
The International Newsletter for Smalltalk Programmers

March/April 1993 Volume 2 Number 6

ides
THE MULTIPLE

DOCUMENT

lNTERFACE

By Tarik Kerroum &
Stephane Lizeray
Contents:

Festures/Articles

1 The Multiple Document

Interlace

by Tarik Kerroum &
Stephane Lireray

Columns

8 Putting it in perspective:

Chsracteriiing object interaction
by Rebecca Wir&Brock

13Smalltalk Idioms: Instance

specific behavior, part 1
by Kent Beck

16 GU/s: GU1-baaed application

development some guidelines

by Greg Hend@y & Eric Smith

19 The -of comp.lang.smalltalk:

Reflection
byA/sn Knight

Departments

22 Product News and Highhghts

.

Inl
he Multiple Document Interface is a specification for applications

written for the Microsofi Windows environment or 0S/2 Presenta-

tion Manager. The specification describes a window structure and

user interface that allow the user to work with multiple documents

in a single application. The MDI specification dates back to Win-

dows 2.0 and was first used in Excel for Windows. Since then, most commercial

appkathIS implement it for managing multiple documents. This article prov
a technical discussion of how MDI support is implemented in the recently re-

leased Smalltalk/V Windows 2.o, which comes with full MDI support.

MDI is described in SAA, Common User Access (ADVANCEDINTERFACE

DESIGNGUIDE, IBM 1989). Windows 3,0 includes an MDI API interface, which

greatly simplifies the development of an MDI application.

The main window of an MDI application looks conventional. This MDI frame

window may contain child windows, called A4DI child windows, which are used to

display program output. As the name indicates, MD1 child windows are supposed

to display documents. Each of these MDI children may have a menu that is dis-

played on the MDI frame’s menu bar when the child is active. Only one child is

active at any given time,

When maximized, an MDI child window takes the appearance displayed in

Figure 1. Minimized documents appear as icons at the bottom of the MDI frame’s

client area. Each child window may have its own icon.

continm-d on puge 4..

.- ——-—

❑

l#~q ~pJpjQL c+lul,~ [W
SlringDietiona@leader L @ Inslance stalusText
SfrtngModel O class styte:
TextSelection views . lextMaditied
Tool... – Objed – lextModifiedln:

— Dependents 100IPane

Window... - RecursionInError when:perfnrm:

pPaneClass
“Private - AnswerIhe default lop pane class.”

Smalltalk IsRunTime iffalse:[
MDISystem isActive iflrue:~MDIChild]].

‘TopPane

1 I
%EH m.bla ~-”—–” “-’ ““”-’-”----–-—-----–”-’-”-’”-

- pm r--- {N~M ~ J-:

——

Figure 1: Maximized MDI Child Wndow.

—....—.———.

I’ho $matltalk Report

Ediirs
John Pugh and Paul Whita

Car!eton Univamity & The Objact Peopk
EDITORS’
CORNER

John Pugh Paul White

S[- pUBUCAT10f4S

I
Advisory Board
Tom Atwood, objeci Techndcgy Inierrmiional

Grady Booth, Rational

George Bosworth, Digiklk
I

Brad GEM, Infommtim ~e timuking I

Chuck Duff, @antec

Adele Goldberg, parcpface Systems

Tom Love, corm.k.mt

Berfrand Meyer, ISE

Meilir Page-Jones, Wayfand s@rns

Sesha Pratap, CarrtarLine .%rtwara I

P. Michael Seashola, Versant

Bjarne Stroustrup, AT&T EdI hb
1

Dave Thomas, Object Technology lntarnatioml ;

THE SMALLTAU(R-

Editorial Board
Jim Anderson, Digitefk

Adele Goldberg, Parcphce Systems

Reed Phillips, Knowladga Systams Corp.

Mike Taylor, Oiiitdk

Daw Thomas, Ob@ Techndw Infamaibnd

Columnists I
Kent Beck, Fimt Claas .Wtwara

Juanita Ewing, Di@talk

Greg Hendley, Knowledga Syamrns Corp. i

Ed Klimas, Linm En@mring Inc.

Alan Knight, Catietan Uniwraity

Eric Smith, Knowledge Systems Corp.

Re~ Wirfa-Brock, Oigitdk

S1(3SPublications Group, k
RichardP. Friedman

Foundar & Group Pubfiiher I
Art/Produdlon I
Krietina Joukhsdar, Managing Wtor

SuaarT Cullii, Pi!grim R+ Ltd., Crediva Diradion

Karen Tongish, production Enitor

Robert Stewart, Dmktop System Cmrcfinaior

Circulation
.Sie@enW. Soule,Circdatkm _

Ken Mercado, FufMmenl Managar

Marketing/Advertising
JaamnWeiskopf,Acfvard.hgfdgr-EaaiCticumda
Holly Meintzer, Achwtisinn Mfz-West Coaat/Eumpa

HeIanNewling,Racruitmni .%las Manager

Sarah Hamilton, prornahna Managar+bfidi.ans

Loma Lyle, Promoimna Mamuar40nfarances

CarefT P-olnsr,ROmtarG Gr&Mkt

Administration
time Tomoum, ❑ usinass Managar
w.- bile most people introduced to object-oriented technology are receptive to the “new”

ideas and processes, there are some (the doubting Thomases) who can see the potential

benefits but find it difficult to visualize how they can be achieved within their own proj-

ects and development teams. Reuse, for example, requires that one team have a positive

attitude to using components produced by another. In many organizations, communica-

tion is poor even between groups who share the same office space let alone teams who are

physically remote from one another. In addition, the “not invented here” syndrome is

prevalent—no one trusts anything they did not construct themselves, A cultural change is

required to reap the benefits of the technology, A similar change in culture is required of

new Smalltalk programmers: they must have an open mind and be trusting of existing ob-

iects. Of course care must be taken to ensure the intewi~ of obiects. but obiects can’t act“, ,. ,

so paranoid that they don’t trust anyone sending them messages. The objects already

defined in the library don’t do this—arrays don’t do bounds checking when someone is

accessing them; points don’t check to see if their x and y values being set are numbers. In

an organization, synergy cannot be achieved if people aren’t flexible and trustin~ the

same is true of sofhvare objects.

The feature article this month by Stephane Lizeray and Tarik Kerroum examines

Smalkdk’s support for Multiple Document Interface (MDI). As they point out, both

Windows and 0S/2 provide a specification for applications to deal with multiple docu-

ments open within them, They describe in detail the classes included in Smalltalk/V Win-

dows 2.0 to support MDI, explaining the features and mechanisms provided.

In her column this month, Rebecca Wirfs-Brock continues her discussion of the role

of classification in our designs. As she rightly points out, it is important for us to under-

stand not only the characteristics of the objects we are using, but also the different types of

interactions that can occur between our objects. She makes the case that it is the relation-

ships between our objects that capture the dynamic nature of our systems.

Kent Beck begins a discussion on instance-specific behavior, in which methods can be

attached to individual instances, as opposed to being attached to the class only. The power

of this metaphor is already being tapped in other languages, notably Self, but as Kent

points out, it maybe something that good Smalltalk programmers can take advantage of

immediately,

Reflection is the topic of interest selected by Alan Knight in this month’s “The Best of

comp.lang.smalhalk” column. Alan takes us through a thread of discussion on the bul-

letin board examining both the ability and the merit of making fundamental changes to

the way Smalltalk is structured. Alan’s conclusion seems to be, and most experienced

Smalltalkers would undoubtedly agree, it’s a messy and dangerous thing to do, but it’s

terrific to have the opportunity to do it.

Finally, Greg Hendley and Eric Smith identify a number of rules of thumb for GUI-

based application development.
‘l’h. SnmlhalkRepnn (lSS?4#105b-797&)is p.hlkhrd 9 tinm a ymr, L-cry nmnlh exc.p for the Mar/Apr, I.ly/Aug, and NOVIDCCcomhimd iss.rs. f+h-
Ikh.d by 51GSPuhlicmiomGm.p, 588 Hroadway,N-v York, NY IC4)12[212)274-0640.6 Cqyrighl 1993hy 51(X Puhlimti.m, Inc. All ri~ht>rmmwd.
ffqmnf.clim of Ihi, nw.rial hy dm[roni. trmwni<im, XL-W. m my ,)lhm m.lh,)d %,illhi IWAWLI.> a WI‘Ilf.l vimlmio. II(Ihe [,5 (kpyright law md is

lla(lypr.hihiml. M,mri.1 IIIJYhe rqwod.md wi(h cxprmspmnimio. (mm Ih. p.hli>hcm.M*ilcd First(h,. S.lmcripion rale, I par, (9 ihmc>)domm
Ii<, $h5,hrei~n andCwtada,590, SinrJ.mpy prim, SN.CG.P1)5TMASTH+ .S+ndaddrtw chan~u and>.hsmiplio. ordcm1,. TI II S,,?: IA, L RI WW 1, MI

.wrihcr .Strvicm Ih.pt. WI., P.(1.km 31XX1,I)mvillc NV07834.Suhmilmid., 10the F.diumd 91 %m.d Avmue, c)IIawa,fl.tmin KIs 2H4, Cm.da.
-.. —

David Chetlerpaul, Amxuniing ~

ClaireJohrmbn,canfammafdaragw
~fldy Baird,CmferamsTachnicd Manager

Margherita R. Mcmck
Ganard Manager

■ sJG’s
Publishers of JOUIINAL OF OBJECT-ORIENTEDPm.
GRAMMING,OWECT MAGAZINE, HOTUNE ON OBJECT.
ORIENTED TECHNOLOGY, THE C++ REPOUT, THE
SMULTALX REFURT, THE lGTERPW’fDNAL00P DLQEC.
TORY,and THE X JOURNAL,

-—.————.—.
Printed in the United States

2 THE SMALLTALKREPORT

ENVY/Deve@en The Proven Standard For Smalltalk Development
An Architecture You Can Build On
ElWY/Developer is a multi-user environment
designed for serious SmaMalk development.
From team programming to corporate reuse
strategies, ENVYLDeveloper provides a
flexible framework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ENVY/Developer

the industry’s standard Smalltalk development
environment

Allows Concurrent Developers
Multiple developm access a shared
repositcuy to concurrently develop
applications. Changes and enhancemen~s are
immediately available to all members of the
development team. This enables constant unit
and system integration and test – removing
the requirement for costly error-prone
load builds.

Enables Corporate Software Reuse
ENVY/Developer’s object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creales
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reliability.

Offers A Complete Version Control And
Configuration Management System
ENVY/Deve/oper allows an individual to
version and release as much or as little of a
project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining projects. In addition,
these tools also make ENVYZDeveloper ideal
for multi-stream development.

