Kinowledge Systems Corporation, 114 MacKenan Drive, Cary, NC
27511, 919.481.4000.

TO PLACE A RECRUITMENT AD,

CONTACT HELEN NEWLING AT
212.274.0640.

25

OOK REVIEW

by Dan Lesage

SMALLTALK PROGRAMMING FOR WINDOWS

by Dan Shafer with Scott Herndon and Laurence Rozier

Prima Publishing

Roclin, CA

phone: 916.786.0426

fax: 916.786.0488

$39.95

ISBN 1-55958-237-5 1993

am waiting for the day of the truly paperless book. The day

when reading on an electro-luminescent or photo-polar-

ized device provides me with as little eye strain as reading
flat paper. [am sure that Dan Shafer is waiting for this day as
well. On that day, the problem of publishing a timely technical
book about rapidly changing technology will no longer exist.

Eighteen months ago, I reviewed Shafer’s original Smalltalk
book, entitled PracTicaL SMALLTALK (THE SMALLTALK RE-
PORT, October 1991). One of the issues [raised in that review
was that the book presented examples in Smalltalk/V 286, just
when Digitalk was moving toward PC desktop integration with
Windows and OS/2 Presentation Manager. The paradigm used
for modeling these new user interfaces had changed drastically
from Model-Pane-Dispatcher. MPD lost its sex appeal for solv-
ing Ul problems, although the fundamentals of Smalltalk were
the same. Real-world Smalltalk development had moved on to
a different paradigm.

Shafer’s new book, which uses V Windows 2.0 as its base, is
more timely than its predecessor. However, it is interesting
that Digitalk’s focus has moved onto Parts, once again leaving
Shafer to play catch-up. What we need is the ability to publish
a book directly from a Smalltalk image!

Once again the focus of the new book is a practical intro-
ductory guide for novice Smalltalk users. It acts as a supple-
ment to the material provided by Digitalk. The format of the
book is similar to the previous one. Afier two introductory
chapters, it leads the reader through chapter pairs. The first
chapter of each pair introduces important Smalltalk classes.
The second of the pair highlights the use of these classes within
a working example application.

The book describes seven detailed projects. The first is a List
Prioritizer that prompts the user to prioritize text entries. The
second consists of a Counter widget that introduces interaction
between subpanes. The third project is a Calendar application
that displays monthly pages, allowing you to navigate dates,
highlighting holidays and the current date. The fourth applica-
tion is an Appointment Book built by extending the calendar
application in the third project. The Appointment Book intro-
duces the ViewManager class. The fourth project also demon-
strates how to manage multiple window interaction by adding

26

a text based appointment window to the calendar. The fifth
project is a Bar Graph Editor and Viewer. The sixth consists of
a Form Designer that demonstrates how to create a user inter-
face layout from a Smalltalk outline. The last project consists
of a Clock that also hooks into the Calendar application. The
clock is responsible for displaying the time and sounding
alarms and chimes. The Clock project demonstrates the multi-
processing capability built into Smalltalk and how to use it in
combination with ViewManager.

I found that the example projects contained within the
book had greater relevancy to developing real applications
than the ones presented in PracTical SMaLLtaLk. Only the
List Prioritizer, Counter, and Bar Graph Viewer appear as up-
graded versions of examples used in the previous book. The re-
maining projects simulate the process of building real applica-
tions. They require the developer to add new functions to
existing software rather than create designs from scratch.
Changing the Calendar viewer into a time-based Appointment
Book typifies how Smalltalk developers must constantly reor-
ganize their code to accomodate new requirements. The Clock
project, which is the cumulative efiect of these requirements,
provides new Smalltalk programmers with insight into the
power of classes such as Time, Processor and Context (blocks).
This last project demonstrates how to make these classes col-
laborate to simulate the behavior being modeled. The result of
completing the last project is a sense of satisfaction and
confidence. Developers should feel comfortable browsing the
class hierarchy as they develop more complex applications.

