The Smalitalk Report

The International Newsletter for Smalltalk Programmers

March/April 1993 Volume 2 Number 6

THE MULTIPLE
DOCUMENT
INTERFACE

By Tarik Kerroum &
Stephane Lizeray

Contents:

Features/Articles

1 The Multiple Document
Interface
by Tarik Kerroum &
Stephane Lizeray

Columns

8 Putting it in perspective:
Characterizing object interactions
by Rebecca Wirfs-Brock

13 Smalltalk Idiomns: Instance-

specific behavior, part 1
by Kent Beck

16 GUIs: GUl-based application
development: some guidelines
by Greg Hendley & Eric Smith

19 The Best of comp.lang.smalitalk:
Reflection
by Alan Knight

Departments

22 Product News and Highlights

he Multiple Document Interface is a specification for applications
written for the Microsoft Windows environment or OS/2 Presenta-
tion Manager. The specification describes a window structure and
user interface that allow the user to work with multiple documents
in a single application. The MDI specification dates back to Win-
dows 2.0 and was first used in Excel for Windows. Since then, most commercial
applications implement it for managing multiple documents. This article provides
a technical discussion of how MDI support is implemented in the recently re-
leased Smalltalk/V Windows 2.0, which comes with full MDI support.

MDI is described in SAA, Common User Access (ADVANCED INTERFACE
DEesIGN Guipkg, IBM 1989). Windows 3.0 includes an MDI API interface, which
greatly simplifies the development of an MDI application.

The main window of an MDI application looks conventional. This MDI frame
window may contain child windows, called MDI child windows, which are used to
display program output. As the name indicates, MDI child windows are supposed
to display documents. Each of these MDI children may have a menu that is dis-
played on the MDI frame’s menu bar when the child is active. Only one child is
active at any given time.

When maximized, an MDI child window takes the appearance displayed in
Figure 1. Minimized documents appear as icons at the bottom of the MDI frame’s
client area. Each child window may have its own icon.

continued on page 4...

= alita A era Bro 5 hd
=| File Edit Smalitalk Classes Variables Methods Settings Window
B [IREYES =
StringDictionaryReader 21 @ Instance statusText: _i;q
StringModel style:
TextSelection O class textModitied
views 1ot .
Tool... — Object— textModifiedin:
Un_delll_wt_iop ect Dependents lt:l:l!’_an_e :
yr— RecursioninError - —
?x!“.d ow... $]RecursiveSet when:perorm: »
RopPaneClass 2

"Private - Answer the default top pane class."
Smallitalk IsRunTime ifFalse:|

MDISystem isActive ifTrue:["MDIChild]).
“TopPane

L] >

[DClaws Hierarchy Browssr = = L

Figure 1: Maximized MDI Child Window.

EDITORS’
CORNER

John ugh

Paul White

hile most people introduced to object-oriented technology are receptive to the “new”
ideas and processes, there are some (the doubting Thomases) who can see the potential
benefits but find it difficult to visualize how they can be achieved within their own proj-
ects and development teams. Reuse, for example, requires that one team have a positive
attitude to using components produced by another. In many organizations, communica-
tion is poor even between groups who share the same office space let alone teams who are
physically remote from one another. In addition, the “not invented here” syndrome is
prevalent—no one trusts anything they did not construct themselves. A cultural change is
required to reap the benefits of the technology. A similar change in culture is required of
new Smalltalk programmers: they must have an open mind and be trusting of existing ob-
jects. Of course care must be taken to ensure the integrity of objects, but objects can’t act
so paranoid that they don’t trust anyone sending them messages. The objects already
defined in the library don’t do this—arrays don’t do bounds checking when someone is
accessing them; points don’t check to see if their x and y values being set are numbers. In
an organization, synergy cannot be achieved if people aren’t flexible and trusting; the
same is true of software objects.

The feature article this month by Stephane Lizeray and Tarik Kerroum examines
Smalltalk’s support for Multiple Document Interface (MDI). As they point out, both
Windows and OS/2 provide a specification for applications to deal with multiple docu-
ments open within them. They describe in detail the classes included in Smalltalk/V Win-
dows 2.0 to support MDI, explaining the features and mechanisms provided.

In her column this month, Rebecca Wirfs-Brock continues her discussion of the role
of classification in our designs. As she rightly points out, it is important for us to under-
stand not only the characteristics of the objects we are using, but also the different types of
interactions that can occur between our objects. She makes the case that it is the relation-
ships between our objects that capture the dynamic nature of our systems.

Kent Beck begins a discussion on instance-specific behavior, in which methods can be
attached to individual instances, as opposed to being attached to the class only. The power
of this metaphor is already being tapped in other languages, notably Self, but as Kent
points out, it may be something that good Smalltalk programmers can take advantage of
immediately.

Reflection is the topic of interest selected by Alan Knight in this month’s “The Best of
comp.lang.smalltalk” column. Alan takes us through a thread of discussion on the bul-
letin board examining both the ability and the merit of making fundamental changes to
the way Smalltalk is structured. Alan’s conclusion seems to be, and most experienced
Smalltalkers would undoubtedly agree, it’s a messy and dangerous thing to do, but it’s
terrific to have the opportunity to do it.

Finally, Greg Hendley and Eric Smith identify a number of rules of thumb for GUI-
based application development.

‘The Smallialk Report (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues. Pub-
lished by SIGS Publications Group, 588 Broadway, New Yark, NY 10012 (212)274-0640. © Copyright 1993 by 51GS Publicatians, Inc. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated a» a willful violation of the US Copyright Law und is
tladly prohibited, Material may be reproduced with express permission from the publishers. Mailed First Class. Subscription rates | year, (9 issues) dames-
lic, $65, Foreign and Canada, §90, Single copy price, 58.00. POSTMASTER: Scnd address changes and subscription orders to: Trn $staz1rark Rivowi, Sub
scriber Services, Dept. SML, P.O. Box 3000, Denville, NI 07834. Submil articles 1o the Editars at 91 Secand Avenue, Oltawa, Ontario K1S 2H4, Canada.

! The Smalitalk Report

. Editors
| John Pugh and Paul White
| Carleton University & The Object People

SIGS PuBLICATIONS
Advisory Board
Tom Atwood, Object Technology international
Grady Booch, Rational
George Bosworth, Digitalk
Brad Caox, Information Age Consulting
Chuck Duff, Symantec
Adele Goldberg, ParcPiace Systems
Tom Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Sesha Pratap, CenterLine Software

P. Michael Seashols, Versant
i Bjarne Stroustrup, AT&T Bell Lahs
Dave Thomas, Object Technology International

THE SMALLTALK REPORT
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Sysiems
Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalk

Dave Thomas, Object Technalogy Intsrnational

Columnists

Kent Beck, First Class Software

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Systems Corp.
Ed Klimas, Linea Engineering Inc.

Alan Knight, Carieton University

Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.

Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Editor

Susan Culligan, Pilgrim Road, Ltd., Creative Direction
. Karen Tongish, Production Editor

Robert Stewart, Desktop Sy Coordi
Circulation

Stephen W. Soule, Circulation Manager

Ken Mercatdo, Fulfilment Manager
Marketing/Advertising

Jason Weiskopf, Advertising Mgr—East Coast/Canada
Holly Meintzer, Advertising Mgr—West Coast/Europe
Helen Newling, Recruitment Sales Manager

Sarah Hamilton, Promolions Manager—Publications
Loma Lyle, Promotions Manager—Conferences
Caren Polner, Promatiors Graphic Ariist

; Administration

i Ossama Tomoum, Business Manager

David Chatterpaul, Accounting !
Claire Johnston, Conference Manager
Cindy Baird, Co Technical M

Margherita R. Monck
General Manager

T NIER

PUBLICATIONS

Publishers of JOURNAL OF OBJECT-ORIENTED PRO-
GRAMMING, OBJECT MAGAZINE, HOTLINE ON OBIECT-
ORIENTED TECHNOLOGY, THE C++ REPORT, THE
SMALLTALK RePORT, THE INTERNATIONAL OOP DiRec-
TORY, and THE X JOURNAL.

Printed in the United States

2

THE SMALLTALK REPORT

ENVY/Developer: The Proven Standard For Smalitalk Development

An Architecture You Can Build On
ENVY/Developer is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate reuse
strategies, ENVY/Developer provides a
flexible framework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ENVY/Developer
the industry’s standard Smalltalk development
environment:

Enables Corporate Software Reuse
ENVY/Developer’s object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reliability.

Offers A Complete Version Control And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as little of a
project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining projects. In addition,
these tools also make ENVY/Developer ideal
for multi-stream development.

Allows Concurrent Developers

Muiltiple developers access a shared
repository to concurrently develop
applications. Changes and enhancements are
immediately available to all members of the
development team. This enables constant unit
and system integration and test — removing
the requirement for costly error-prone

load builds.

Object Technology Ottawa Office Phoenix Office

International Inc Phone: (613) 820-1200 Phone: (602) 222-9519
2670 Queensview Drive Fax: (613) 820-1202 Fax; (602) 222-8503

Ottawa, Ontario K2B 8K1 E-mail: info@oli.on.ca

ENVY/Developeris a egistered lrademark ol Odject Technology Inlernalional Inc. Al cther trand and product names are regislered Irademarks of therr respective companies

Provides ‘Real’
Multi-Platform Development

“With ENVY/Developer, platform-specific

code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalitalk Vendors
ENVY/Developer supports both
Objectworks \Smalltalk and Smalltalk/V".
And that means you can enjoy the benefits
of ENVY/Developer regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Developer to deliver
Smalltalk applications. For more information,
call either Object Technology International or
our U.S. distributor, Knowledge Systems

Corporation today!

Knowledge 114 MacKenan Drive, Suite 100
Systems Cary, North Caralina 27511
Comporation Phone: (319) 481-4000

Fax: (919) 460-3044

4

m THE MuLTipLE DOCUMENT INTERFACE

continted fram page |

Key accelerators allow users to close documents, invoke sys-
tem menus, and switch among MDI child windows. The menu
bar has a Window menu that allows the user to arrange the
child documents—supported activities include cascading,
tiling, and arranging icons. The submenu has a list of all the
child documents, referenced by title.