.-

4P
ObjeotTechnology OttawaOmce PhoenixOMce
hstarnalionalInc Phone:(613)820-1200 Phone(602)222-9519
2670ClueensviewDrive Fax (613) 820-1202 FaK (602) 222-W3
Ottawa,Ontario WB 8K1 E-mail: info@di.on,ca

-. .

Provides ‘Real’
Multi-Platform Development
With ENVY/Developer, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effost or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports both
Objectworks?Smalkalk and SmalltAk/V’.
And that means you can enjoy the benefits
of ENVYLDeve/oper regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Developer to deliver
Smalltalk applications. For more information,
call either Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today!

B-

Knowledge 114MacKenan Orive,Suite lCO
Cary, North Carolina 27511

Corporation Phone: (919) 481-4030
FM (919) 460-9044

EHVY/Oevalaperisa qisterad Irademtid OWI TatlmologyInkmalimal Im Al etherhand andFrodwl r!dmmam reghmd Ikdwatm 01lkr rmaecllwmmpni~

. ..—. ...—— -... .—

■ THE MULTIPLE DOCUMENT INTERFACE
c.ntinued~m page 1

Key accelerators allow users to close documents, invoke sys-

tem menus, and switch among MDI child windows. The menu

bar has a Window menu that allows the user to arrange the

child documents-supported activities include cascading,

tiling, and arranging icons. The submenu has a list of all the

child documents, referenced by title.

THE WINDOWS 3.X MDI SUPPORT AND THE SMALLTALK

MDI HIERARCHY

What follows is a short summary of the structure of an MDI

apphcation. Please refer to the Microsoft SDK reference man-
ual, GUIDE TO PFiOGRAMMING,MULTIPLEDOCUMENTINTER-

FACE,for addition al information. The MDI application struc-

ture is a key factor in the Smalltalk class design (see Figure 2).

The message loop of an MDI application is similar to a nor-

mal message loop, with the exception of menu accelerator han-

dling, which is handled by the Notifier.

The main window, called the frame window, resembles a

normal top-level window except that a special window, the

MD1 client window,fills all or part of its client area. The frame

window has its own default procedure, the DeffrarneProc. It is

essential for a certain number of window messages to reach the

default procedure; otherwise, the MDI functionality will be

impaired. The frame’s menu is set by sending the message

WmMdisetmenu to the client, with the handle of the Window

menu as additional parameter.

The client window is a preregistered window maintained by

Windows, Additional creation parameters indicate the handle

of the Window pop-up menu (more about this later) and the

ID of the first MDI child document. This information is re-

quired so that Windows can maintain the list of MDI children

under the Window pop-up menu.

MDI children are displayed on top of the client window.

Usually, the client window is resized so that it fills the frame’s

client area. In certain cases, such as when the frame displays a

status pane and/or a tool pane, its size maybe less. The client

resizing is handled by the MDI frame window, similar to the re-

,
I I

Window 1 I Menu
1

Vkwhlmn’ager

I I I

I 1

Figure 2: MDI claas hierarchy.
4

framing of other child windows (but not MDI child windows).

Besides just being there, the MDIClient class does not do much.

The child window looks and acts very much like a top-level

window, except that it cannot move outside the client window

and does not have a menu. Instead, logically attached menu

items are displayed by the frame.

An MDIChild is not created like a regular window, instead,

mdiCreate is passed to the frame window with additional infor-

mation in an MDICreateStruct. The WrrMDICreate message is

then passed to the client window and handled by Windows,

The MDIChildhas its own default procedure that is set during

the creation message processing. Note also that no other

MDIChildshould be created while an MDIChild is being created.

The creation process starts by sending mdiCreate to the client and

ends with the MDIChildreturning from the wmCreate message.

The MDI classes in Smalltalk/V 2.o offer a transparent

framework for writing or integrating MDI applications. An im-

66
The child window looks and acts very

much like a top-level window, except

that it cannot move outside the client

window and does not have a menu.
99

portant asset is the menu handling support, which is currently

unique to Smalltalk /V 2.0.

There are two kinds of MDI menus: the original frame

menu and menus added by MDIChild documents. Each time an

MDIChild is activated, its menu becomes the frame menu. On

the other hand, the original frame menu stays for the duration

of the MDI session. The Window menu represents a special

case because the part where child document titles are added is

managed by Windows.

Another feature provided by the Smalltalk/V Windows 2.0

MDI classes is automatic numbering of the child titles. Child

documents with the same title receive a number as suffix. For

instance, a child titled MyChild changes to MyChild:1 if you cre-

ate a new document with the same title, and the new one is la-

beled MyChild:2. This is part of the CUA specifications. For the

application, the numbering is transparent because the title the

application manipulates differs from the actual caption text.
Given this information, the Smalltalk hierarchy design is

straightforward. MDIFrame and MDIChild are both subclasses of

TopPane, while MDIClient is a subclass of ConholPane (a child

window whose window procedure is managed by Windows).

THE MDI PROGRAMMING INTERFACE

The MDI classes take advantage of the ViewManager class. The

two main benefits of the ViewManager are
_.— —. .— —.—

THE SMALLTALKREPORT

I . . .
Figure 3: T

. clean separation of the user interface from the application

logic

. creation of applications that have multiple views on the

same data

An MDI application will need one object per MDI child in

order to maintain data unique to each window. There are no

limitations regarding the capabilities of the child documents.

They may have any subpanes as children.

The TopPane class is specified by the method

ViewManage~>topPaneClass and defaults to TopPane. Specif@g

MDIChild instead will make the receiver’s main view an MDI

Child window, without further modifications. This trans-

parency allows applications such as TextWindow, Class Hierarchy

Browser, and Graphics Demo to function unchanged in MDI

mode. In addition, the Smalltalk workplace can be switched

back and forth between standard and MDI mode.

EXAMPLE: A WINDOWS SYSTEM EDITOR

SysEdit is an MDI application for presenting the following

Windows system configuration files:

win.Ini
system.ini
config.sys
autoexec.bat

This application is provided in Windows 3.x in the system di-

rectory. A similar application, the multipad, is also provided

in Windows SDK. We have chosen to rewrite this application

in Smalltalk by using the MDI classes. In Listing 1 we show

how to reuse ViewManager subclasses in an MDI application.

In the open method, we create MDIFrame and StatusPane and

invoke the createDocuments method responsible for the creation

of the documents. Each MDI document’s owner is a TextWin-

dow object. By sending the frame: message to a TextWindow ob-

ject, we make the TextWindow mainView an MDIChild and at the

same time set the frame window of this MDIChild object.

The MDIMenu is used for the standard Window menu,

which displays the active documents. The StatusPane will be

used to display the title of the current active document and to

display hint texts for the menu items.

In this example, we take full advantage of one of the

promises of object-oriented technology reusability. The MDI

classes inherit from the TopPane class and reuse the usual Top-

Panes’ owners (ViewManager subclasses).

ADDITIONAL FEATURES OF THE SMALLTALIVV WINDOWS

2.0 MDI CLASSES

The MDI extras include two supplemental windows-the TOOL
MARCH/APRIL1993
Pane and the StatusPane. These are child windows that can be

added transparently to the top and bottom area of a topPane’s

client area. The key element allowing this transparency is the

method freellientiea: aRectangle, which is sent to child win-

dows prior to resizing. The ToolPane and the StatusPane will

both modifi the rectangle to exclude their region, if they are

visible. The resulting rectangle is then passed in the resize: mes-

sage and becomes the argument of the framing block in each

child window. This feature allows these supplemental windows

to be added without modification to the application’s code.

The Toollane uses Took to specify the bitmap and the action

of a tool button. Each tool has the functionality of an owner-

drawn button. It is actually drawn by the ToolPane for perfor-

mance reasons. The ToolPane uses DIBs (Device Independent

Bitmaps) for representing highlighted and normal states. The

DIB technique can be generalized to any kind of owner drawn

controls; it provides fast and efficient mapping to system col-

ors. System colors, such as the button face color, are cus-

tomized through the control panel. To have TooLPane support

these customizations, we define the Tool bitmap as a DIB with

arbitrary colors; for example, blue at palette index 3 for the

button background. At runtime, we load the DIB and change

the color entries in the color table to the actual system colors.

For example, index 3 will get the current button face color. We

then realize the resulting palette and get a DDB (Device De-

pendent Bitmap) with the correct colors. Of course, this pro-

cess has to be repeated if the user changes system colors during

the session (see Figure 3).
.

he ToolPana
66
An MDI application will need one object

per MDI child in order to maintain data

unique to each window.
~

DIB manipulations provide a fast and efficient means to

achieve color support. The drawback is that there is currently

no standard that defines system palette entries; that is, palette

index 3 may have a different meaning for another owner-

drawn control.

The StatusPane is a static pane (the user cannot interact

with it) that displays status or help information. Its design fol-
5

■ THE MULTIPLE DOCUMENT INTERFACE

6

Listing 1. The SysEdit implementation.
.— —

I
MDIViewManagersubclass: #SysEdit
instanceVariableNames:“
claasVariableNames:”
poolDictionacies:

‘WinConstantsVirtuaUkyConatants’

!SysEditclass methods

mdlMenu
“Private- Answera standard MDIWindowmenu”
‘MDIMenunew

appendItem: ‘&NewWindow’selectoc #mdiNewWindow
accell(qn$n accelBits:AfContiol;

appendItern’ &CascadeShift+F5’selecto~ #mdibscade

accelKey vlcF5accelliits: AfWrtualkeyIAfShift;
appendtern ‘&TileShift+F4’selecto~ #mdiTile

accelKeyVkF4accelBits:AfVirtoalkeyIAfShift;
appendItern ‘Arrange&Icons’selecto~ #mdtiarrge;

title: ‘&Windoti.

optionMenu
“Private- Answerthe option menu”
‘Menu new

appendItern ‘&StatusPane’selector:#toggle.Watuspane;
title ‘&Options’.

!SysEditmethods

chihiktivate: aPane
“Private- Updatethe StatusPane”
ImdiAfive I
(mdiActive:=self frame mdiGetAfive) notNil

ifTrue:[(self .statusPanestatusBoxAti#status)
contents: mdiActivelabel].

close:aPane
“Private- Closethe receiver application”
SnralkrdkisRunTime
iPh_cse:[

(MessageBoxconfircrc‘Areyou sure you want to exit?’)
WTrue:[self close.