The book includes a 3.5-inch diskette that contains V Win-
dows 2.0 code, so browsing the examples is easy. Just remem-
ber to remove the diskette immedialely when you buy the book
or you will {ind that afier a while, the soft back cover will look
like it has been run over by an office chair!

There appear to be some errors within the printed Smalltalk
code that do not appear on the diskettes. Pages 184 through
186 contain numerous syntax errors and erroncously repeated
code. Unless you are a masochist, you should browse the code
from your image rather than read the book to ensure correct-
ness. Of course, that means you need your paperless book
again, as you fly from Boston to Ottawa. Hmmm...

THE SMALLTALK REPORT

Highlights

Excerpts from industry publications

SOM

In practice, [IBM's] SOM (System Object Model) will allow
programimers to “package” objects into blocks of code, of class
libraries, that can be readily accessed from a C++ or Smalltalk
program. Next month, IBM will extend SOM with a full
CORBA (Common Object Request Broker Architecture)
model. This Distributed SOM, or DSOM, spec will let objects
be transparently accessed either locally or across a network.

IBM reveadls its new software ‘object -ive, Alexcnder Wolfe,
Etccmronsc ENcinerpine, Tt s, 5717193

POINTER-SAFE

At least triggers are specified in an SQL variant. SQL has no
pointers and there is no need to worry about wild stores. Even if
the application is written in a language that is not pointer safe
(e.g., C) a wild pointer or running off the end of an array will
not corrupt the database. However, most object database ven-

Shafer’s style of writing in this book is down to earth. This
should appeal to new programmers, but there are instances
where I found the style to be a little subterranean. On page
141, for example, Shafer writes:

(It's amazing to think one can actually get paid for doing this
kind of work, isn’t it?)

I hope I never accidentally put that into my application
comments!

On the plus side, this book has really made strides in the
area of integrating an application into its surroundings. Ap-
pendix B discusses DDE and DLL interfaces and provides an
example of adding a DDE link to the Calendar application
from Microsoft Excel. The DLL example shows how to use
multimedia extensions in combination with a sound board.
The example demonstrates how to modify the Calendar pro-
ject to play a sound file instead of beeping for alarm events.

The end result of all these enhancements gives a Calendar
application that is comparable in function to the Microsoft
Windows desktop calendar. 1 believe that most programmers
would classify this to be a true application, albeit a simple one.

Shafer demonstrates the use of fast prototyping a* cha-
nism for building applications. Throughout the book, he pro-
poses designs that have minor flaws contained within them. He
then leads the reader through the analysis required to correct
the problem. This highlights an important point pertaining to
the design of graphical applications. Most of the discovered
problems have to do with event handling, sequencing, bad ini-

dors and at least one relational vendor allow behavior specified
in C or C++ to be optionally linked into a server process, and
server processes contain very large caches of data. The problem
in the relational environment is that the rows in the cache are
assumed to satisfy all integrity constraints and that the cache is
often shared amongst multiple clients. A seemingly experienced
application developer once told me, in all seriousness, that ma-
ture C code doesn’t produce any wild stores (and you wonder
why DBAs sometimes seem paranoid). A wild store in this sce-
nario can result in corrupted data being committed to the
database. And the corrupted data might not have been read by
the offending application program. Many object databases have
the same problem with behavior specified in C or C++. These
databases tend to bulk copy their caches to disk at transaction
commit. This is one of the major reasons why I have always be-
lieved that a pointer-safe language such as Smalltalk is a much
better data-manipulation language that C or even C++.

ODBMS: Tear down the walls, jacob Stein, OgiLcT Macasne, 7 8/93

tialization and proper notification of change. To further com-
plicate the analysis, these problems occur within a multi-
window, multi-pane, multi-widget environment. This is also
true in the real world: The hard part is not defining the visual
aspects, it is getting the glue right. This book does an excellent
job in highlighting these kinds of problems and demonstrating
the type of analysis is required to correct them.