THE WINDOWS 3.X MDI SUPPORT AND THE SMALLTALK
MDI HIERARCHY

What follows is a short summary of the structure of an MDI
application. Please refer to the Microsoft SDK reference man-
ual, GUIDE T0 PROGRAMMING, MULTIPLE DOCUMENT INTER-
Fack, for additional information. The MDI application struc-
ture is a key factor in the Smalltalk class design (see Figure 2).

The message loop of an MDI application is similar to a nor-
mal message loop, with the exception of menu accelerator han-
dling, which is handled by the Notifier.

The main window, called the frame window, resembles a
normal top-level window except that a special window, the
MDI client window, fills all or part of its client area. The frame
window has its own default procedure, the DefFrameProc. It is
essential for a certain number of window messages to reach the
default procedure; otherwise, the MDI functionality will be
impaired. The frame’s menu is set by sending the message
WmMdisetmenu to the client, with the handle of the Window
menu as additional parameter.

The client window is a preregistered window maintained by
Windows, Additional creation parameters indicate the handle
of the Window pop-up menu (more about this later) and the
ID of the first MDI child document. This information is re-
quired so that Windows can maintain the list of MDI children
under the Window pop-up menu.

MDI children are displayed on top of the client window.
Usually, the client window is resized so that it fills the frame’s
client area. In certain cases, such as when the frame displays a
status pane and/or a tool pane, its size may be less. The client
resizing is handled by the MDI frame window, similar to the re-

| Object I
[

T T
(TopPane | [i%v#

[smise]

ViewManager

L

En.ITmi-anI

(o] (s

Figure 2: MDI class hierarchy.

framing of other child windows (but not MDI child windows).
Besides just being there, the MDIClient class does not do much.

The child window looks and acts very much like a top-level
window, except that it cannot move outside the client window
and does not have a menu. Instead, logically attached menu
items are displayed by the frame.

An MDIChild is not created like a regular window; instead,
mdiCreate is passed to the frame window with additional infor-
mation in an MDICreateStruct. The WmMDICreate message is
then passed to the client window and handled by Windows.

The MDIChild has its own default procedure that is set during
the creation message processing. Note also that no other
MDIChild should be created while an MDIChild is being created.
The creation process starts by sending mdiCreate to the client and
ends with the MDIChild returning from the wmCreate message.

The MDI classes in Smalltalk/V 2.0 offer a transparent
framework for writing or integrating MDI applications. An im-

66

The child window looks and acts very
much like a top-level window, except
that it cannot move outside the client
window and does not have a menu.

portant asset is the menu handling support, which is currently
unique to Smalltalk /V 2.0.

There are two kinds of MDI menus: the original frame
menu and menus added by MDIChild documents. Each time an
MDIChild is activated, its menu becomes the frame menu. On
the other hand, the original frame menu stays for the duration
of the MDI session. The Window menu represents a special
case because the part where child document titles are added is
managed by Windows.

Another feature provided by the Smalltalk/V Windows 2.0
MDI classes is automatic numbering of the child titles. Child
documents with the same title receive a number as suffix. For
instance, a child titled MyChild changes to MyChild:1 if you cre-
ate a new document with the same title, and the new one is la-
beled MyChild:2. This is part of the CUA specifications. For the
application, the numbering is transparent because the title the
application manipulates differs from the actual caption text.

Given this information, the Smalltalk hierarchy design is
straightforward. MDIFrame and MDIChild are both subclasses of
TopPane, while MDIClient is a subclass of ControlPane (a child
window whose window procedure is managed by Windows).

THE MDI PROGRAMMING INTERFACE
The MDI classes take advantage of the ViewManager class. The
two main benefits of the ViewManager are:

THE SMALLTALK REPORT

Figure 3: The ToolPane

* clean separation of the user interface from the application
logic

« creation of applications that have multiple views on the
same data

An MDI application will need one object per MDI child in
order to maintain data unique to each window. There are no
limitations regarding the capabilities of the child documents.
They may have any subpanes as children.

The TopPane class is specified by the method
ViewManager>>topPaneClass and defaults to TopPane. Specifying
MDIChild instead will make the receiver’s main view an MDI
Child window, without further modifications. This trans-
parency allows applications such as TextWindow, Class Hierarchy
Browser, and Graphics Demo to function unchanged in MDI
mode. In addition, the Smalltalk workplace can be switched
back and forth between standard and MDI mode.

EXAMPLE: A WINDOWS SYSTEM EDITOR
SysEdit is an MDI application for presenting the following
Windows system configuration files:

win.Ini

system.ini

config.sys

autoexec.hat
This application is provided in Windows 3.x in the system di-
rectory. A similar application, the multipad, is also provided
in Windows SDK. We have chosen to rewrite this application
in Smalltalk by using the MDI classes. In Listing 1 we show
how to reuse ViewManager subclasses in an MDI application.

In the open method, we create MDIFrame and StatusPane and
invoke the createDocuments method reponsible for the creation
of the documents. Each MDI document’s owner is a TextWin-
dow object. By sending the frame: message to a TextWindow ob-
ject, we make the TextWindow mainView an MDIChild and at the
same time set the frame window of this MDIChild object.

The MDIMenu is used for the standard Window menu,
which displays the active documents. The StatusPane will be
used to display the title of the current active document and to
display hint texts for the menu items,

In this example, we take full advantage of one of the
promises of object-oriented technology: reusability. The MDI
classes inherit from the TopPane class and reuse the usual Top-
Panes’ owners (ViewManager subclasses).

ADDITIONAL FEATURES OF THE SMALLTALK/V WINDOWS
2.0 MDI CLASSES
The MDI extras include two supplemental windows—the Tool-

Pane and the StatusPane. These are child windows that can be
added transparently to the top and bottom area of a topPane’s
client area. The key element allowing this transparency is the
method freeClientArea: aRectangle, which is sent to child win-
dows prior to resizing. The ToolPane and the StatusPane will
both modify the rectangle to exclude their region, if they are
visible. The resulting rectangle is then passed in the resize: mes-
sage and becomes the argument of the framing block in each
child window. This feature allows these supplemental windows
to be added without modification to the application’s code.

The ToolPane uses Tools to specify the bitmap and the action
of a tool button. Each tool has the functionality of an owner-
drawn button. It is actually drawn by the ToolPane for perfor-
mance reasons. The ToolPane uses DIBs (Device Independent
Bitmaps) for representing highlighted and normal states. The
DIB technique can be generalized to any kind of owner drawn
controls; it provides fast and efficient mapping to system col-
ors. System colors, such as the button face color, are cus-
tomized through the control panel. To have ToolPane support
these customizations, we define the Tool bitmap as a DIB with
arbitrary colors; for example, blue at palette index 3 for the
button background. At runtime, we load the DIB and change
the color entries in the color table to the actual system colors.
For example, index 3 will get the current button face color. We
then realize the resulting palette and get a DDB (Device De-
pendent Bitmap) with the correct colors. Of course, this pro-
cess has to be repeated if the user changes system colors during
the session (see Figure 3).

(=4

An MDI application will need one object
per MDI child in order to maintain data
unique to each window.

? o

DIB manipulations provide a fast and efficient means to
achieve color support. The drawback is that there is currently
no standard that defines system palette entries; that is, palette
index 3 may have a different meaning for another owner-
drawn control.

The StatusPane is a static pane (the user cannot interact
with it) that displays status or help information. Its design fol-

MARCH /APRIL 1993

5

m THE MuLTIPLE DOCUMENT INTERFACE

Listing 1. The SysEdit implementation.

MDIViewManager subclass: #SysEdit
instanceVariableNames: "
classVariableNames: "
poolDictionanes:

'WinConstants VirtualKeyConstants '

'SysEdit class methods

mdiMenu
"Private - Answer a standard MDI Window menu"
~MDIMenu new
appendItem: '‘&New Window' selector: #mdiNewWindow
accelKey:$n accelBits:AfControl;
appendItem: 'A&Cascade Shift+F5' selector: #mdiCascade
accelKey: VKF5 accelBits: AfVirtualkey | AfShift ;
appendltem: '&Tile Shift+F4' selector; #mdiTile
accelKey: ViF4 accelBits: AfVirtualkey | AfShift ;
appendItem: 'Arrange &Icons' selector: #mdiArrange;
title: '&Window'.

optionMenu
"Private - Answer the option menu"
“Menu new
appendItem: '&StatusPane' selector:#toggleStatusPane;

title: '&0ptions'.
1SysEdit methods

childActivate:aPane
"Private - Update the StatusPane"
| mdiActive |
(mdiActive := self frame mdiGetActive) notNil
ifTrue:[(self statusPane statusBoxAt: #status)
contents: mdiActive label].

close:aPane
"Private - Close the receiver application"
Smalltalk isRunTime
ifTrue: |
(MessageBox confirm: 'Are you sure you want to exit?')
ifTrue: [self close.
ASmalltalk exit]
ifFalse: [*self]]
ifFalse: ["self close].

createDocuments
"Private - Create the MDI documents"
| buffer winaddress pathName file|
buffer:=String new: 160.
winaddress:=WinAddress copyToNonSmalltalkMemory: buffer.
KemelLibrary getWindowsDirectory: winaddress asParameter
length:buffer size.
pathName:=String fromAddress:winaddress.
winaddress unlockAndFree.
self openTextWindow:pathName, \SYSTEM.INT'.
self openTextWindow:pathName, \WIN.INT'.
self openTextWindow:'C:\CONFIG.SYS'.
self openTextWindow:'C:\AUTOEXEC.BAT'.

label
"Private - Answer the receiver's mainView label”

~'System Configuration Editor’

mdiMenu:anMDIFrame
"Private - Create the menuBar for the frame"
anMDIFrame mdiMenuWindow
addMenu: self class optionMenu owner: self.
anMDIFrame mdiMenuWindow
addMenu: self class mdiMenu owner:self.