‘SmaUtalkexit]
iffalse: [Aselfl]

iffalse: [*self close].

createDocumercts
“Private- Createthe MDIdocuments”
Ibuffer winaddresspathlkune file I
buffe~=Strfmgnew 160.
winaddress:=WlnAddresscopyToNonSmalkaUcMemo~buffer.
KemelLbray getWindowsDkectorywinaddress asParameter

lengfh:buffer sise.
patfrMrne:=StcircgfromAddress:winaddress.
winadtiess unlockAndFree.
seLfopenTextWindowpathName,’\SVSTEM.IM’.

self openTextWhrdow:pathName,’\WIN.IM’.
self openTextWlndow’C\CONFIG.SVS’.
self openTextWmdow’C:\AUTOEXEC.BAT’.

label
“Private- Arcswelthe receiver%mainViewlabel”
“System ConfigurationEditor’

mdiMenwanMDIFrame
“Private- Create the menuBarfor the frame”
anMDIFramemdWenuWhcdow

addMenu:self class optionMenuowner: self.
anMDIFramemdiMenuWindow

addMenu:self class mdiMenuownerxelf.
open
“Createand open a SysEditapplication”
self addView (self frame:

(MDIFramenew
owne~ self;
icon: (Icon fromModule:seLfresourceDUFile

id:’Default’);
when #mdiMenuBuiltperforcrc#rndiMenu:;
when: #chikkktivate perform #chihiActivate:;
where #close perform:#close:;

Iabeb self label)).
sell addSubpane:(

StatusPane new
owner:self;

when: #getContents perform #statusPane:).

self openWindow.
self toggleMenu:’&Options’item:#toggleStatusPane.
self createDocuments.

openTextWindowaFileName
“Private- Opena TexWindowapplication as an MDIdocument”
Ifile I
file := FilepathName:aFileName.
(self statusPane statusBoxAt:#status) contents: file file name.
TextWindownew

frame:self fra.cne;
disableSystemMenuItemClose;
icom(Icon

fromModule:self resourceDLLFileid’TextWlndow’);
openOnFile:file.

file close.

resourceDLLFile
“Private- Answerthe DU filenamefor resources”
“Icon defaultDLLFileName

statusPane: aStatusPane
“Private- Set the StatusPane contents”
I statusBoxes I
statusBoxes := OrderedCoUecbonnew

add: (StatusBoxnew
space aStatusPane font widtlu
name: #status);

yourself.
aStatusPane contents: statusBoxes.

statusPaneHelp:aKey
“Private- Answerthe hint text to the StatusPane”
‘HelpSysEditatiaKeyifAbsent:[AsuperstatusPaneHelp:aKey].

toggleMenw roenrskune item: iterrrName
“Private- Togglethe selected menu item”
I theMenu aBooleanI
theMenu:= self frame menuWindowmenulltled: menuName.
(aBoolean:=theMenuisCheckeditemName)

ifTrue [self frame
uncheckItem: iterrdiame
forANMDIChildMenus:menuName]

iffalse: [self frame
checldtern itemlhne
forAUMDICb~ldMenus:menuName].

“aBoolean!

toggleStatusPane
“Private- Show/Hide the TooLF’ane”
sell toggleMenu:’&Options’item:#toggleStatusPane.
self statusPane show.
self mdiArrange.
THE SMALLTALKREPORT

1—- ‘- — “-— ‘“ ““”-

.,, that Smalltalki VQ

is the computer langzage

of the future,

,,, that Small talhl V

is the ideal language for

developing your

professional applications.

,.. that Smal[talkl V

would let you open you T

windows and dialog boxes

even faster,

then...

WindowBooster is for you!

T/#El ult/?na tc3 Wlndo w accelerator

WindowBooster is now available for

Smalltalk/V windows for $49,99

and for Smalltalk/V PM (1.4 and 2.0)

for $99,00

This software also allowsyou to accelerate
windows made with WindowBuilder.

TAUCETIUSA, INC.

1801 Avenue of the Stars ● Suite 404
Los Angeles ● California 90067-5906
10WSthe lines of the ToolPane—each statusPane maintains a col-

lection of StatusBoxes to display information. A StatusBox ap-

pears as a small box with a 3-D effect. The StatusBoxes can be

left- or right-justified or can resize themselves according to the

dimensions of the frame’s client area.

The application may display information in the boxes or as-

sign menu help text for each menu item. The help text is then

displayed in the leflmost status box as the user scrolls through

the menu. For this to take effect, the application defines a dic-

tionary that associates the selectors to the help text.

CONCLUSION

The MDI classes in SmalltalkW 2.o offer powerful Windows

3.x support that compares favorably to other interactive MDI

implementations such as Visual Basic’s. The Smalltalk applica-

tion programmer gets the tools and the technology to create

professional-looking Windows applications.

Future enhancements of the MDI interface will include im-

proved frame menu support such as the ability to add items

dynamically (for example, WinWord does this for the File

menu that lists the most recently loaded files). Still, the MDI

project has been an important experience regarding Windows
3.x integration. We believe that Windows integration will play

an ever increasing role in the Smalltalk/V Windows produc~

it may well end up as the single most important factor when

considering development products, Except for the window

procedure which is hidden, Smalhalk/V is open and flexible

enough to accommodate new functionality such as the MDI.

When designing a Windows-related hierarchy, it is

important to follow the SDK documentation and to model

the classes around it. The MDI class design results directly

from the MDI internal Windows architecture. Take existing

commercial applications as a reference. With a little guess-

work and the resource workshop, it is not difficult to guess

how graphical functionality such as ribbon windows is

implemented.

Windows is a cooperative environment where performance

and resource management is an issue. For example, the system

heaps (User, GDI) are limited to 64K and all the memory in

the world cannot change this fact. We usually think of perfor-

mance/resource requirements and clean object-oriented design

as two impeding issues. It is generally a good idea to experi-

ment with different algorithms and then implement one in the

cleanest possible way. If the algorithm is fast and efficient, the

object-oriented implementation won’t have to trade design

quality against performance. •E
. . ..—

Tarik Kerroum is working with Siemens NixdotfGes.m.b.H. He
holds an engineer’s degree ji-om Ecole Centrale de Paris. Stephane
Lizeray is currently a staff engineer at Siemens Nixdorfwhere he is
working on FINIS, a customizable next-generation banking software
using Smalltalk. His specialty is custom graphical user inetfaces using
Smalltalk/V. They can be contacted at Siemem NixdorfGes.m. b.li.
Obere Donaustrame 19-27 A-1020 Vienna, Austria or via email at
70262. 1762@compusewe.com (Tarik Kerroum) and
70474.3003 @compusewe.com (Stephane Lizeray).
—.. —.

MARCH/APIUL1993

UTTING IT IN PERSPECTIVE

Characterizing object
interactions

Rebecca Wi@Brock
I
n my last column I discussed ways to characterize object

behaviors. I introduced a vocabulary for describing indi-

vidual objects that enabled us to discriminate between al-

ternative ways to design an object’s responsibilities. To fur-

ther develop our model, we need to design interactions

between objects. This column highlights some considerations

for these designing interactions. Before we start, let’s review

how to further characterize object roles and behaviors.

A BRIEF REVIEW

We distinguished whether an object serves a non-application-

specific purpose or if it models a concept specific to the prob-

lem domain. Utility objects are generally useful, non–applica-

tion-specific objects. Business objects model some essential

aspect of the problem domain. Business objects have some cor-

relation with concepts familiar to our software users. We can

further characterize our objects’ behavior

“ Controlling objects are responsible for performing a cycle

of action.

“ Coordinating objects are the traffic cops and managers

within a system: pairing client requests with objects per-

forming the desired service.

* Structuring objects primarily maintain relationships be-

tween other objects.

. Informational objects hold values that other objects can ask

about.

“ Service objects typically perform a single operation or activ-

ity on demand.

. Interface objects support communication between objects

within our program and external systems or users.

Behavioral stereotypes are a useful starting point for think-

ing about objects. However, a stereotype represents an over-

simplified viewpoint. As we look more closely, we may dis-

cover that objects seem to fit several behavioral profiles. For

instance, an object can coordinate activities and structure

other objects.
8

ADDING D~AIL

People often try to fit objects into a behavioral profile too

early. If you start with objects from the user’s vocabulary, you

may have only a set of informational objects and their infor-

mation content. It is easy to be missing any notion of how the

aPPhcation should work! We need to work out how variou5
objects might perform required tasks. In the process of figuring

out these details, we undoubtedly will invent new objects that

embody more varied behavior. Then we will have a richer set

of objects whose behavior we can stereotype.

In the very early stages, functionality may not be cleanly

separated into many distinct objects. We may have objects

with multiple behaviors, rather than many different objects

each with a singular behavior. As a consequence, few if any ser-

vice objects have been identified. Another indicator of an early

design is that control is mixed in with other behaviors in a

seemingly haphazard fashion.

As I gain more experience, I create more designs with

highly specialized classes. Classes are inexpensive conceptual

tools that I use to divide and conquer my modeling problems.

If I find out, as I work out more details, that a class adds un-

necessary complexity, I simply collapse its behavior into its

clients. On the other hand, I oflen find that I can rework

smaller concepts more easily so as to be usable in several places

within a single application.

MAKING DECISIONS

Before I can go on much further, I need to decide upon a

control strategy. I need to develop a predominant pattern for

distributing the flow of control and sequencing of actions

among collaborating objects. 1 also need to understand how

each object accomplishes its tasks. A class may incorporate

more or less intelligence depending on how much it knows

or does, and how many other classes of objects it affects.

Control strategy decisions have a surprisingly strong

influence on how functionality and information are dis-

tributed among objects.

I like to consider alternatives—I don’t just go with the flow

and let interaction sequences happen. I like to mull over differ-

ent ways of accomplishing the same task, constantly seeking

ways to construct my design that preserve encapsulation, max-

imize reuse and minimize the complexity of a class methods

and information structure. In considering alternatives, I also
—. ..— .— ——

THESMALLTALKREPORT

Object Transition
by t)esi~

ANALYSIS & DESIGN

Object Technology Potentiai
Object Technology can provide a

company with significant benefits:

● Quality Software

● Rapid Development

● Reusable Code

● Model Business Rules

Rut the transition is a process that

must be designed for success,

Transition Soiution
Since 1985, Knowledge Systems

Corporation (KSC) has helped

hundreds of companies such as

AMS, First Union, Hewlett-Packard,

IBM, Northern Telecom, Southern

California Edison and Texas instru-

ments to successfully transition to

Object Technology.