Once you overcome the silly book cover, the cartoons on
the back and the fact that the publisher’s name is about 3 times
the size of the author’s, the content of this book will be very
useful to new Smalltalk programmers. The calendar applica-
tion can form the basis of an introductory Smalltalk course. I
know of one company that has modeled part of its internal
training examples on those presented in the book. This book is
a colossal improvement over its predecessor and it demon-
strates whal it takes to start building applications under Win-
dows using Smalliaik. 1 recornmend this book to new Smalltalk
programmers who wish to quickly develop small scale applica-
tions within the Windows environment. [

Dan Lesagr is responsible for Distributed Systems Frameworks at Ob-
ject Technology International Inc. This means that he gets to act as
trigl arbiter between very unlike pieces of hardware and software,
protocol arbiter between collaborating classes in frameworks, person-
nel arbiter between teamn members and aqueous medium arbiter be-
tween aggressive piscatorial members of his aquaria. It occasionally
means that he gets to develop software in Smalltalk. He can be
reached at 613.820.1200 or dan®@oti.on.ca.

SEPTEMBER 1993

27

Congratulations to
Bank of America on their
new 11-state wide area net-
work. A system they call “the
most sophisticated distributed
network in the world.”

With good reason.
Their network configuration
tools have already won the
Computerworld 1993 Award
for Best Use of Object-
Oriented Technology within
an Enterprise or Large
System Environment.

Of course, that’s what
happens when a company
like Bank of America turns
to a powerful technology like
Digitalk's Smalltalik/V.

LIKE MONEY IN THE BANK.

Why are so many Fortune 500
companies like B of A switching to
I Smalltalk/V?
Smalltalk/V lets
!.-.'.!.'_"! 2 you show proto-
types of enterprise-
wide systems in
weeks instead of
months. In fact,
: systems as ambi-
£ D & tious as Bank of
America’s can be
M N 1% completed in as
L’ 1AL N little as 18 months.

SMALLTALK/Y, 100% PURE OBJECTS.

BANK ANERICA
WINNER - 1993
COMPUTLRWORLD
ORBZLCT APPLICATIONS
A ARD)

Gl

I GRILCT
. O WITHIEN
PRPRINE OR

In addition, our Team/V Group
Development Tool lets large teams of
programmers use version control to
easily coordinate their work. Plus
you'll be surprised at how quickly your
in-house staff becomes productive
with Smalltalk/V.

The bottom line is Smalltalk/V
helps a company get more done in
less time. Which can save very large
amounts of corporate cash.

RATED #1 BY USERS TOO.

On behalf of Computerworld, /

Steve Jobs presented the award to
Bank of America. But industry

LOOK WHAT HAPPENED
WHEN DIGITALK
BROKE INTO THE BANK.

luminaries and Fortune 500
managers aren't the only
ones who have recognized
the value of Smalitalk/V.,
Users have discovered that
Smalltalk/V is the only
object-oriented technology
that's 100% pure objects.
With hundreds of reusable
classes of objects, thousands
of methods and 80 object
classes specifically designed
to build GUIs fast. Which
means no more time spent
writing code from scratch.

BANK ON SMALLTALK/V.

So it's no wonder that
S0 many companies are
doing award-winning work with
Smalltalk/V. Incidentally, Smalltalk/V
applications can be easily ported
between Windows, 0S/2 and -
Macintosh. And you can distribute
100% royalty-free.

For information on how Digitalk’s
Smalltalk/V can save you time and
money, call 1-800-531*2344
department 310 for our special White
Paper. And be sure to ask about Digitalk's
Consulting and Training Services.

Call right now, and see how
Smalltalk/V can yield a maximum
return on your investment.

DIGITALK

	By Article Title
	Building object-oriented frameworks
	Extending the environment (part 1)
	Inheritance: the rest of the story
	Keeping multiple views up-to-date
	Smalltalk Programming For Windows -- Book Review

	By Author Name
	Boyd, Nik
	Beck, Kent
	Hendley, Greg
	Knight, Alan
	Lesage, Dan
	Smith, Eric

	By Topic
	Book review
	comp.lang.smalltalk
	GUIs
	Smalltalk idioms