open
"Create and open a SysEdit application"
self addView: (self frame:
(MDIFrame new
owner: self;
icon: (Icon fromModule: self resourceDLLFile
id:'Default');
when: #mdiMenuBuilt perform: #mdiMenu:;
when: #childActivate perform: #childActivate:;
when: #close perform:#close:;
label: self label)).
self addSubpane:(
StatusPane new
owner:self;
when: #getContents perform: #statusPane:).

self openWindow.
self toggleMenu:'&0ptions' item:#toggleStatusPane.
self createDocuments.

openTextWindow:aFileName
"Private - Open a TexWindow application as an MDI document"
|file|
file := File pathName:aFileName.
(self statusPane statusBoxAt: #status) contents: file file name.
TextWindow new
frame:self frame;
disableSystemMenultemClose;
icon:(Icon
fromModule: self resourceDLLFile id: TextWindow');
openOnFile: file.
file close.

resourceDLLFile
"Private - Answer the DLL filename for resources"

~Icon defaultDLLFileName

statusPane: aStatusPane
"Private - Set the StatusPane contents"
| statusBoxes |
statusBoxes := OrderedCollection new
add: (StatusBox new
space: aStatusPane font width;
name: #status);
yourself.
aStatusPane contents: statusBoxes.

statusPaneHelp:aKey
"Private - Answer the hint text to the StatusPane”

~HelpSysEdit at:aKey ifAbsent:["*super statusPaneHelp:aKey).

toggleMenu: menuName item: itemName
"Private - Toggle the selected menu item"
| theMenu aBoolean |
theMenu := self frame menuWindow menuTitled: menuName.
(aBoolean:=theMenu isChecked:itemName)
ifTrue: [self frame
uncheckItem: itemName
forAlIMDIChildMenus: menuName]
ifFalse: [self frame
checkItem: itemName
forAUMDIChildMenus:menuName].
~aBoolean!

toggleStatusPane
"Private - Show/Hide the ToolPane"
self toggleMenu:'&0ptions' item:#toggleStatusPane.
self statusPane show.
self mdiArrange.

-

THE SMALLTALK REPORT

lows the lines of the ToolPane—each statusPane maintains a col-
lection of StatusBoxes to display information. A StatusBox ap-
pears as a small box with a 3-D effect. The StatusBoxes can be
left- or right-justified or can resize themselves according to the
dimensions of the frame’s client area.

The application may display information in the boxes or as-
sign menu help text for each menu item. The help text is then
displayed in the leftmost status box as the user scrolls through
the menu. For this to take effect, the application defines a dic-
tionary that associates the selectors to the help text.

CONCLUSION

The MDI classes in Smalltalk/V 2.0 offer powerful Windows
3.x support that compares favorably to other interactive MDI
implementations such as Visual Basic’s. The Smalltalk applica-
tion programmer gets the tools and the technology to create
professional-looking Windows applications.

Future enhancements of the MDI interface will include im-
proved frame menu support such as the ability to add items
dynamically (for example, WinWord does this for the File
menu that lists the most recently loaded files). Still, the MDI
project has been an important experience regarding Windows
3.x integration. We believe that Windows integration will play
an ever increasing role in the Smalltalk/V Windows product;
it may well end up as the single most important factor when
considering development products. Except for the window
procedure which is hidden, Smalltalk/V is open and flexible
enough to accommodate new functionality such as the MDI.

When designing a Windows-related hierarchy, it is
important to follow the SDK documentation and to model
the classes around it. The MDI class design results directly
from the MDI internal Windows architecture. Take existing
commercial applications as a reference. With a little guess-
work and the resource workshop, it is not difficult to guess
how graphical functionality such as ribbon windows is
implemented.

Windows is a cooperative environment where performance
and resource management is an issue. For examnple, the system
heaps (User, GDI) are limited to 64K and all the memory in
the world cannot change this fact. We usually think of perfor-
mance/resource requirements and clean object-oriented design
as two impeding issues. It is generally a good idea to experi-
ment with different algorithms and then implement one in the
cleanest possible way. If the algorithm is fast and efficient, the
object-oriented implementation won’t have to trade design
quality against performance. @

Tarik Kerroum is working with Siemens Nixdorf Ges.m.b.H. He
holds an engineer’s degree from Ecole Centrale de Paris. Stephane
Lizeray is currently a staff engineer at Siemens Nixdorf where he is
working on FINIS, a customizable next-generation banking software
using Smalltalk. His specialty is custom graphical user inerfaces using
Smalltalk/V. They can be contacted at Siemens Nixdorf Ges.m.b.H.
Obere Donaustrasse 19-27 A-1020 Vienna, Austria or via email at
70262.1762@compuserve.com (Tarik Kerroum) and
70474.3003@compuserve.com (Stephane Lizeray).

MARCH /APRIL 1993

[FYOU BELIEVE

co.that Smalltalk/V®
is the computer language

of the future.

. that SmalltalklV
is the ideal language for
developing your
professional applications.

..that Smalltalk/V
would let you open your
windows and dialog boxes

even faster.

then...

WindowBooster is for you!

Voo /) o)
BOOSTER™

for Smalltalk/V
The ultimate window accelerator

WindowBooster is now available for
Smalltalk/V Windows for $49.99
and for Smallealk/V PM (1.4 and 2.0)
for $99.00

This software also allows you to accelerate
windows made with WindowBuilder.

TAUCETI USA,INC.

1801 Avenue of the Stars ® Suite 404
Los Angeles e California 90067-5906

Tel: (310) 556-9723 » Fax: (310) 556-9725

cred trademark of Digialk, Tne.
“ .

Windieonser is o trademark of L Ced UsA, e, = Smakiulkdy is
Windowhuilier!™ w 4 trademark of Cooper

UTTING IT IN PERSPECTIVE

Rebecca Wirfs-Brock

Characterizing object

interactions

n my last column I discussed ways to characterize object

behaviors. I introduced a vocabulary for describing indi-

vidual objects that enabled us to discriminate between al-
ternative ways to design an object’s responsibilities. To fur-
ther develop our model, we need to design interactions
between objects. This column highlights some considerations
for these designing interactions. Before we start, let's review
how to further characterize object roles and behaviors.

A BRIEF REVIEW

We distinguished whether an abject serves a non-application-
specific purpose or if it models a concept specific to the prob-
lern domain. Utility objects are generally useful, non-applica-
tion-specific objects. Business objects model some essential
aspect of the problem domain. Business objects have some cor-
relation with concepts familiar to our software users. We can
further characterize our objects’ behavior:

= Controlling objects are responsible for performing a cycle
of action.

= Coordinating objects are the traffic cops and managers
within a system: pairing client requests with objects per-
forming the desired service.

* Structuring objects primarily maintain relationships be-
tween other objects.

« Informational objects hold values that other objects can ask
about.

« Service objects typically perform a single operation or activ-
ity on demand.

* Interface objects support communication between objects
within our program and external systems or users.

Behavioral stereotypes are a useful starting point for think-
ing about objects. However, a stereotype represents an over-
simplified viewpoint. As we look more closely, we may dis-
cover that objects seem to fit several behavioral profiles. For
instance, an object can coordinate activities and structure
other objects.

ADDING DETAIL

People often try to fit objects into a behavioral profile too
early. If you start with objects from the user’s vocabulary, you
may have only a set of informational objects and their infor-
mation content. It is easy to be missing any notion of how the
application should work! We need to work out how various
objects might perform required tasks. In the process of figuring
out these details, we undoubtedly will invent new objects that
embody more varied behavior. Then we will have a richer set
of objects whose behavior we can stereotype.

In the very early stages, functionality may not be cleanly
separated into many distinct objects. We may have objects
with multiple behaviors, rather than many different objects
each with a singular behavior. As a consequence, few if any ser-
vice objects have been identified. Another indicator of an early
design is that control is mixed in with other behaviors in a
seemingly haphazard fashion.

As I gain more experience, I create more designs with
highly specialized classes. Classes are inexpensive conceptual
tools that I use to divide and conquer my modeling problems.
If I find out, as I work out more details, that a class adds un-
necessary complexity, I simply collapse its behavior into its
clients. On the other hand, I often find that I can rework
smaller concepts more easily so as to be usable in several places
within a single application.

MAKING DECISIONS

Before I can go on much further, I need to decide upon a
control strategy. I need to develop a predominant pattern for
distributing the flow of control and sequencing of actions
among collaborating objects. I also need to understand how
each object accomplishes its tasks. A class may incorporate
more or less intelligence depending on how much it knows
or does, and how many other classes of objects it affects.
Control strategy decisions have a surprisingly strong
influence on how functionality and information are dis-
tributed among objects.

[like to consider alternatives—1I don’t just go with the flow
and let interaction sequences happen. I like to mull over differ-
ent ways of accomplishing the same task, constantly seeking
ways to construct my design that preserve encapsulation, max-
imize reuse and minimize the complexity of a class methods
and information structure. In considering alternatives, I also

8

THE SMALLTALK REPORT

Object Transition

ADVANCED TRAINING

CUSTOM GONTRACTS

Object Technology Potential
Object Technology can provide a
company with significant benefits:
Quality Software

* Rapid Development

Reusable Code

¢ Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern
California Edison and Texas Instru-
ments to successfully transition to
Object Technology.

ANALYSIS & DESIGN

TEAM REQUIREMENTS

APPRENTICE PROGRAM

MENTORING

TEAM TOOLS

‘

KSC Transition Services

KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

¢ [ntroductory to Advanced

Programming in Smalltalk

¢ STAP™ (Smalltalk Apprentice
Program) Project Focus at KSC

¢ OO Analysis and Design

* Mentoring: Process Support

SOLUTIONS

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of “Best of Breed” third
party tools and KSC value-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server
environment,

Design your Transition

Begin your successful “Object
Transition by Design” For more
information on KSC's products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
Software Assets by Design.

IS

Knowledge Systems Cormoration

OBJECT

TRANSITION BY

+.1992 Knowledge Systems Carporation,

DESTGN

114 MacKenan Dr.
Cary, NC 27511
(919) 481-4000

m PUTTING IT IN PERSPECTIVE

seek out ways to distribute control between business objects.
prefer models with moderately intelligent, collaborating ob-
jects over ones that have intelligence concentrated into a few
abjects.