Is

KSC Transtilon Services
KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to uhi-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development, The learning curve is

measured in weeks rather than

months. The process includes:

Introductory to Advanced

Programming in Smalltalk

STAPIM(Smalhalk Apprentice

Program) Project Focus at KSC

00 Analysis and Design

Mentoring: Process Support

KSC Development Environment
KSC provides an integrated applica-

tion development environment

consisting of “Best of Breed” third

party tools and KSC value-added

software. Together KSC tools and

services empower development

teams to build object-oriented

applications for a client-server

environment,

Design your Transition
Begin yow successful “Object

Transition by Design’t For more

information on KSC’Sproducts and

services, call us at 919-481-4000

today. Ask for a FREF.copy of KSC’S

informative management report:

Sq?r.wrc As.wt.s lJy Dc’sigm

KnowledgeSystemsCorporation114 MacKenan Dr.

Cary, NC 27511
OBJECT TRANSITION BY DESIGN (919) 481-4000

I, 1992 l(notdml~u !iy$tctn$ (:urp(mdt ion,

■ PUITING IT IN PERSPECHVE
seek out ways to distribute control between business objects. I

prefer models with moderately intelligent, collaborating ob-

jects over ones that have intelligence concentrated into a few

objects.

For objects that play a more central role, I also want to

decide how they are created and initialized and what hap-

pens when they finish performing their assigned tasks. These

details are important so that collaborators don’t become

burdened with unnecessary details or complex message

sequences.

66
I prefer models with moderately

intelligent, collaborating objects over

ones that have intelligence

concentrated into a few objects.
99

I am a strong proponent of constructing simple interfaces

to objects. I also like to reduce the internal complexity of any

one object by spreading responsibilities among cooperating

objects. As I look at alternatives, here are some questions I

ponder:

“ What are the consequences of distributing control among

collaborators?

. Does one way require one object to know more things than

it might otherwise? Are there any significant problems or is-

sues that arise if it does?

. Does an object really need to know and retain information,

or can it just pass that information along?

. What are the consequences of building intelligence into

more objects? How does object intelligence shift between

alternatives?

* Is there a way to exploit polymorphism?

“ IS there a way to exploit inheritance?

“ 1s there a way to design a more general-purpose solution or

more general-purpose objects? What are the costs of build-

ing a general solution? Are those costs warranted, or am I

over-engineering my solution?

CONSIDERING ALTERNATIVES: AN EXAMPLE

Let’s consider interactions among four objects in our Auto-

mated Teller Machine simulation: an ATMobject, a concrete

subclass of Financial Transaction, a Customer, and the customer’s

Accounts. In our simulation, there are several concrete classes

of Financial Transaction, corresponding to the different finan-
10
cial services that the customer can select from a menu (With-

draw, Deposit, Transfer Funds, or Inquire Account Balance).

As we work through the alternatives, I’ll point out a few key

decisions that we should make.

In our design, the ATMobject has a controlling role. It con-

trols this cycle of user interaction:

1. By collaborating with user interface classes the ATMpresents

a greeting message to the bank customer.

2. Once the user has entered a valid bank card and typed in

the correct PIN number, the ATMis then responsible for

providing a menu of financial transactions to the user.

3. The user can select and perform one or more transactions

and can press the Cancel key instead of selecting a new

financial transaction when finished.

4. Transactions will be logged to a history file.

5. A receipt of the transactions will be printed for the user

upon completion of all transactions.

Objects in the Financial Transaction class hierarchy are ser-

vice objects performing a particular financial transaction on

demand. A Customer object contains data about our user that

are pertinent to selecting and perform financial transactions:

the customer’s name and identification number, and a list of

accounts. An Account object knows and maintains facts about a

particular customer account, the balance being just one of

those facts. Most likely, there would be different classes of Ac-

counts (Checking, Savings, plus possibly even a richer hierarchy,

depending on how accounts operate). If we design our Account

class hierarchy so that all classes support the same set of mes-

sages needed by transactions, then we can use them inter-

changeably within transaction code.

Here are two different ways we could design an ATMto in-

teract with a transaction:

First scenario

In this scenario, the ATMtakes responsibility for collecting nec-

essary information from the user (e. g., which account and how

much) before asking the Transaction to do its job:

1. ATMdetermines account, amount, and all other relevant in-

formation.

2. ATM then creates an appropriate Transaction, telling it the in-

formation it needs to know.

3. ATMthen tells the Transaction to perform the transaction.

4, The Transaction collaborates with Account to perform the

transaction.

Second scenario
In this slight variation, the ATMdelegates responsibility for col-

lecting necessary information to the Transaction
——

THESMALLTALKREPORT

: z:;~~rn~~~“’ ; ““”-.~a-=”mbn~
,.,.. .. ,.:-?@w,_

. Smalltalkfor CobolProgrammers .~~%:x

“ Analysis&Design C@$*” ;

. Project Management ,.

. In-House& Open Courses

The Objeet People Inc. 509-885 Meadowlands DE, _’Untarlo, K2C 3N2

Telephone: (613) 22S43812 FAX: (613) 225-5Wi

SrnallW/V and PASTSare registered trademarlu of Oigtilh, inc.
O@clworlK and WuaWVodu are trademarksof parcplaceSystemsInc.
1. The ATMobject creates a Transac-

tion object, handing it a list of

Accounts.

2. ATMthen tells the Transaction to

perform the transaction.

3. The Transaction first needs to de-

termine the amount, desired ac-

count, and other pertinent infor-

mation (based on the kind of

transaction object it is).

4. The Transaction collaborates with

an Account object to perform the

transaction.

What are the trade-offs in choos-

ing one design over the other?

In the first case, transaction code

does not have to deal with collecting

information from the user (such as

desired account and transaction

amount). Transaction need not be

aware of any user interface classes or

be responsible for collecting any in-

formation. We could conceive of de-

signing transactions usable in any ap-

plication involving financial
transactions, not just for our ATMapplication. What is the

downside of this scenario?

Any client using any financial transaction object needs to

do more. For Balance Inquiry, Withdraw, Deposit, and Funds

Transfer, slightly different pieces of information are needed

for each transaction. Balance Inqui~ requires that the client

determine the account. For Withdraw, we need to determine

an account and an amount. Deposit requires determining the

account and amount. Funds Transfer requires two accounts

and the amount to transfer between them.

If we leave the responsibility for determining this informa-

tion with the ATM,we will end up with a fair amount of code

in the ATMjust to set things up. It doesn’t feel quite right to

write slightly different code sequences to set up each kind of

transaction,

In the second alternative, we define our transaction ob-

jects to have a very simple client interface. The ATMcreates

the desired Transaction object, then sends it a message asking

it to perform the transaction. Since the ATMhas visibility of

Customer, it can ask the Customer for its account list, and pass

only the information needed along to the Transaction object.

The code that initiates a funds transfer might look like this:

(Funds Transfer for Accounts: Customer accounts) perform

Transaction.

Our challenge is to construct methods within the Transac-

tion hierarchy that allow us to get reuse through inheritance.
MARCH/APIUL1993
We need to clearly define and document the substeps of a

“generic” transaction algorithm. We need to specify which

substeps are replaceable by subclasses and which are not. We

would probably write common methods that support subsets

of performing a transaction for gathering information from

the user and executing a transaction, such as locking the ac-

count and committing changes to the account.

It clearly seems appropriate for a Transaction in the second

scenario to also assume responsibility for logging the transac-

tion and printing the contents of the receipt, since it knows all

the associated information. We haven’t said anything about

creating new objects to help Transaction accomplish that task,

but that is definitely a possibility. In the first scenario, both

ATMand Transaction know how much money and which ac-

counts are involved, so who should do logging and receipt

printing is much less clear.

It all comes down to deciding what awareness and involve-

ment each object in a collaboration should have. We can de-

sign our ATMto simply cycle through menus creating transac-

tions without much awareness of what happens within a

transaction. We accomplish this by empowering Transaction

with the capability for gathering information it needs from the

user. This requires Transaction to collaborate with a few more

objects (some user interface classes, printing, and logging ser-

vices). Transaction has more responsibility for establishing the

context to do its job.
—. ..— —.—

■ PUmING IT IN PERSPEtXVE
This makes it harder to reuse Transaction objects de-

signed in this fashion in another application, but it certainly

is possible, We could design “smart” transactions that either

could be told what information they need or, lacking this

information, figure it out for themselves. It is important to

work out all the ramifications of establishing the context re-

quired for an object to do its job.

My preference at this point is to work through the second

alternative. It clearly establishes the ATMobject with a control-

ling role and defines Transaction to perform a service. There are

still problems with this design. Transaction has to know too

much context to be portable between different financial appli-

cations—it works only in the ATMapplication. How can we flx
this problem?

66
1am a strong proponent of constructing

simple interfaces to objects.
99

Making the extra effort to design Transaction objects that

are reusable in any financial application leads us to consider

yet another design alternative. We could separate the gather-

ing of information and performing ATM-specific functions

from the actual performing of the transaction. In this third

design variation, ATMTransaction objects serve as interface ob-

jects with responsibility for gathering user input, logging re-

sults, and printing receipts. The ATMTransacbon object creates

and collaborates with an appropriate Transaction object to exe-

cute the transaction. We have created a new class of objects,

ATMTransacbon, to encapsulate the ATM-specific tasks of per-

forming transactions.

Our third and final scenario

In this slight variation, the ATMdelegates responsibility for col-

lecting necessary information to an ATMTransaction object. The

ATMTransaction collaborates with a Transaction object to erce-

cute the Transaction

1. The ATMobject creates an ATMTransaction object, handing it

a list of Accounts.

2. ATMthen tells the ATMTransaction to perform the

transaction.

3. The ATMTransaction first needs to determine the amount,
.

12
desired account, and other pertinent information (based on

the kind of transaction object it is).

4. The ATMTransaction creates an appropriate Transacdon

object.

5. The ATMTransaction then tells the Transaction the account

and amount, and tells it to execute the transaction,

6. The Transaction collaborates with an Account object to per-

form the transaction.

It’s also important to understand what kind of feedback,

if any, occurs between collaborators. Is it direct or indirect,

complex or simple? In the case of ATMand ATMTransaction, if

we design our ATMTransaction so that it logs and prints re-

ceipt information, very little feedback is required between it

and the ATM. If we give the ATMTransaction the task of print-

ing receipt information, it needs to collaborate with Transac-

tion to do so. It probably also has to know whether the trans-

action successfully completed or not before it can print the

results.

Ideally, a client requires no feedback, but simply makes a

request and expects the server to quietly do its job. If possi-

ble, we can shifi responsibilities between clients and servers

to eliminate any such requirement. If not possible, then obvi-

ously, the next simplest solution is direct response in the

form of status returned from the server upon completing its

task. We could design the transaction to return some indica-

tion of success or failure upon completion. This would allow

the ATMTransaction to print the receipt or log the transaction

without having to first ask the Transaction for further

clarification.