For objects that play a more central role, I also want to
decide how they are created and initialized and what hap-
pens when they finish performing their assigned tasks. These
details are important so that collaborators don’t become
burdened with unnecessary details or complex message
sequences.

66

| prefer models with moderately

intelligent, collaborating objects over
ones that have intelligence

concentrated into a few objects.

*

[am a strong proponent of constructing simple interfaces
to objects. I also like to reduce the internal complexity of any
one object by spreading responsibilities among cooperating
objects. As [look at alternatives, here are some questions I
ponder:

= What are the consequences of distributing control among
collaborators?

Does one way require one object to know more things than
it might otherwise? Are there any significant problems or is-
sues that arise if it does?

Does an object really need to know and retain information,
or can it just pass that information along?

What are the consequences of building intelligence into
more objects? How does abject intelligence shift between
alternatives?

Is there a way to exploit polymorphism?

Is there a way to exploit inheritance?

= Is there a way to design a more general-purpose solution or
more general-purpose objects? What are the costs of build-
ing a general solution? Are those costs warranted, or am I
over-engineering my solution?

CONSIDERING ALTERNATIVES: AN EXAMPLE

Let’s consider interactions among four objects in our Auto-
mated Teller Machine simulation: an ATM object, a concrete
subclass of Financial Transaction, a Customer, and the customer’s
Accounts. In our simulation, there are several concrete classes
of Financial Transaction, corresponding to the different finan-

cial services that the customer can select from a menu (With-
draw, Deposit, Transfer Funds, or Inquire Account Balance).
As we work through the alternatives, I'll point out a few key
decisions that we should make.

In our design, the ATM object has a controlling role. It con-
trols this cycle of user interaction:

1. By collaborating with user interface classes the ATM presents
a greeting message to the bank customer.

2. Once the user has entered a valid bank card and typed in
the correct PIN number, the ATM is then responsible for
providing a menu of financial transactions to the user.

3. The user can select and perform one or more transactions
and can press the Cancel key instead of selecting a new
financial transaction when finished.

4. Transactions will be logged to a history file.

5. A receipt of the transactions will be printed for the user
upon completion of all transactions.

Objects in the Financial Transaction class hierarchy are ser-
vice abjects performing a particular financial transaction on
demand. A Customer object contains data about our user that
are pertinent to selecting and perform financial transactions:
the customer’s name and identification number, and a list of
accounts. An Account object knows and maintains facts about a
particular customer account, the balance being just one of
those facts. Most likely, there would be different classes of Ac-
counts (Checking, Savings, plus possibly even a richer hierarchy,
depending on how accounts operate). If we design our Account
class hierarchy so that all classes support the same set of mes-
sages needed by transactions, then we can use them inter-
changeably within transaction code.

Here are two different ways we could design an ATM to in-
teract with a transaction:

First scenario

In this scenario, the ATM takes responsibility for collecting nec-
essary information from the user (e.g., which account and how
much) before asking the Transaction to do its job:

1. ATM determines account, amount, and all other relevant in-
formation.

2. ATM then creates an appropriate Transaction, telling it the in-
formation it needs to know.

3. ATM then tells the Transaction to perform the transaction.

4. The Transaction collaborates with Account to perform the
transaction.

Second scenario
In this slight variation, the ATM delegates responsibility for col-
lecting necessary information to the Transaction:

10

TuaE SMALLTALK REPORT

p—

. The ATM object creates a Transac-
tion object, handing it a list of
Accounts.

2. ATM then tells the Transaction to
perform the transaction.

3. The Transaction first needs to de-
termine the amount, desired ac-
count, and other pertinent infor-
mation (based on the kind of
transaction object it is).

4. The Transaction collaborates with
an Account object to perform the
transaction.

What are the trade-offs in choos-
ing one design over the other?

In the first case, transaction code
does not have to deal with collecting
information from the user (such as
desired account and transaction
amount), Transaction need not be
aware of any user interface classes or
be responsible for collecting any in-
formation. We could conceive of de-
signing transactions usable in any ap-
plication involving financial
transactions, not just for our ATM application. What is the
downside of this scenario?

Any client using any financial transaction object needs to
do more. For Balance Inquiry, Withdraw, Depasit, and Funds
Transfer, slightly different pieces of information are needed
for each transaction. Balance Inquiry requires that the client
determine the account. For Withdraw, we need to determine
an account and an amount. Deposit requires determining the
account and amount. Funds Transfer requires two accounts
and the amount to transfer between them.

If we leave the responsibility for determining this informa-
tion with the ATM, we will end up with a fair amount of code
in the ATM just to set things up. It doesn’t feel quite right to
write slightly different code sequences to set up each kind of
transaction.

In the second alternative, we define our transaction ob-
jects to have a very simple client interface. The ATM creates
the desired Transaction object, then sends it a message asking
it to perform the transaction. Since the ATM has visibility of
Customer, it can ask the Customer for its account list, and pass
only the information needed along to the Transaction object.
The code that initiates a funds transfer might look like this:
(Funds Transfer for Accounts: Customer accounts)perform
Transaction.

Our challenge is to construct methods within the Transac-
tion hierarchy that allow us to get reuse through inheritance.

VisualWorks

Smalltalk for Cobol Programmers;
* Analysis & Design
* Project Management

* In-House & Open Courses

The Object People Inc. 509-885 Meadowlands’
Telephone: (613) 225-8812 FAX: (613) 225-5943

Smalltalk/V and PARTS are registered trademarks of Digitalk, Inc.
Objectworks and VisualWorks are trademarks of ParcPlace Systems Inc.

Transitioning to Smalltalk technology?
Introducing Smalltalk to your organization?

Travel with the team that knows the way...

The Object People

“Your Smalltalk Experts”

A
A

We need to clearly define and document the substeps of a
“generic” transaction algorithm. We need to specify which
substeps are replaceable by subclasses and which are not. We
would probably write common methods that support subsets
of performing a transaction for gathering information from
the user and executing a transaction, such as locking the ac-
count and committing changes to the account.

It clearly seems appropriate for a Transaction in the second
scenario to also assume responsibility for logging the transac-
tion and printing the contents of the receipt, since it knows all
the associated information. We haven’t said anything about
creating new objects to help Transaction accomplish that task,
but that is definitely a possibility. In the first scenario, both
ATM and Transaction know how much money and which ac-
counts are involved, so who should do logging and receipt
printing is much less clear.

It all comes down to deciding what awareness and involve-
ment each object in a collaboration should have. We can de-
sign our ATM to simply cycle through menus creating transac-
tions without much awareness of what happens within a
transaction. We accomplish this by empowering Transaction
with the capability for gathering information it needs from the
user. This requires Transaction to collaborate with a few more
objects (some user interface classes, printing, and logging ser-
vices). Transaction has more responsibility for establishing the
context to do its job.

MARCH/APRIL 1993

11

m PUTTING T IN PERSPECTIVE

This makes it harder to reuse Transaction objects de-
signed in this fashion in another application, but it certainly
is possible. We could design “smart” transactions that either
could be told what information they need or, lacking this
information, figure it out for themselves. It is important to
work out all the ramifications of establishing the context re-
quired for an object to do its job.

My preference at this point is to work through the second
alternative. It clearly establishes the ATM abject with a control-
ling role and defines Transaction to perform a service. There are
still problems with this design. Transaction has to know too
much context to be portable between different financial appli-
cations—it works only in the ATM application. How can we fix
this problem?

(=

| am a strong proponent of constructing
simple interfaces to objects.
*

Making the extra effort to design Transaction objects that
are reusable in any financial application leads us to consider
yet another design alternative. We could separate the gather-
ing of information and performing ATM-specific functions
from the actual performing of the transaction. In this third
design variation, ATM Transaction objects serve as interface ob-
jects with responsibility for gathering user input, logging re-
sults, and printing receipts. The ATM Transaction object creates
and collaborates with an appropriate Transaction object to exe-
cute the transaction. We have created a new class of objects,
ATM Transacton, to encapsulate the ATM-specific tasks of per-
forming transactions.

Our third and final scenario

In this slight variation, the ATM delegates responsibility for col-
lecting necessary information to an ATM Transaction object. The
ATM Transaction collaborates with a Transaction object to exe-
cute the Transaction:

1. The ATM object creates an ATM Transaction object, handing it
a list of Accounts.

2. ATM then tells the ATM Transaction to perform the
transaction.

3. The ATM Transaction first needs to determine the amount,

desired account, and other pertinent information (based on
the kind of transaction object it is).

4. The ATM Transaction creates an appropriate Transaction
object.

5. The ATM Transaction then tells the Transaction the account
and amount, and tells it to execute the transaction.

6. The Transaction collaborates with an Account object to per-
form the transaction.

It’s also important to understand what kind of feedback,
if any, occurs between collaborators. Is it direct or indirect,
complex or simple? In the case of ATM and ATM Transaction, if
we design our ATM Transaction so that it logs and prints re-
ceipt information, very little feedback is required between it
and the ATM. If we give the ATM Transaction the task of print-
ing receipt information, it needs to collaborate with Transac-
tion to do so. It probably also has to know whether the trans-
action successfully completed or not before it can print the
results.

Ideally, a client requires no feedback, but simply makes a
request and expects the server to quietly do its job. If possi-
ble, we can shift responsibilities between clients and servers
to eliminate any such requirement. If not possible, then obvi-
ously, the next simplest solution is direct response in the
form of status returned from the server upon completing its
task. We could design the transaction to return some indica-
tion of success or failure upon completion. This would allow
the ATM Transaction to print the receipt or log the transaction
without having to first ask the Transaction for further
clarification.

CONCLUSION

We’ve focused on designing interactions between collabora-
tors and explored impacts of shifting responsibilities be-
tween collaborators. If we take an even broader viewpoint,
we can stylize interactions between subsystems of objects
and factor design objects for even more general utility. Keep
in mind, however, that the goal of any designer should be to
construct an appropriate object model for the job. It is better
to finish a design and revisit it than spend too much time
looking for the “best” way. Each choice has consequences. A
good designer weighs the alternatives and constructs a prag-
matic solution.