CONCLUSION

We’ve focused on designing interactions between collabora-

tors and explored impacts of shitling responsibilities be-

tween collaborators. If we take an even broader viewpoint,

we can stylize interactions between subsystems of objects

and factor design objects for even more general utility. Keep

in mind, however, that the goal of any designer should be to

construct an appropriate object model for the job. It is better

to finish a design and revisit it than spend too much time

looking for the “best” way. Each choice has consequences. A

good designer weighs the alternatives and constructs a prag-

matic solution. 51
—.

Rebecca Wi@-Brock is the Director o~Object Technology Services at
Di@dk and co-author O~DESIGNINGOBJECT-ORIENTEDSOFT-

WARE. She has over 17 years’ experience designing, implementing,
and managing sofi’ware products, with the last nine years focused on
object-oriented software. She managed the development of’Tektronix
Color Smalltalk and has been immersed in developing, teaching, and
lecturing on object-oriented software. Comments, further insights, or
wild speculations are welcomed by the author. She can be reached via
email at rebecca@digitalk. corn. Her U.S. mail address is lli~”talk,
7585 S.W. Mohawk Drive, Tualatin, OR 97062.
..—

THE SMALLTALKREPORT

MALLTALK IDIOMS

Instance specific
how and why

behavior:

Kent Beck
T
his and the next column will discuss technical and philo-

sophical matters. The technical material covers imple-

menting and using instance-specific behavior, the idea

that you can attach methods to individual instances rather than

a class. You might use it in animation, or in building a Hyper-

card-like system. It is not a new idea. Lisp-based object systems

have had it for years, and languages like Self rely on it exclu-

sively. It is not well known in the Smalltalk community, though,

and deserves a place in thfi mature Smalltalker’s bag of tricks.

The philosophical material illuminates the differences be-

tween Digitalk’s and ParcPlace’s view of good Smalltalk style.

ParcPlace grew out of a research atmosphere where truth and

beauty were admired. Although established in business now,

ParcPlace continues to favor elegant solutions. Digitalk has al-

ways been driven by the desire to build commercial software and

has oflen been staffed with engineers whose experience comes

from other languages. Digitalk’s solutions tend to be more prag-

matic and the workings easier to follow operationally, even if

they don’t have the most elegant high-level models.

This month’s column will present a pattern for choosing

and using instance-specific behavior and its implementation in

VisualWorks. In the next issue, I will describe its implementa-

tion in SmalltalkW PM 2.o and summarize the differences in

philosophy revealed by the two implementations.

PAllERN

In my previous column I introduced the idea of a pattern.

Before 1 write a pattern for instance-specific behavior, let me

review. A pattern is a program transformation. It takes a pro-

gram with certain attributes and makes a new program that is

somehow better—more concrete, compact, reusable, main-

tainable, flexible, or efficient. Patterns occur at all levels of pro-

gramming. Some of them are low-level, like naming arguments

and variables; some are tied to a specific language or library,

like patterns for using the collection classes; and some are at

the level of design, describing ways of dividing behavior be-

tween objects. The patterns for instance-specific behavior are

at this most far-reaching level.

Notice that I didn’t say “abstract” level. Patterns always call

for a concrete transformation of a program. Even if the objects

are only in your head or on cards, a pattern that applies to em-

bryonic objects will still call for you to do specific things to those

objects. I have heard complaints that patterns are too vague, or
——

MARCH/APRIL1993
connected only to a certain language. The pattern here stands as

an example of how it sometimes can apply regardless of lan-

guage or implementation. Instance-specific behavior is not lim-

ited to Smalltalk, and any language that provides it can use the

following pattern to guide when its use is appropriate.

Each pattern has the same four parts:

. Trigger. How to recognize when the pattern applies. This

often takes the form of “You have noticed. ..”

“ Constraints. The (often conflicting) constraints on the

solution.

■ Solution. The result of applying the pattern. The insight in

the pattern is largely contained in finding the right balance

between the constraints.

. Transformation. How to transform a program to conform

to the pattern.

Here is a pattern 1 have discovered for instance-specific be-

havior, observed in Digitalk’s PARTS. I don’t claim that it is the

only reason for using instance specialization. If you find uses for

it not covered here, please send them along.

SCRIPTABLE OBJECTS

Trigger

. You have objects that need to change their logic at runtime.

. You have added flags-symbols used as messages or blocks

in instance variables to account for this variation.

. Your users want to add logic to your objects that you can’t

anticipate, but are not prepared to use the full Smalltalk

environment,

Constraints

. Code complexity. The solution must result in less complex

code than you currently have.

- Simple programming model. If you have users who are not

prepared to use all of Smalltalk, the solution must be simple

enough for them to understand.

“ Cannot anticipate all needed behavior. The solution is not

simply a matter of adding enough flags and switches. The
13

■ SMALLTALK IDIOMS
objects will require entirely new, unanticipated logic after

they leave your hands.

“ Expressive power. The solution should be as powerful as

possible and ultimately as expressive as Smalltalk itself.

Soltilon

Make each instance specializable (see the remainder of the arti-

cle for implementation details). At runtime, you or your users

can change the meaning of any message without affecting other

instances. If you want to affect all instances, you can, at your

discretion, make it possible to change the class. The solution

provides a simple programming model at the expense of ex-

pressiveness, but the flexibility of instance specialization makes

up for most of the lost power. It should be possible to remove

the ad hoc specialization of the original code in favor of a more

uniform approach where all changes to logic are done by

changing methods.

Transformation

Flags. If a method uses a boolean flag to differentiate between

cases, replace it with a method that defaults to the case using

the default value of the flag. For example, if you have a method

like this:

display
isHighlighted

ifhue: [self displayHighlighted]
itTalae: [selfdisplayUnHighlighted]

where isHighlighted defaults to false, you would replace it with

the contents of the displayUnHighlighted method. In the meth-

ods that set isHighlighted you have to copy the correct method

into the instance. You may find that afier you have done this

throughout the class, you will be able to apply the pattern

“Eliminate Dead Variables.”

Symbols. If a method uses perform: with a symbol, isolate the

perform in its own method (use the pattern “Composing Meth-

ods”), and replace it with a method that sends the default sym-

bol as a message. Thus:

initialize
listMessage := #list

getList
model perform:listMessage

would become (in the class):

getI.ist

model list

If you wanted to default to the case where listMessage was nil,

you could change getl,ist to:

getList

‘W)
—.—

14
MUI aw

x E55 name ‘R>inl, Ihuloiclimmrj

Y 77 melh.ds

%F&

R 5=
Figure 1. Objects supporting method lookup.

Any object that set the M.Message would have to instead

specialize getList in the instance.

As is the case with flags, afler applying the symbol transfor-

mation, the instance variable holding the symbol may no

longer be needed.

Blocks. The transformation for blocks is similar to the trans-

formation for symbols. The method in the class is the default

to which the block is set, The method will have as many argu-

ments as the block did. Thus, a block used for display

initialize
displayBlock:= [:aMedium I aMediomblack]

displayi)n:aMedium
displayBlockvalue: aMedium

in the class would become:

displayiln: aMedium
aMediumblack

Objects that set the block would have to specialize the in-

stance instead. Note that this transformation will work only for

blocks that use block temporary or argument variables, or in-

stance variables of the object being specialized. Blocks used as a

full closure, accessing variables in another object creating the

block, generally cannot be transformed in this way.

PARCPLACE IMPLEMENTATION

Runtime structures

To understand how to implement instance specialization, you

first need to understand how the current model works. As

shown in Figure 1, every object has a hidden instance variable

that holds its class. The class in turn has an instance variable

that holds a MethodDiciionary, which maps SymboLsto Compiled-

Methods. When an object is sent a message

1. Its class is fetched.

2. The class MethodDiclionary is fetched.

3. The selector of the message is looked up in the dictionary.

4. The CompiledMethod found there is activated.

That’s what happens conceptually, but there are many

clever tricks to make it go faster in common cases where so

much flexibility isn’t needed.
..— .— .-

THESMALLTALKREPORT

n

Y
\E55 !3ss

77

/+

~
name ,Poinl,

class mcihd

a

El

-H

y X5

Figure” 2a. A change for inst;;ce is a change for al~ —

Conceptual model

The way you keep changes to one instance from affecting the
others of its class is simple: They don’t all have the same class.
In Figure 1, all Points point to the same class object. To be sep-

arately specializable, they all need to point to different class ob-

jects, each of which inherits from the original class Point. That

way, methods installed for one instance are installed only in

that instance’s personal class, not the one shared by all the

other instances, Figure 2 summarizes this design.

Note that the class of the class of the instances is not Class, it

is Behavior. (Isn’t it grand to be working in a language that al-

lows you to construct sentences like that and still have them

mean something?) Classes are pretty heavyweight objects, so

the system provides a simpler superclass, Behavior, which just

has methods, subclasses, and superclasses. Unlike Classes, Be-

haviors are not expected to be named and put in a global dic-

tionary, so they are able to be garbage collected when no one

refers to them anymore. They do not introduce instance vari-

ables, so specializable instances implemented this way will only

have private methods, but not state.

EXAMPLE

Creating instance (workspace version)

When I need to begin implementing a design like the one in

Figure 2b, I always start in a workspace. After a bit of experi-

mentation, here is the expression I came up with to create a

specializable Visuallati

I cfassinstance I
CbSS := Behaviornew “Createa new Behavior”

superclass: VisualPart;“Setits superclass”
methodDictionary MethodDidion~ new;

“Giveit a clean MethodDictionary”
setlnstrmceFonnat: VisuatPartformat. “

Giveinstances a reasonable format”
class compile ‘displayOn:aGC’not@ring:nil.

“ViauaW%rtshave to implement displayon:”
instance := class new. “Makethe specializableinstance”

ScheduledWindow new “Create the window”

component: instance; “Mrdcethe instance its component”
open. “Open it”

instance inspect “Inspect the instance so we can compile new methods”

Then in the inspector I can execute expressions like:
MARCH/APRIL1993
x El55
Wpcrelw

Y 77
nlclhrui$

R“

Cla!!

,,a,, %!!!7 : ““”“““

Fl
El

namt ,[+)inl,

x -m Wpcl’clw mclhmh

Y 26 methods

—.
F;gure 2b. Instances can–have their own methods,

self class compile: ‘displayllm aGraphicsContext

aGraphicsContext &playString: ‘Howdy at: 100@100’

notifying: nil

and refresh the window. Try inspecting self class in the instance

to see that the structure built in the workspace matches the one

in Figure 2b.