Rebecca Witfs-Brock is the Director of Object Technology Services at
Digitalk and co-author of DEsIGNING OBJECT-ORIENTED SOFT-
WARE. She has over 17 years’ experience designing, implementing,
and managing software products, with the last nine years focused on
object-oriented software. She managed the development of Tektronix
Color Smalltalk and has been immersed in developing, teaching, and
lecturing on object-oriented software. Comments, further insights, or
wild speculations are welcomed by the author. She can be reached via
email at rebecca@digitalk.com. Her U.S. mail address is Digitalk,
7585 S.W. Mohawk Drive, Tualatin, OR 97062.

12

THE SMALLTALK REPORT

MALLTALK IDIOMS

Kent Beck

Instance specific behavior:

how and why

sophical matters. The technical material covers imple-

menting and using instance-specific behavior, the idea
that you can attach methods to individual instances rather than
a class. You might use it in animation, or in building a Hyper-
card-like system. It is not a new idea. Lisp-based object systems
have had it for years, and languages like Self rely on it exclu-
sively. It is not well known in the Smalltalk community, though,
and deserves a place in the mature Smalltalker’s bag of tricks.

The philosophical material illuminates the differences be-
tween Digitalk’s and ParcPlace’s view of good Smalltalk style.
ParcPlace grew out of a research atmosphere where truth and
beauty were admired. Although established in business now,
ParcPlace continues to favor elegant solutions. Digitalk has al-
ways been driven by the desire to build commercial software and
has often been staffed with engineers whose experience comes
from other languages. Digitalk’s solutions tend to be more prag-
matic and the workings easier to follow operationally, even if
they don’t have the most elegant high-level models.

This month’s column will present a pattern for choosing
and using instance-specific behavior and its implementation in
VisualWorks. In the next issue, I will describe its implementa-
tion in Smalltalk/V PM 2.0 and summarize the differences in
philosophy revealed by the two implementations.

This and the next column will discuss technical and philo-

PATTERN

In my previous column I introduced the idea of a pattern.
Before I write a pattern for instance-specific behavior, let me
review. A pattern is a program transformation. It takes a pro-
gram with certain attributes and makes a new program that is
somehow better—more concrete, compact, reusable, main-
tainable, flexible, or efficient. Patterns occur at all levels of pro-
gramming. Some of them are low-level, like naming arguments
and variables; some are tied to a specific language or library,
like patterns for using the collection classes; and some are at
the level of design, describing ways of dividing behavior be-
tween objects. The patterns for instance-specific behavior are
at this most far-reaching level.

Notice that I didn’t say “abstract” level. Patterns always call
for a concrete transformation of a program. Even if the objects
are only in your head or on cards, a pattern that applies to em-
bryonic objects will still call for you to do specific things to those
objects. I have heard complaints that patterns are too vague, or

connected only to a certain language. The pattern here stands as
an example of how it sometimes can apply regardless of lan-
guage or implementation. Instance-specific behavior is not lim-
ited to Smalltalk, and any language that provides it can use the
following pattern to guide when its use is appropriate.

Each pattern has the same four parts:

« Trigger. How to recognize when the pattern applies. This
often takes the form of “You have noticed. . .”

» Constraints. The (often conflicting) constraints on the
solution.

* Solution. The result of applying the pattern. The insight in
the pattern is largely contained in finding the right balance
between the constraints.

* Transformation. How to transform a program to conform
to the pattern.

Here is a pattern I have discovered for instance-specific be-
havior, observed in Digitalk’s PARTS. I don’t claim that it is the
only reason for using instance specialization. If you find uses for
it not covered here, please send them along.

SCRIPTABLE OBJECTS
Trigger

* You have objects that need to change their logic at runtime.

* You have added flags—symbols used as messages or blocks
in instance variables to account for this variation.

* Your users want to add logic to your objects that you can’t
anticipate, but are not prepared to use the full Smalltalk
environment,

Constraints

« Code complexity. The solution must result in less complex
code than you currently have.

- Simple programming model. If you have users who are not
prepared to use all of Smalltalk, the solution must be simple
enough for them to understand.

* Cannot anticipate all needed behavior. The solution is not
simply a matter of adding enough flags and switches. The

MARCH/APRIL 1993

13

m SMALLTALK IDIOMS

objects will require entirely new, unanticipated logic after
they leave your hands.

« Expressive power. The solution should be as powerful as
possible and ultimately as expressive as Smalltalk itself.

Solution

Make each instance specializable (see the remainder of the arti-
cle for implementation details). At runtime, you or your users
can change the meaning of any message without affecting other
instances. If you want to affect all instances, you can, at your
discretion, make it possible to change the class. The solution
provides a simple programming model at the expense of ex-
pressiveness, but the flexibility of instance specialization makes
up for most of the lost power. It should be possible to remove
the ad hoc specialization of the original code in favor of a more
uniform approach where all changes to logic are done by
changing methods.

Transformation
Flags. If a method uses a boolean flag to differentiate between
cases, replace it with a method that defaults to the case using
the default value of the flag. For example, if you have a method
like this:
display
isHighlighted
ifTrue: [self displayHighlighted]
ifFalse: [self displayUnHighlighted]

where isHighlighted defaults to false, you would replace it with
the contents of the displayUnHighlighted method. In the meth-
ods that set isHighlighted you have to copy the correct method
into the instance. You may find that after you have done this
throughout the class, you will be able to apply the pattern
“Eliminate Dead Variables.”

Symbols. If a method uses perform: with a symbol, isolate the
perform in its own method (use the pattern “Composing Meth-
o0ds”™), and replace it with a method that sends the default sym-
bol as a message. Thus:
iniHalize
listMessage := #list
getList
model perform: listMessage

would become (in the class):
getList
model list

If you wanted to default to the case where listMessage was nil,
you could change getList to:

getList
~#()

class /' o
n| 55 name | '‘Poinl’
¥y 77 methods

values \\
keys| — -

#+ e CompiledMe
#dist: ——1 CumpiledMe

Figure 1. Objects supporting method lookup.

Any object that set the listMessage would have to instead
specialize getList in the instance.

As is the case with flags, after applying the symbol transfor-
mation, the instance variable holding the symbol may no
longer be needed.

Blocks. The transformation for blocks is similar to the trans-
formation for symbols. The method in the class is the default
to which the block is set. The method will have as many argu-
ments as the block did. Thus, a block used for display:
initialize
displayBlock := [:aMedium | aMedium black]

displayOn: aMedium
displayBlock value: aMedium

in the class would become:

displayOn: aMedium
aMedium black

Objects that set the block would have to specialize the in-
stance instead. Note that this transformation will work only for
blocks that use block temporary or argument variables, or in-
stance variables of the object being specialized. Blocks used as a
full closure, accessing variables in another object creating the
block, generally cannot be transformed in this way.

PARCPLACE IMPLEMENTATION

Runtime structures

To understand how to implement instance specialization, you
first need to understand how the current model works. As
shown in Figure 1, every object has a hidden instance variable
that holds its class. The class in turn has an instance variable
that holds a MethodDictionary, which maps Symbols to Compiled-
Methods. When an object is sent a message:

1. Its class is fetched.
2. The class MethodDictionary is fetched.
3. The selector of the message is looked up in the dictionary.
4. The CompiledMethod found there is activated.
That’s what happens conceptually, but there are many

clever tricks to make it go faster in common cases where so
much flexibility isn’t needed.

14

THE SMALLTALK REPORT

Poim
class *
* s Class
y 77
Point name | ‘Paint’
class methods
n K
¥y 26

Baint

: i Behavijor
class \ﬁ—m- :
x| 5s Clas
v superClass|
had Class
mil_/'ﬂghavin[
class ; name | ‘Point’
x| -8 superClass -~ b
y| 26 methods

Figure— 2a. A change for instance is a change for all.

Conceptual model

The way you keep changes to one instance from affecting the
others of its class is simple: They don’t all have the same class.
In Figure 1, all Points point to the same class object. To be sep-
arately specializable, they all need to point to different class ob-
jects, each of which inherits from the original class Point. That
way, methods installed for one instance are installed only in
that instance’s personal class, not the one shared by all the
other instances. Figure 2 summarizes this design.

Note that the class of the class of the instances is not Class, it
is Behavior. (Isn’t it grand to be working in a language that al-
lows you to construct sentences like that and still have them
mean something?) Classes are pretty heavyweight objects, so
the system provides a simpler superclass, Behavior, which just
has methods, subclasses, and superclasses. Unlike Classes, Be-
haviors are not expected to be named and put in a global dic-
tionary, so they are able to be garbage collected when no one
refers to them anymore. They do not introduce instance vari-
ables, so specializable instances implemented this way will only
have private methods, but not state.

EXAMPLE

Creating instance (workspace version)

When I need to begin implementing a design like the one in
Figure 2b, I always start in a workspace. After a bit of experi-
mentation, here is the expression I came up with to create a
specializable VisualPart:

| class instance |
class := Behavior new "Create a new Behavior"
superclass: VisualPart; "Set its superclass"
methodDictionary: MethodDictionary new;
"Give it a clean MethodDictionary"
setInstanceFormat: VisualPart format, "
Give instances a reasonable format"
class compile: 'displayOn: aGC' notifying: nil.
"VisualParts have to implement displayOn:"
instance := class new. "Make the specializable instance"
ScheduledWindow new "Create the window"
component: instance; "Make the instance its component”
open. "Open it"
instance inspect "Inspect the instance so we can compile new methods"

Then in the inspector I can execute expressions like:

Figure 2b. Instances can have their own methods.

self class compile: 'displayOn: aGraphicsContext
aGraphicsContext displayString: 'Howdy' at: 100@100'
notifying: nil

and refresh the window. Try inspecting self class in the instance
to see that the structure built in the workspace matches the one
in Figure 2b.

Working it into methods

Now that we see how to create specializable instances interac-
tively, we need to be able to work the same concepts into per-
manent behavior. If all instances of a particular class are to be
specializable, you can override the class message new:

new
"Create a specializable instance"
~Behavior new
superclass: self;
format: self format;
methodDictionary: MethodDictionary new;
new

What if most instances are not specializable? You might
only want to create the Behavior when you know the instance
needs to be specialized. Here are a group of methods that im-
plement lazy specialization:

specialize: aString

"Compile aString as a method for this instance only"
self specialize.
self class compile: aString notifying: nil
specialize
self isSpecialized ifTrue: [*self].
class := Behavior new
superclass: self class;
format: self class format;
methodDictionary: MethodDictionary new.
self changeClassToThatOf: class basicNew

Note the strange method changeClassToThatOF:. It uses this
interface, which requires us to waste an object, rather than
changeClassTo: so that the primitive implementing it does not
need to do complicated checks to make sure that the argument
is a valid Behavior:

isSpecialized

~self class shouldBeRegistered not

convinued on page 21

MARCH/APRIL 1993

15

Uls

Greg Hendley and Eric Smith

GUI-based application development:

some guidelines

muck of nuts-and-bolts details of GUI development in

Smalltalk (however much we like to wallow in it) and
talk about higher-level aspects of developing interactive appli-
cations in an object-oriented environment. In particular, we
will be discussing some rules of thumb for GUI-based applica-
tion development derived over the years.

The guidelines presented here have been gleaned from work
on a wide variety of systems; they should be applicable not
only to particular domains, but to nearly every GUI-based pro-
ject. We hope you find them as useful in managing your pro-
jects as we do.

For this issue, we've decided to pull ourselves out of the

TERMS

But first a few quick definitions. Two terms we will use a great
deal should be well understood. They are domain model (DM)
and wuser interface (UI).

Domain Model

The domain model is defined by the set of classes that de-
scribe the model of the entities the user is trying to manip-
ulate. For example, in an airline logistical system, the do-
main model would include classes representing aircraft,
gates, fuel delivery systems, engine parts, maintenance
workers, etc.

Ideally, the DM does not include any information about the
UL The DM does not know how the information it represents
will be presented to the user, or how the user will manipulate
that information.

Referring to two earlier columns on ICM architecture
(SmaLLTALK REPORT May 1992 and October 1992), the DM is
identical to the Model layer in the ICM.

User Interface

The user interface is a much less cohesive entity. It consists of
the sum of the code that gets the information in the DM to the
user and maps the user’s directives to changes in the DM. In
terms of ICM application architecture, the Ul is comprised of
both the Interface and Control layers.

THE BASICS
Before talking about either the DM or the Ul in detail, it is im-
portant to get these two efforts off on the right foot. How the

division of the design efforts is established at the start of a pro-
ject can have profound effects on its outcome.

Getting things started

Assume that a new project has just started, and an initial meet-
ing about the new systern’s overall goals has taken place. The
results are probably some initial forays into DM design (almost
certainly dead wrong) and a few sketched storyboards for the
UL Neither of these will prove valuable.

First, there should be some measure of understanding
among the designers and developers. A common vocabulary
should come out of the process so that developers can commu-
nicate without talking at cross purposes. The most important
outcome is an understanding of what the user wants to do with
the systemn. Write that goal on the board in big letters before
beginning the meeting, and make sure you can come up with a
one-page summary on that subject after the meeting. Then
make sure everyone has a copy.

Don't let your Ul design drive your DM design

If you have proceeded as described above, your users, and
probably your designers, have a much better idea of how the
system will look from the outside rather than the inside. There
are probably pages of sketches of screens and maybe a flash
prototype.

The immediate temptation is to start driving your entire
design from these storyboards. Starting from the UI sketches is
a good way to generate requirements for the DM. You'll be
able to come up with a minimal list of things the DM must be
able to do to allow users to accomplish their tasks. However, if
the DM design is derived from the Ul design, then the DM de-
sign will suffer badly. It will not reflect the real-world relation-
ships of the entities it contains. It will be more tightly coupled
to the current project than if it were pursued independently,
and so will be less reusable.

There is a danger in looking at a screen drawing and nam-
ing domain objects from it. Instead, look at users’ mental
models of what they do to find DMs. Then teach the interface
to manipulate them.

Don’t let your DM design drive your Ul design
The reverse problem occurs if the initial effort goes into pro-
ducing a complete model of the real-world system the user

16

THE SMALLTALK REPORT

wants to manipulate. From the DM’s perspective, the Ul is
laid on top of the DM. This is sometimes as extreme as simply
producing a browser for any and every object the user might
want to edit. It results in an explosion of windows whose rela-
tionships to each other are, from the user’s perspective at
least, mysterious at best.

The Ul and DM designs should proceed in parallel

The solution to both of these problems is to allow both de-
sign efforts to proceed in parallel, with each having only the
required level of influence over the other. For example, if as
part of Ul design, a completely new task is identified, then
new functions will be required of the DM. The designers of
the DM would no doubt like to be apprised of this sort of
change.

Similarly, if things thought to be impossible for the DM to
represent are found to be tractable, then the UI designers
should be informed that they may include access to them in
the UL Both sides of the design effort must be kept up to date
with the requirements and capabilities of the DM.

Both Ul and DM efforts must be working from the same
requirements

Without this fairly minimal level of communication, the
project will come to grief at an early stage. Though it seems
obvious, it is worth stating that if the DM and Ul efforts are
not kept working on the same idea of what the user wants
and what the DM can provide, grave disorder will result at
the final integration. In the unlikely event users change their
minds, the guiding document of what they want must be
updated and members of both efforts must be given the new
information.

THE DM DESIGN

Fortunately for Ul designers, the basic kinds of objects they
will be dealing with and the relationships between them al-
ready are often determined by the structure of the develop-
ment environment. The object orientation of their design is
ensured. Their primary goal is the quality of the Ul according
to the user.

DM designers, in comparison, start with a blank slate.
They often must create the DM from the very basic classes
provided by the development environment. As a result, they
are free to make the resulting design highly object oriented or
as much like a FORTRAN program as they wish. Unfortu-
nately, there are more pressures toward the latter than the
former.

Preserve the object orientation of your DM design

Time pressure combined with the speed at which requirements
change is the greatest destroyer of good object-oriented design.
DM designers must balance getting a product out on time with
ensuring that the design stays clean enough to be reasonably
maintainable, extendable, and reusable. Unfortunately, all of
these benefits come at the expense of time.

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management
for all Smalltalk{V applications
® Transparent access to all kinds of Smalltalk objects on disk.
® Transaction commit/rallback of changes to virtual objects.
® Access toindividual elements of virtual collections for ODBMSup
to 4 billion objects per virtual space; objocts cached for speed.
® Multi-key and multi-value virtual dictionaries for query-building
by key range selection and set intersection.
Works directly with third party user interface & SQL classes ctc.
® Class Restructure Editor for renaming classes and adding or
removing instance variables allows applications to evolve.
® Shared access to named virtual object spaces on disk; object
portability between images. Virtual objects are fully functional.
® Source code supplied.
Some comments we have received about VOS5:

“...clean .. elegant. Works like a charm.”
—Hal Hildebramd, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.” —Raul Duran, Microgenics Instruments

VOSS/Windows $1950, VOSS /286 51450, VOS5 /052 in development.
Quantity discounts from 30% for two or more copies. (Ask for details)
Visa, MasterCard and EuroCard accepted. Pleaseadd §13 for shipping.
Logic Arts Ltd 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: +44 223 212392 FAX: +44 223 245171

logic

ARTS

There is as yet no panacea for this conflict of design goals.
The most consistently successful compromise is to run
through a prototype of the DM design and implementation
as early in the project lifecycle as possible. Then heave the
whole thing into the dust bin and do it right. Most of the re-
quirements changes and design problems will be identified
during the prototype. The resulting final DM design will
benefit from the experience of implementing the prototype
and shaking out the requirements and design changes. If the
interface between the Ul and DM has been suitably bounded,
the impact on the UT of this midstream change of DM will be
minimal.

Don't let external dependencies corrupt your DM design
Another threat to the object orientation of the DM is the re-
quirement that it interface with non—object-oriented sys-
tems. If the interfaces to these systems are built into too high
a level of the DM, their effects will be felt throughout the
whole DM and even may be visible outside of it. The result
will be a poor object-oriented model of the user’s domain.
There will also be an unacceptable degree of coupling with
the external system.

The way to prevent this sort of damage is to isolate the
offending, non—object-oriented systern within a layer of classes
that define an object-oriented model of it. Rather than provid-
ing only an interface to the function calls in the external sys-
tem, expend the extra effort and build an object-oriented

MARCH/APRIL 1993

17

n GUIls

model of the external system. A couple of layers of classes that
hide the non-object-oriented nature of the external systern will
provide the rest of your DM with clean objects to work with
and will keep the DM’s interactions with the external system at
an object-oriented level.

As a quick example, your system may be called upon to
send requests out of an RS-232 port to some device to request
status. You could simply wrap the system calls that send bytes
down the wire. But this does not model what your DM is really
doing. It is sending requests for status to a remote device.
Defining objects that represent the remote device and its status
would be much more useful and would hide the communica-
tions mechanism used to talk to the device.

Put off information systems interfacing as long as possible
A special case of interfacing with non-object-oriented systems
is the information system. Commonly, this will be a relational
database or perhaps an even more primitive data store. Often
there will be an existing schema in the database for represent-
ing the DM entities. The temptation is to base the DM design
on this schema. Don’t do it. Ignore the schema until forced
bodily to store and retrieve information using the database.

DM designs derived from database schemata often result in
classes that know a great deal of information, but don’t do
anything. There are often no obvious candidate classes to
which important behaviors may be assigned. The result is that
the design ends up with a collection of very passive classes de-
rived from the database schema and another group of classes
representing processes performed using classes from the first
group. The resulting design is nonintuitive and difficult to
convey to anybody outside the initial design team.

The best policy is to pursue a pure, object-oriented design
for the DM and put in the extra work to map this design to
and from the database schema. The extra work will pay off in
improved quality of the DM.

THE Ul DESIGN

Since the structure of UI classes is often determined by the de-
velopment environment, the degree of object orientation of the
Ul is already determined. However, a Ul design can be very
clean and object oriented, and still be terrible. We’ll quickly
cover a couple of the most common culprits for poor Uls in an
object-oriented setting.