Working it into methods

Now that we see how to create specializable instances interac-

tively, we need to be able to work the same concepts into per-

manent behavior. If all instances of a particular class are to be

specializable, you can override the class message new

new
“Createa specializableinstance”
“Behaviornew

superclass: self;
formah self format;
methodDictiomry MethodDictionarynew;
new

What if most instances are not specializable? You might

only want to create the Behavior when you know the instance

needs to be specialized. Here are a group of methods that im-

plement lazy specialization:

specialize: astring

“Compile astring as a method for ths instance only”

self specialize.

self class compile: astring no@fmg: nit
specialize

self isSpecializediflme: [Aselq.
ckm := Behaviornew

superclass: seMclass;
format self class formafi
methodDictionary:MethodDietionarynew.

self changeClassToThatOfclass basicNew

Note the strange method changeClassToThatOF. It uses this

interface, which requires us to waste an object, rather than

changeClassTo: so that the primitive implementing it does not

need to do complicated checks to make sure that the argument

is a valid Behavior

isSpecialized
“self class shocddBeRegizterednot
conrinutd on pqy 21

15

Greg Hendley and Eric Smith

GU1-based application development:
some guidelines
F
or this issue, we’ve decided to pull ourselves out of the

muck of nuts-and-bolts details of GUI development in

Smalltalk (however much we like to wallow in it) and

talk about higher-level aspects of developing interactive appli-

cations in an object-oriented environment. In particular, we

will be discussing some rules of thumb for GUI-based applica-

tion development derived over the years.

The guidelines presented here have been gleaned from work

on a wide variety of systems; they should be applicable not

only to particular domains, but to nearly every GUI-based pro-

ject. We hope you find them as useful in managing your pro-

jects as we do.

TERMS

But first a few quick definitions. Two terms we will use a great

deal should be well understood. They are domain model (DM)

and user inte~ace (UI).

Domain Model

The domain model is defined by the set of classes that de-

scribe the model of the entities the user is trying to manip-

ulate. For example, in an airline logistical system, the do-

main model would include classes representing aircraft,

gates, fuel delivery systems, engine parts, maintenance

workers, etc.

Ideally, the DM does not include any information about the

UI. The DM does not know how the information it represents

will be presented to the user, or how the user will manipulate

that information.

Referring to two earlier columns on ICM architecture

(SMALLTALKREPORTMay 1992 and October 1992), the DM is

identical to the Model layer in the ICM.

User Interface

The user interface is a much less cohesive entity. It consists of

the sum of the code that gets the information in the DM to the

user and maps the user’s directives to changes in the DM. In

terms of ICM application architecture, the UI is comprised of

both the Interface and Control layers.

THE BASICS

Before talking about either the DM or the UI in detail, it is im-

portant to get these two efforts off on the right foot. How the
16
division of the design efforts is established at the start of a pro-

ject can have profound effects on its outcome.

Getting things started

Assume that a new project has just started, and an initial meet-

ing about the new system’s overall goals has taken place. The

results are probably some initial forays into DM design (almost

certainly dead wrong) and a few sketched storyboards for the

UI. Neither of these will prove valuable.

First, there should be some measure of understanding

among the designers and developers. A common vocabulary

should come out of the process so that developers can commu-

nicate without talkksg at cross purposes. The most important

outcome is an understanding of what the user wants to do with

the system. Write that goal on the board in big letters before

beginning the meeting, and make sure you can come up with a

one-page summary on that subject after the meeting. Then

make sure everyone has a copy.

Don’t let your UI design drive your DM design

If you have proceeded as described above, your users, and

probably your designers, have a much better idea of how the

system will look from the outside rather than the inside. There

are probably pages of sketches of screens and maybe a flash

prototype.

The immediate temptation is to start driving your entire

design from these storyboards. Starting from the UI sketches is

a good way to generate requirements for the DM. You’ll be

able to come up with a minimal list of things the DM must be

able to do to allow users to accomplish their tasks. However, if

the DM design is derived from the UI design, then the DM de-

sign will suffer badly. It will not reflect the real-world relation-

ships of the entities it contains. It will be more tightly coupled

to the current project than if it were pursued independently,

and so will be less reusable.

There is a danger in looking at a screen drawing and nam-

ing domain objects from it. Instead, look at users’ mental

models of what they do to find DMs. Then teach the interface

to manipulate them.

Don’t let your DM design drive your UI design

The reverse problem occurs if the initial effort goes into pro-

ducing a complete model of the real-world system the user
.

THESMALLTALKREPORT

Voss
Virtual Object Storage System for

SmalltalklV
Semnkss persistent object nmnfzgernent

for all Smalltn[k/V applications

● Transparent access to all kinds of !iimalltalk objects on disk.

● Transaction commit/rnllback of chan6rs to \,irtual objects.

● Access to individual elements of trirtual collections for ODLIMS up

to 4 billion objects pm virtu?d space; objects cachwl for sprcct.

_ Multi-key and multi-value virtual dictionaries for qumy-building

by key range sckxtiun and set intersection.

● Works dirwtly with third party uv?r interface & SQL classes etc.

● Class Restructure Editor for renaming classes and adding or

removin~ instance variables allmxs applications to evolve.

_ Shared accms to named virtual object spaces on disk; object

portability between images. Virtual objects are fully functional.

● Source code supplied.

Some comments uv ham rcc~iwi abw! VOSS:

“.. .ckan ,elegant, Works like a charm. ”
-Hnl Hildrbmmf. Ammct Lnhomtorirs

“Works absolutely beautifully; excellent performance and
applicability.” -Smd DurmI, Micqmics Iustrmrwts

[Ofl~C ~~an~disc`,u"isfr)m3054f ortwt)t>rm)r.ctPit,(\skf,rdct,ils)

VDSS/ Wi”dvws $19.50,VO!iS/2#6 s1450, b’OSS/0S2 in duvclopmcnL

mtcrcard and EurcCard acce’ptrd.PleasunddS15 for shipping.

~ R T S ~~~c Arts Ltd 75 Hcmingford Road, Camhridgr. England, LTl 3BY
TSL: +44 2232123Y2 FAX: +44 223245171
wants to manipulate. From the DM’s perspective, the UI is

laid on top of the DM, This is sometimes as extreme as simply

producing a browser for any and every object the user might

want to edit. It results in an explosion of windows whose rela-

tionships to each other are, from the user’s perspective at

least, mysterious at best.

The UI and DM designs should proceed in parallel

The solution to both of these problems is to allow both de-

sign efforts to proceed in parallel, with each having only the

required level of influence over the other. For example, if as

part of I-U design, a completely new task is identified, then

new functions will be required of the DM. The designers of

the DM would no doubt like to be apprised of this sort of

change.

Similarly, if things thought to be impossible for the DM to

represent are found to be tractable, then the UI designers

should be informed that they may include access to them in

the UI. Both sides of the design effort must be kept up to date

with the requirements and capabilities of the DM.

Both UI and DM efforts must be working from the same

requirements

Without this fairly minimal level of communication, the

project will come to grief at an early stage. Though it seems

obvious, it is worth stating that if the DM and UI efforts are

not kept working on the same idea of what the user wants

and what the DM can provide, grave disorder will result at

the final integration. In the unlikely event users change their

minds, the guiding document of what they want must be

updated and members of both efforts must be given the new

information.

THE DM DESIGN

Fortunately for UI designers, the basic kinds of objects they

will be dealing with and the relationships between them al-

ready are often determined by the structure of the develop-

ment environment. The object orientation of their design is

ensured. Their primary goal is the quality of the UI according

to the user.

DM designers, in comparison, start with a blank slate.

They often must create the DM from the very basic classes

provided by the development environment. As a result, they

are free to make the resulting design highly object oriented or

as much like a FORTRAN program as they wish. Unfortu-

nately, there are more pressures toward the latter than the

former.

Preserve the object orientation of your DM design

Time pressure combined with the speed at which requirements

change is the greatest destroyer of good object-oriented design.

DM designers must balance getting a product out on time with

ensuring that the design stays clean enough to be reasonably

maintainable, extendable, and reusable. Unfortunately, all of

these benefits come at the expense of time.
MANCH/APRIL1993
There is as yet no panacea for this conflict of design goals,

The most consistently successful compromise is to run

through a prototype of the DM design and implementation

as early in the project lifecycle as possible, Then heave the

whole thing into the dust bin and do it right. Most of the re-

quirements changes and design problems will be identified

during the prototype. The resulting final DM design will

benefit from the experience of implementing the prototype

and shaking out the requirements and design changes. If the

interface between the UI and DM has been suitably bounded,

the impact on the UI of this midstream change of DM will be

minimal.

Don’t let external dependencies corrupt your DM design

Another threat to the object orientation of the DM is the re-

quirement that it interface with non-object-oriented sys-

tems. If the interfaces to these systems are built into too high

a level of the DM, their effects will be felt throughout the

whole DM and even maybe visible outside of it. The result

will be a poor object-oriented model of the user’s domain.

There will also bean unacceptable degree of coupling with

the external system,

The way to prevent this sort of damage is to isolate the

offending, non–obj ect-oriented system within a layer of classes

that define an object-oriented model of it. Rather than provid-

ing only an interface to the function calls in the external sys-

tem, expend the extra effort and build an object-oriented
17

■ GUIS
. .—
model of the external system. A couple of layers of classes that

hide the non-object-oriented nature of the external system will

provide the rest of your DM with clean objects to work with

and will keep the DM’s interactions with the external system at

an object-oriented level.

As a quick example, your system maybe called upon to

send requests out of an RS-232 port to some device to request

status. You could simply wrap the system calls that send bytes

down the wire. But this does not model what your DM is really

doing. It is sending requests for status to a remote device.

Defining objects that represent the remote device and its status

would be much more useful and would hide the communica-

tions mechanism used to talk to the device.

Put off information systems interfacing as long as possible

A special case of interfacing with non–object-oriented systems

is the information system. Commonly, this will be a relational

database or perhaps an even more primitive data store. Often

there will be an existing schema in the database for represent-

ing the DM entities. The temptation is to base the DM design

on this schema. Don’t do it. Ignore the schema until forced

bodily to store and retrieve information using the database.

DM designs derived from database schemata often result in

classes that know a great deal of information, but don’t do

anything. There are often no obvious candidate classes to

which important behaviors may be assigned. The result is that

the design ends up with a collection of very passive classes de-

rived from the database schema and another group of classes

representing processes performed using classes from the first

group. The resulting design is nonintuitive and difficult to

convey to anybody outside the initial design team,

The best policy is to pursue a pure, object-oriented design

for the DM and put in the extra work to map this design to

and from the database schema. The extra work will pay off in

improved quality of the DM.

THE UI DESIGN

Since the structure of UI classes is ofien determined by the de-

velopment environment, the degree of object orientation of the

UI is already determined. However, a UI design can be very

clean and object oriented, and still be terrible. We’ll quickly

cover a couple of the most common culprits for poor UIS in an

object-oriented setting.

Provide user-centered views in your DM

This problem is related to the problem of letting the DM drive

the UI design covered above. To keep the UI centered on the

user and not the DM, keep the details of the DM out of any

discussions of the UI. Go through the tasks as a user and treat

the DM as a single big object. Later, during implementation,

UI builders can allocate the various dependencies upon the

DM to the objects best able to address them.

Don’t over-instrument your IA

Beware of feature creep. This oft-repeated caveat still bears em-
18
phasizing. If the DM has been designed on its own, it is quite

likely capable of modeling aspects of the real-world system it

represents, about which the user is quite uninterested. Avoid

the temptation to show the user, in a single application, every

capability built into the DM. The result will look much like a

747 cockpit.

Stick to providing what was originally asked for. If the user

asks for more, you can always be smug about how easy it is to

add it.

KEYS TO SUCCESS

All of the above assume that you will be dividing the work of

DM and UI development. Even if there is a single developer,

these two tasks should be conceptually divided. To make the

whole process work, the two design and development efforts

must be kept reading the same script.

Continuous communication

As mentioned above, keeping the level of communication be-

tween the two design efforts is crucial to avoiding big surprises

come integration time. Both sides of the development effort

must be kept up to date regarding changes generated by the

user, management, and each other.

This communication is so important that clear structures to

support it should be put in place early in the project lifecycle.

Have one or more people on both teams. Have members of

both teams in the same room constantly. Anything that keeps

the two efforts in contact will help.

Continuous integration

As implementation proceeds, integrate the developing UI and

DM components frequently—preferably daily or more often.

Putting off integration until just before project milestones will

simply lead to more and bigger embarrassing surprises.

By keeping the two teams in communication and by con-

stantly testing the fit of their work, both wheels of the pro-

ject can be kept on the same track and schedule slips can be

identified and planned for before they become dangerously

large.

And finally . . .

As a last word, no matter how small the project seems to be, go

through the analysis and design before delving into implemen-

tation. At the very least, you will gain important documenta-

tion of how you were thinking when you began implementa-

tion. This will ease maintenance and reuse even if it doesn’t

ease implementation. ❑

Greg Hendley is a member oftlre technical staflat Knowledge Sys-
tems Corporation. His specialty is cu5tom graphical user interfaces
using various dialects of Smalltalk and various image generators.
Eric Smith is a member of the technical staff at Knowledge Systems
Corporation. Hix specialty is custom graphical user inte$acex using
Smalltalk (various dialects) and C.
They may be contacted at Knowledge Syxtems Corporation, I]4
MacKenan Drive, Cary, NC 27511, or by phone, 919.481.4000.
.- —

THE SMALLTALKREPORT

HE BEST OF comp.lang.smalltalk

Reflection

Alan Knight
A
t its lowest level, Smalltalk is implemented by primitive

operations, usually written in C or assembler. The

umber of primitives is surprisingly small, however,

and most of Small talk’s functions are implemented in

Smalltalk. This includes many basic aspects of the compiler,

the windowing system, and the language itself.

Because of this we can use Smalltalk code to examine or

alter the Smalltalk system. This property is called computa-

tional reflection and is a very powerful, dangerous, and con-

fusing feature.

WHAT YOU CAN DO WITH REFLECTION

In the simplest case we can use reflective capabilities to write

code that reasons about other code (or itself). Examples of this

are the Smalltalk debugger, inspectors, and the senders/imple-

mentors feature. Al of these are written entirely in Smalltalk,

which is made possible by reflection.

These capabilities are benign, since they only examine the

code, but reflection also allows us to alter the system in al-

most any way we choose, This is where it starts to get

dangerous.

Having the ability to change the system gives us an enor-

mous amount of power. We can make drastic changes to the

environment or add very sophisticated features. A favorite

target, at least in Smalltalk-80, is the compiler. Several of the

components we use in our lab make significant changes to it.

We have the constraint engine from ThingLab II, which adds

features for compiling constraints and makes them execute at

reasonable speed. We have ENVY/Developer, which hooks

the compiler into a database for version control and configu-

ration management. We have VisualWorks, which also makes

changes to the compiler, although I haven’t figured out why

it needs to.

System changes allow these products to do things that

would otherwise be difficult or impossible. In the cases of

ENVY and VisualWorks, the changes are so significant that the

products are distributed as images rather than source code to

be filed in.

WHY YOU SHOULDN’T DO IT

Unfortunately, these changes cause major problems for reuse.

Smalltalk and object-oriented programming are being sold as

tools for building sofiware components that can be combined
MARCH/APRIL1993
to easily build systems. Combining components that modify

the compiler (or other basic system components) in incompat-

ible ways is a nightmare. Bringing ThingLab into ENVY was

not easy, even though we had one of OTT’S ENVY gurus doing

the hard parts. Bringing in VisualWorks appeared even more

difficult. Fortunately, there are enough other people interested

in VisualWorks that OTI is doing all the work for us. We just

have to wait a little longer for the product. That solves our im-

mediate problem, but having to tinker with all our compo-

nents every time we bring in a new one doesn’t bode well for

reuse.

I’m certainly not arguing that changes to the system are al-

ways a bad thing, but they are something that should be ex-

amined carefully and avoided if there are reasonable alterna-

tives. Just because you can change the system doesn’t mean

YOU should.

The other problem with making major changes to the sys-

tem is that it’s hard to do it right. Making changes to the sys-

tem is as likely to cause your image to crash as adding a new

feature. In fact, it’s surprisingly easy to make fatal changes

without even realizing it. I know I have. Otlen enough, their

effect is delayed so that I’ve saved my image before realizing it’s

wounded.

TRAPS

There are many potential difficulties in attempting to change

basic features of Smalltalk. The virtual machine may make as-

sumptions about the structure of a few classes. This probably

will not be well documented. If changes can be made, the order

of changes maybe critical, creating code that runs but cannot

be filed in and other interesting phenomena. Getting lost in the

maze of circular definitions is always dangerous.

Fortunately, systems like USENET allow us to draw on the

knowledge of those who have already encountered such prob-

lems. In the remainder of this column, I print excerpts from a

discussion on one particular type of system change, adding in-

stance variables to the class Behatior. Although this thread

originally started with a question about SmalltalldV, most of

the discussion concerns Smalltalk-80. That’s because

Smalltalk/V doesn’t allow changing the definition of classes

that have instances (or whose subclasses have instances). Since

Class, which is a subclass of Behavior, always has instances, we

can’t directly change these definitions in ST/V.
19

■ THE BESTOF COMP.WNG.SMALLTALK
Even in Smalltalk-80, which supports modifying classes

with instances, it is not a trivial matter. We encounter all of the
difficulties described above, and very experienced program-

mers can make mistakes.

ADDING INSTANCE VARIABLES TO BEHAVIOR

Most of what follows is from two very long posts. The first is

from Ralph Johnson, a professor at the University of Illinois,

one of whose research projects is an optimizing compiler for a

statically typed Smalltalk (see September 1991 SMALLTALKRE-

PORT). The other post is from Mario Wolczko, who maintains
the Smalltalk archive at the University of Manchester. Both of

these people obviously have spent a lot of time hacking the in-
ternals of Smalltak

Ralph Johnson (johnson@cs.uiuc. edu) begins.

SmaUtalk-80 lets you add an instance variable to a class

with instances, but you still can’t add instance variables
to Behavior or (XaSs.When we tried, the system started

recompiling every class and, after an hour or so, just

froze. I mentioned this to Peter Deutsch, then ParcPlace

chief implementor and general guru. He stared off in

the distance for several minutes, and then nodded his
head, “Yes, you can’t do it.”

First, you can’t change Behavior, and we didn’t try. Be-

havior defines the part of a class and a metaclass that

the virtual machine knows about. . . .Thus, you can

only change Behavior if you change the virtual machine.
(This is not exactly righ~ you can probably add instance

variables at the back as long as you don’t mess with the

ones at the front.)

It is easy to make new subclasses of Behavior, and to add
instance variables to them. However, if you try to

change (lass then you run into a circtiarity, because

tlaas ultimately defines itself. More precisely, tlass class

is a subclass of ClassDeserfptionclass, which is a subclass

of Behavior class, which is a subclass of Objectclass,

which is a subclass of (lass. (For a very good reason, I
might add. :-))

Thus, if you change Class, you are also changing the
superclass of its class, i.e., you are changing its owrsim-

plementation. I haven’t figured out exactly what breaks,

but it would be surprising if something didn’t. Wel-

come to the navel staring world of reflection.

If you really, really, really want to add an instance vari-
able to CIWSS,it can be done. First, you have to have a

program that can copy an image and write it out to disk.
You then change this program so that when it writes out

a Class, it adds the extra instance variables. While you
are at it you modify Class so that it knows about these

extra instance variables. Run this program and you
have a new image that gives extra instance variables to

Classes.

I have thought long about this program, but the diffi-
20
culty in getting it all to work has never seemed worth

the trouble. There are so many easier ways to accom-
plish the same thing. The easiest is to have a dictionary

indexed by the name of the class, whose value is an ob-

ject that represents the extra instance variables you wish

you could add. This is a little slower than real instance

variables, but is otherwise nearly indistinguishable, es-
pecially if you like to access instance variables with ac-

cessing methods. You just have to write two accessing

methods for each variable foo:

foo

‘(ExtraClassVariablesat selfname) foo

foo: anO~eet

(EntraCtassVariablesah self name) foo: anObjeet

and that is all it takes. If you want to be complete, make

sure that deleting a class removes the entry for the class
from the dictionary.

That is usually what we do, but once we wanted to do

something better. Our compiled Smalltalk lets each

class define its own method lookup routine. When the

compiled code finds that it needs to do method lookup,
it fetches the method lookup routine from an instance
variable in the class of the receiver. This technique

doesn’t work very well unless we can add an instance
variable. Long ago, we hacked around the problem of

not being able to add an instance variable to Class by

adding an instance variable to a component of Behavior,

i.e., to MethodDictionary. Or rather, we made a subclass

of MetltodDietionaryand added it there. Unfortunately,
ParcPlace has made MethodDictiona~ not subclassable.