Provide user-centered views in your DM

This problem is related to the problem of letting the DM drive
the Ul design covered above. To keep the Ul centered on the
user and not the DM, keep the details of the DM out of any
discussions of the UL Go through the tasks as a user and treat
the DM as a single big object. Later, during implementation,
Ul builders can allocate the various dependencies upon the
DM to the objects best able to address them.

Don't over-instrument your Ul
Beware of feature creep. This oft-repeated caveat still bears em-

phasizing, If the DM has been designed on its own, it is quite
likely capable of modeling aspects of the real-world system it
represents, about which the user is quite uninterested. Avoid
the temptation to show the user, in a single application, every
capability built into the DM. The result will look much like a
747 cockpit.

Stick to providing what was originally asked for. If the user
asks for more, you can always be smug about how easy it is to
add it.

KEYS TO SUCCESS

All of the above assume that you will be dividing the work of
DM and Ul development. Even if there is a single developer,
these two tasks should be conceptually divided. To make the
whole process work, the two design and development efforts
must be kept reading the same script.

Continuous communication

As mentioned above, keeping the level of communication be-
tween the two design efforts is crucial to avoiding big surprises
come integration time. Both sides of the development effort
must be kept up to date regarding changes generated by the
user, management, and each other.

This communication is so important that clear structures to
support it should be put in place early in the project lifecycle.
Have one or more people on both teams. Have members of
both teams in the same room constantly. Anything that keeps
the two efforts in contact will help.

Continuous integration

As implementation proceeds, integrate the developing Ul and
DM components frequently—preferably daily or more often.
Putting off integration until just before project milestones will
simply lead to more and bigger embarrassing surprises.

By keeping the two teams in communication and by con-
stantly testing the fit of their work, both wheels of the pro-
ject can be kept on the same track and schedule slips can be
identified and planned for before they become dangerously
large.

And finally...

As a last word, no matter how small the project seems to be, go
through the analysis and design before delving into implemen-
tation. At the very least, you will gain important documenta-
tion of how you were thinking when you began implementa-
tion. This will ease maintenance and reuse even if it doesn’t
ease implementation.

Greg Hendley is a member of the technical staff at Knowledge Sys-
tems Corporation. His specialty is custom graphical user interfaces
using various dialects of Smalltalk and various image generators.
Eric Smith is a member of the technical staff at Knowledge Systems
Corporation, His specialty is custom graphical user interfaces using
Smalltalk (various dialects) and C.

They may be contacted at Knowledge Systems Corporation, 114
MacKenan Drive, Cary, NC 27511, or by phone, 919.481.4000.

18

THE SMALLTALK REPORT

Reflection

t its lowest level, Smalltalk is implemented by primitive
A:perations, usually written in C or assembler. The
umber of primitives is surprisingly small, however,
and most of Smalltalk’s functions are implemented in
Smalltalk. This includes many basic aspects of the compiler,
the windowing system, and the language itself.

Because of this we can use Smalltalk code to examine or
alter the Smalltalk system. This property is called computa-
tional reflection and is a very powerful, dangerous, and con-
fusing feature.

WHAT YOU CAN DO WITH REFLECTION

In the simplest case we can use reflective capabilities to write
code that reasons about other code (or itself). Examples of this
are the Smalltalk debugger, inspectors, and the senders/imple-
mentors feature. All of these are written entirely in Smalltalk,
which is made possible by reflection,

These capabilites are benign, since they only examine the
code, but reflection also allows us to alter the system in al-
most any way we choose. This is where it starts to get
dangerous.

Having the ability to change the system gives us an enor-
mous amount of power. We can make drastic changes to the
environment or add very sophisticated features, A favorite
target, at least in Smalltalk-80, is the compiler. Several of the
components we use in our lab make significant changes to it.
We have the constraint engine from ThingLab II, which adds
features for compiling constraints and makes them execute at
reasonable speed. We have ENVY/Developer, which hooks
the compiler into a database for version control and configu-
ration management. We have VisualWorks, which also makes
changes to the compiler, although I haven’t figured out why
it needs to.

System changes allow these products to do things that
would otherwise be difficult or impossible. In the cases of
ENVY and VisualWorks, the changes are so significant that the
products are distributed as images rather than source code to

be filed in.

WHY YOU SHOULDN'T DO IT

Unfortunately, these changes cause major problems for reuse.
Smalltalk and object-oriented programming are being sold as
tools for building software components that can be combined

HE BEST OF comp.lang.smalltalk

Alan Knight

to easily build systems. Combining components that modify
the compiler (or other basic system components) in incompat-
ible ways is a nightmare. Bringing ThingLab into ENVY was
not easy, even though we had one of OTI’s ENVY gurus doing
the hard parts. Bringing in VisualWorks appeared even more
difficult. Fortunately, there are enough other people interested
in VisualWorks that OTI is doing all the work for us. We just
have to wait a little longer for the product. That solves our im-
mediate problem, but having to tinker with all our compo-
nents every time we bring in a new one doesn’t bode well for
reuse.

I’'m certainly not arguing that changes to the system are al-
ways a bad thing, but they are something that should be ex-
amined carefully and avoided if there are reasonable alterna-
tives. Just because you can change the system doesn’t mean
you should.

The other problem with making major changes to the sys-
tem is that it’s hard to do it right. Making changes to the sys-
tern is as likely to cause your image to crash as adding a new
feature. In fact, it’s surprisingly easy to make fatal changes
without even realizing it. I know I have. Often enough, their
effect is delayed so that I’ve saved my image before realizing it’s
wounded.

TRAPS

There are many potential difficulties in attempting to change
basic features of Smalltalk. The virtual machine may make as-
sumptions about the structure of a few classes. This probably
will not be well documented. If changes can be made, the order
of changes may be critical, creating code that runs but cannot
be filed in and other interesting phenomena. Getting lost in the
maze of circular definitions is always dangerous.

Fortunately, systems like USENET allow us to draw on the
knowledge of those who have already encountered such prob-
lems. In the remainder of this column, I print excerpts from a
discussion on one particular type of system change, adding in-
stance variables to the class Behavior. Although this thread
originally started with a question about Smalltalk/V, most of
the discussion concerns Smalltalk-80. That’s because
Smalltalk/V doesn’t allow changing the definition of classes
that have instances (or whose subclasses have instances). Since
Class, which is a subclass of Behavior, always has instances, we
can’t directly change these definitions in ST/V.

MARCH/APRIL 1993

19

m THE BEST OF COMP.LANG.SMALLTALK

Even in Smalltalk-80, which supports modifying classes
with instances, it is not a trivial matter. We encounter all of the
difficulties described above, and very experienced program-
mers can make mistakes.

ADDING INSTANCE VARIABLES TO BEHAVIOR
Most of what follows is from two very long posts. The first is
from Ralph Johnson, a professor at the University of Illinois,
one of whose research projects is an optimizing compiler for a
statically typed Smalltalk (see September 1991 SMALLTALK RE-
port). The other post is from Mario Wolczko, who maintains
the Smalltalk archive at the University of Manchester. Both of
these people obviously have spent a lot of time hacking the in-
ternals of Smalltalk.

Ralph Johnson (johnson@cs.uiuc.edu) begins.

Smalltalk-80 lets you add an instance variable to a class
with instances, but you still can’t add instance variables
to Behavior or Class. When we tried, the system started
recompiling every class and, after an hour or so, just
froze. I mentioned this to Peter Deutsch, then ParcPlace
chief implementor and general guru. He stared off in
the distance for several minutes, and then nodded his
head, “Yes, you can't do it.”

First, you can’t change Behavior, and we didn’t try. Be-
havior defines the part of a class and a metaclass that
the virtual machine knows about. . . . Thus, you can
only change Behavior if you change the virtual machine.
(This is not exactly right; you can probably add instance
variables at the back as long as you don’t mess with the
ones at the front.)

It is easy to make new subclasses of Behavior, and to add
instance variables to them. However, if you try to
change Class then you run into a circularity, because
Class ultimately defines itself. More precisely, Class class
is a subclass of ClassDescription class, which is a subclass
of Behavior class, which is a subclass of Object class,
which is a subclass of Class. (For a very good reason, I
might add. :-))

Thus, if you change Class, you are also changing the
superclass of its class, i.e., you are changing its own im-
plementation. I haven't figured out exactly what breaks,
but it would be surprising if something didn’t. Wel-
come to the navel staring world of reflection.

If you really, really, really want to add an instance vari-
able to Class, it can be done. First, you have to have a
program that can copy an image and write it out to disk.
You then change this program so that when it writes out
a Class, it adds the extra instance variables. While you
are at it you modify Class so that it knows about these
extra instance variables. Run this program and you
have a new image that gives extra instance variables to
Classes.

I have thought long about this program, but the diffi-

culty in getting it all to work has never seemed worth
the trouble. There are so many easier ways to accom-
plish the same thing. The easiest is to have a dictionary
indexed by the name of the class, whose value is an ob-
ject that represents the extra instance variables you wish
you could add. This is a little slower than real instance
variables, but is otherwise nearly indistinguishable, es-
pecially if you like to access instance variables with ac-
cessing methods. You just have to write two accessing
methods for each variable foo:
foo

~(ExtraClassVariables at: self name) foo
foo: a.nOIiject

(ExtraClassVariables at: self name) foo: anObject
and that is all it takes. If you want to be complete, make
sure that deleting a class removes the entry for the class
from the dictionary.

That is usually what we do, but once we wanted to do
something better. Our compiled Smalltalk lets each
class define its own method lookup routine. When the
compiled code finds that it needs to do method lookup,
it fetches the method lookup routine from an instance
variable in the class of the receiver. This technique
doesn’t work very well unless we can add an instance
variable. Long ago, we hacked around the problem of
not being able to add an instance variable to Class by
adding an instance variable to a component of Behavior,
i.e., to MethedDictionary. Or rather, we made a subclass
of MethodDictionary and added it there. Unfortunately,
ParcPlace has made MethodDictionary not subclassable.
In an orgy of fiendish hackery, I subclassed set and re-
placed the set of subclasses in a Behavior with a Set-
ThatHasAMethodLookupRoutine. Now the compiled code
just has to do another level of indirection to find the
method lookup routine, while the normal Smalltalk im-
age thinks everything is the same as it always was.

The unusual punctuation :-) is a USENET convention
called a “smiley.” It's intended to compensate for the lack of
any tone-of-voice cues in text, and indicates humor or some-
thing not to be taken too seriously.

Although this post is extremely informative, its central
premise is no longer valid, as Mario Wolczko
(mario@cs.man.ac.uk) points out;

It’s with trepidation that I dare to contradict both
Ralph Johnson and Peter Deutsch, but here goes...

The “blue book” definition of the virtual machine men-
tions only the first three instance variables of Behavior,
namely superclass, methodDict and format, and assumes
they are instance variables 1, 2 and 3. If you change the
structure or position of any of these, e.g. by adding any
instance variables anywhere in the list before "format’,
the system will surely break. The blue book VM makes
no assumptions about any other instance variables in

20

THE SMALLTALK REPORT

Behavior; it doesn’t assume the existence of Class, Class-
Description, Metaclass, etc., or know anything about
their structure in addition to those three instance vari-
ables inherited from Behavior. (This may have changed
with more recent versions of the VM, but I don’t think
so—UI’ll get to that shortly.)

This alone doesn’t mean that you can add an instance
variable. Another problem arises during the recompila-
tion of methods. When compiled, a method references
instance variables by their offsets within objects. So, if
you add an instance variable to a class, all the instance
methods in that class and its subclasses should be re-
compiled. (Actually, if you add only at the end of the
list, only methods in subclasses need be recompiled,
providing the subclass has its own instance variables,
but the system has never taken advantage of this fact,
and always recompiles everything.) Also, all existing in-
stances have to be mutated to reflect the new structure.
In older versions of the system, the mutation and re-
compilation were not synchronised, so when adding an
instance variable to the end of Behavior’s list, some of
the methods actually performing the recompilation and
mutation got recompiled before their instances were
mutated (or possibly vice versa, I forget), and the sys-
tem fell over. Since the addition of ClassBuilder in 2.4,
this doesn’t seem to happen any more. Try adding an
instance variable to Behavior after 'format'—it should
work fine in any 2.4, 2.5 or 4.x system. Whether this was
by design or accident, I don’t know.

An alternative solution (which I dabbled with in 2.4
days) is to implement “lazy” mutation—build a com-
pletely new class, delete all the methods from the old
class’s dictionary except doesNotUnderstand (and a few
others needed for mutation), and have doesNotUnder-
stand mutate the object when it receives a message. I
sweated over this for a few days and got the basics work-
ing, but then 2.5 came along...

Ralph Johnson replies:

It is certainly amusing to find out that I have been
avoiding adding instance variable to Class all these
years for no good reason. I don’t know what versions I
originally tried it on, but it was quite a few years ago.
This is a classic example of superstitious behavior—to
keep on doing something because it worked a particular
way once. Thanks to all those who set me straight, and
I'm going to go eliminate some ugly code that has ap-
parently not been necessary for several years.

Alan Knight is currently working in V/Windows on contract for The
Object People. He can be reached at 613.225.8812 or by email at
knight@mrco.carleton.ca.

x6RAML Smalltalk/V users: the tool
ﬁ-"""':: for maximum productivity !

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
report, paginated and commented.

° File code into applications and merge them together.

° Applications are unaffected by compress log change
and many other features..

TOWSEL'S..

Yarn Deleted methods |

Imager-

Hisory ——[Code recovery]

Utilities.. ._Application printing | and more..
CodeIMAGER™ V286, VMac $129.95

VWindow & VPM $249.95
Shipping & handling: $13 mail, $20 UPS, per copy
Diskette: [J32 [53

SixGraph™ Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 Céte de Liesse, suite 201
Montreal, Que. Canada H4N 2M5

Tel: (514) 332-1331, Fax: (514) 956-1032
Cl:deFM.AGER ismreg l‘ntm:kf of Sanﬂ,l: Computing Ltd.
V is arcg.

m SMALLTALK IDIOMS
continued from page 15

Only classes that have a name return true for shouldBeRegis-
tered. If we already have specialized an instance using the
above algorithin, this test will be correct, while other reasons
for creating unnamed classes would render it wrong.

CONCLUSION

You have seen what instance-specific behavior is, why you
would choose to use it, and how to implement it in Visual-
Works. In the next column I will describe how to implement it
in Smalltalk/V PM 2.0, Digitalk’s most technically advanced
product. The differences in implementation reveal some of the
differences in philosophy between the two companies as engi-
neering organizations. These differences will be important to
you as you move between systems. @ -

Kent Beck has been dtscovermg Smalltalk 1dmms for etght years at
Tektronix, Apple Computer, and MasPar Computer. He is also the
founder of First Class Software, which develops and distributes
reengineering products for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226, by phone at
408.338.4649, fax 408.338.3666, or compuserve 70761,1216.

MARCH/APRIL 1993

21

Highlights

Excerpts from industry publications

IMPLEMENTATION
.. . “Among those projects I have found to be successful in ob-
ject orientation, there has always been a collaboration of man-
agement (and) developers,” said [Rational Inc.’s Grady
Booch]. He said failures result either when management im-
poses object orientation on an unwilling or unprepared tech-
nology group, or conversely, where the programmer tries to
implement object-oriented systems without the blessing from
or understanding by management. . .

OOPSLA conference is object-oriented, David Tanaka,

COMPUTER DEALER NEWS, 11116192

CULTURAL ISSUES

. . .[Taligent’s Mark Vickers:] . . . “We have to change people’s
focus from having to rebuild the world from scratch; with ob-
jects, it’s easier and faster to deliver new ideas and make
money by leveraging on others’ work. [We’ve] got to get the
industry into a mode of being able to leverage its previous
products rather than having to throw things away. ..”

Objects for end users, Carry Lu, BYTE, 12/92

CLIENT-SERVER
.. .OOP and enterprise model design are the two core build-

ing blocks upon which the next generation information sys-
tems must be built if they’re to provide manufacturers the kind
of flexibility required to be competitive in the 1990s. And the
prevailing architecture so aptly suited to exploit the potential
of these twin building blocks is client-server architecture. . .

CIM Il The integrated manufacturing enterprise, Peter F. Lopes,
INDUSTRIAL ENGINEERING, 11192

DISTRIBUTED OBJECTS
. - . Only distributed objects can talk to each other across the
network through ORBs—a simple, but important, differentia-
tion from programming-language objects, such as those cre-
ated from C++. Distributed objects differ from programming-
language objects in two fundamental ways: they can be in
different locations (why they’re called distributed) and can use
ORBs. Distributed objects can be confused with programming-
language objects because the distributed objects may be imple-
mented using an OO programming language (also used to cre-
ate programming-language objects) such as C++, SmallTalk,
and Objective C.

Objects everywhere: Sun, Object Design work together on object-oriented

file systern, Shalini Chatterjee, SUNWORLD, | 1192

March 17-19, 1993
UNIFORUM '93

San Francisco,CA
800.323.5155

44.491.41022

April 19-23, 1993
OBJECT EXPO NY
New York, NY
212.274.0640

415.941.8440

May 4-6, 1993
Dev Con 93
Costa Mesa, CA

800.531.2344, ext 912

® o
March30-April1,1993 May 3=-7, 1993 October 25-28,1993
OBJECT TECHNOLOGY "93 DB EXPO IAKE 93
Cambridge, UK San Francisco, CA Amsterdam, The Netherlands

301.926.4243

22

THE SMALLTALK REPORT

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews, They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in being included in this feature should send press releases to our editorial offfices,
Product Announcements Dept., 91 Second Ave., Ottawa, Ontario K1S 2H4, Canada.

A new charting product for Objectworks\Smalltalk has been
introduced by East Cliff Software. The project, EC-Charts, al-
lows Smalltalk programmers to easily include scatter plots, bar
charts, and line charts in their application windows. EC-Charts
is a widpet, or view; the application simply provides the num-
bers, and the EC-Charts widget plots them and displays the
chart.

East CIIf Software, 21137 East Cliff Dr., Santa Cruz, CA 95062,

408.462.0641, fax: 408.462.0441

CONTACT HELEN NEWLING AT
212.274.0640

W are a rapidly growing
consulting company with
many state of the art openings.
+
LONG TERM ASSIGNMENTS
HIGHEST COMPENSATION

SMALLTALK 80

CompPuTER CORPORATION

1212 Avenue of the Americas, New York, NY 10036, 9th Floor
(212) 840-8666 = (800) 843-2119 « Fax (212) 768-7188

Digitalk has announced the availability of the PARTS COBOL
Wrapper, a component for PARTS Workbench, the first tech-
nology to wrap COBOL into reusable parts. This client/server
integration enables very rapid visual application construction
from prefabricated software components. Digitalk also has an-
nounced the availability of the PARTS Relational Database In-
terface, a component for PARTS Workbench, which allows in-
tegration with relational databases.

Digitalk, Inc., 9841 Airport Bivd., Los Angeles, CA 90045,

310.645.1082, fax: 310.645-1306

SMALLTALK & C++
PROGRAMMERS NEEDED!

Join the MOST EXCITING Team of OT
Professionals in the Country!

RothWell Intemational, RWI, can offer
You that Opportunity Throughout the US.

PO Box 270566 Houston TX 77277-0566
(800)256-0541 (713)541-0100 FAX:(713)541-1167

MARCH/APRIL 1993

23

THE TOP NAME
IN TRAINING IS ON

THE BOTTOM

Where can you find the

best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a

large scale application, nobody

else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

Dic i1 K

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
Strategies that immediately
boost your productivity. You’ll

reduce your learning curve,
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,
~ Progressive Insurance,
¥ Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM'’s
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990’s. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it

DIGITALK

	By Article Title
	Characterizing object interactions
	GUI - based application developement: some guidelines
	Instance specific behavior, part 1
	Reflection
	The Multiple Document Interface

	By Author Name
	Beck, Kent
	Hendley, Greg
	Kerroum, Tarik
	Knight, Alan
	Lizeray, Stephane
	Smith, Eric
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	GUIs
	Putting it in perspective
	Smalltalk idioms