In an orgy of fiendish hackery, I subclasses set and re-

placed the set of subclasses in a Behavior with a Set-
ThatHaaAMethodLookupRoutine.Now the compiled code

just has to do another level of indirection to find the

method lookup routine, while the normal Smalltalk im-

age thinks everything is the same as it always was.

The unusual punctuation :-) is a USENET convention
called a %miley.” It’s intended to compensate for the lack of
any tone-of-voice cues in text, and indicates humor or some-

thing not to be taken too seriously.

Although this post is extremely informative, its central

premise is no longer valid, as Mario Wolczko

(mariot?cs.man.ac.uk) points out:

It’s with trepidation that I dare to contradict both

Ralph Johnson and Peter Deutsch, but here goes...
The “blue book” definition of the virtual machine men-

tions only the first three instance variables of Behavior,

namely superclass, methodDict and format, and assumes
they are instance variables 1,2 and 3. If you change the

structure or position of any of these, e.g, by adding any

instance variables anywhere in the list before ‘format’,
the system will surely break. The blue book VM makes

no assumptions about any other instance variables in
— . —.

THESMALLTALKREPOIIT

~e. Smalltalk/V users: the tool
TM for maximum productivity *

0 Put related classes and methods into a single task-
oriented object called application.

0 Browse what the application sees, yet easily move code
between it and external environment.

0 Automatically document code via modifiable template:
0 Keep a history of previous vemions; restore them with

a few keystrokes.
0 View class hiemrchy as graph or list,
0 Print applications, classes, and methods in a formatted

repost, pagimted and commented.
0 File code into applications and merge them together,
0 Applications are unaffected by compress log change

and maw other features..

class
...................................
! Deleted classes

((::1-

rowaera.. \@ijll!iiiq
c

Yarn i Deleted methods ~.....................................
nager History —1 Code recovesy

Utilities.. - Applicationprinting~ and snore..

CodeIMAGERm V286, VMac $129.95
VWindow & VPM ~249.95
Shipping & hnndlin~ $13 mnil, $20 ,permpy

Diskette ❑ 31P ~ SW

H

SixGraphm Computing Ltd.
formerly ZUNIQ DATA Corp.t
2035 C6te de Liesse, suite 201

$- ~&$?~:%~$;~56-1032
CmldMAOER h mreB tmckrmrk of SixOm h Co~tiIV I.Id.
Smallulk/V k a IW. hmknmrk of Digimlk, L.

.

MANCH/APIUL1993
■ SMALLTALK IDIords
mntinut-dfmm page IS

Only classes that have a name return true for shouldBeRegis-
tered. If we already have specialized an instance using the
above algorithm, this test will be correct, while other reasons
for creating unnamed classes would render it wrong.

CONCLUSION

You have seen what instance-specific behavior is, why you

would choose to use it, and how to implement it in Visual-

Works. In the next column I will describe how to implement it

in Smalltalk/V PM 2.o, Digitalk’s most technically advanced

product. The differences in implementation reveal some of the

differences in philosophy between the two companies as engi-

neering organizations. These differences will be important to

you as you move between systems. IM ‘
. —.. —.

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. He is also the
founder of First Class Software, which develops and distributes
reengineering products for Smalltalk. He can be reached at First Class
Soflware, P.O. Box 226, Boulder Creek, CA 95006-0226, by phone at
408.338.4649, fax 408.338.3666, or CompuServe70761,1216.
BehavioC it doesn’t assume the existence of Class, flass-

Deseri@on, Metaclass, etc., or know anything about

their structure in addition to those three instance vari-
ables inherited from Behavior. (This may have changed

with more recent versions of the VM, but I don’t think

so—I’11 get to that shortly.)

This alone doesn’t mean that you can add an instance
variable. Another problem arises during the recompila-

tion of methods. When compiled, a method references

instance variables by their offsets within objects. So, if

you add an instance variable to a class, all the instance

methods in that class and its subclasses should be re-

compiled. (Actually, if you add only at the end of the
list, only methods in subclasses need be recompiled,

providing the subclass has its own instance variables,

but the system has never taken advantage of this fact,

and always recompiles everything.) tflso, all existing in-

stances have to be mutated to reflect the new structure.

In older versions of the system, the mutation and re-

compilation were not synchronised, so when adding an

instance variable to the end of Behavior’s list, some of

the methods actually performing the recompilation and

mutation got recompiled before their instances were

mutated (or possibly vice versa, I forget), and the sys-
tem fell over. Since the addition of ClassBuilder in 2.4,

this doesn’t seem to happen any more. Try adding an

instance variable to Behavior after ‘format’-it should

work fine in any 2.4, 2.5 or 4.x system. Whether this was

by design or accident, I don’t know.

An alternative solution (which I dabbled within 2.4

days) is to implement “lazy” mutation—build a com-
pletely new class, delete all the methods from the old

claas’s dictionary except doeaNotUnderskmd (and a few

others needed for mutation), and have doesNotUnder-

stand mutate the object when it receives a message. I

sweated over this for a few days and got the basics work-
in~ but then 2.5 came along...

Ralph Johnson replies:

It is certainly amusing to find out that I have been

avoiding adding instance variable to Class all these

years for no good reason. I don’t know what versions I

originally tried it on, but it was quite a few years ago.
This is a classic example of superstitious behavior-to

keep on doing something because it worked a particular

way once. Thanks to all those who set me straight, and
I’m going to go eliminate some ugly code that has ap-

parently not been necessary for several years.

Alan Knight is currently working in V/Windows on contract for The
Object People. He can be reached at 613.225.8812 or by email at
knight@mrco.carleton. ca.
21

22
—.—.

Excerpts from industry publications
IMPLEMENTATION

. . . “Among those projects I have found to be successful in ob-

ject orientation, there has always been a collaboration of man-

agement (and) developers,” said [Rational Inc.’s Grady

Booth]. He said failures result either when management im-

poses object orientation on an unwilling or unprepared tech-

nology group, or conversely, where the programmer tries to

implement object-oriented systems without the blessing from

or understanding by management. . .

00P5LA conference is object-oriented, David Tanaka,

COMPUTER DEALER NEWS, I III 6192

CULTURAL ISSUES

. . [Taligent’s Mark Vickers:] , . . “We have to change people’s

focus from having to rebuild the world from scratch; with ob-

jects, it’s easier and faster to deliver new ideas and make

money by leveraging on others’ work. [We’ve] got to get the

industry into a mode of being able to leverage its previous

products rather than having to throw things away. ..”

Objects (or end usem Carry Lu, BVE, 12/92

CLIENT-SERVER

. . . 00P and enterprise model design are the two core build-
ing blocks upon which the next generation information sys-

tems must be built ifthey’re to provide manufacturers the kind

of flexibility required to be competitive in the 1990s. And the

prevailing architecture so aptly suited to exploit the potential

of these twin building blocks is client-server architecture. . .

CIM 1/: The integrated manufacturing enterpse, Pe[er F. Lopes,

INDUSTRIAL ENGINEERING, i i/92

DISTRIBUTED OBJECTS

. . . Only distributed objects can talk to each other across the

network through 0R13s-a simple, but important, differentia-

tion from programming-language objects, such as those cre-

ated from C++. Distributed objects differ from prograrnming-

language objects in two fundamental ways: they can be in

different locations (why they’re called distributed) and can use

ORBS. Distributed objects can be confused with programnling-

language objects because the distributed objects may be imple-

mented using an 00 programming language (also used to cre-

ate programming-language objects) such as C++, SrnallTalk,

and Objective C.

Objects everywhere: Sun, Object Design work together on object-or!ented

file system, Shahni Chotterjee, 5UNWORLD, I ! /92
THE SMA1.1.TALK W.PORT

Product Announcements are not reviews, They arc abstracted from press releases prnvided by vendors, and no endorsement is implied.
Vendors intermted in being included in thw feature shnuld send press releases to our editorial offiices,

Product Announcements Dept., 91 Second Ave., Ottawa, Ontario KIS 2H4, Canada,
A new charting product for Objectworks\Smalltalk has been

introduced by East Cliff Sofiware. The project, EC-Charts, al-

lows Smalltalk programmers to easily include scatter plots, bar

charts, and line charts in their application windows. EC-Charts

is a widget, or view the application simply provides the num-

bers, and the EC-Chatts widget plots them and displays the

chart.

East CllftSoftwara,21137 East Cllff Dr., Santa Cruz, CA 95062,

408.462.0641, fax 400.4.S2.0441
We are a rapidly growing

consulting company with

many state of the art openings.

+

LONGTERMASSIGNMENTS

HIGHESTCOMPENSATION

SMALLTALK80

wI

I COMPUTER CORPORATION

1212Avenue or the Americas, New York, NY 10036, 9th Floor

(212) 840-8666 “ (800) 843-9119 g Fax (212) 768-7188

~..—— .— —. ..— —

MARCH/APiUL1993
Digitalk has announced the availability of the PARTS COBOL

Wrapper, a component for PARTS Workbench, the first tech-

nology to wrap COBOL into reusable parts. This client/server

integration enables very rapid visual application construction

from prefabricated sotlware components. Digitalk also has an-

nounced the availability of the PARTS Relational Database In-

terface, a component for PARTS Workbench, which allows in-

tegration with relational databases.

Dlgltalk, Inc., 9M1 Alrpott Blvd., Loa Angelas, CA 90045,

310.045.1082, fax 310.645-1206
SMMLLTAK & C++
PROGRAMMERS NEEDED!

Join the MOST EXCIIZNG Team of OT
Professionals in the Country!

~oth~ell ~ntemational, ~~, a offer

You tidt Opportunity Throughout the US.

PO Ektx 270566 Houston TX 77277-0566
(800)256-0541 (713)541-0100 FAX(713)541-1167

23

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of SmalltalkY1/

Whether youke launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution. Including
award-winning prtiucts, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either wax you’ll learn from a

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Sot?ware “).

We know objects and
SmalltalWVinside out because
we’ve been developing real-
world applications for years.

The result? You’ll absorb
the tips, techniques and
strategies that immediately

reduce your learning curve,
and you71 meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalkk training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,
Puget Power& Light, U.S.

Spri;t, plus many o~hers,
And Digitalk is one of only
eight companies in IBM5
International Alliance for
AD/Cycle—lBM!s software
development strategy for the
19903 For a full description
and schedule of classes, call
(800) 888-6892 x411 ,

Let the people who put
the power in Smalltalk71./ help
you get the most power out of it

boost your productivity You’ll

11 ”,’ ‘ 0: ‘A
~Dlcmmq

A

	By Article Title
	Characterizing object interactions
	GUI - based application developement: some guidelines
	Instance specific behavior, part 1
	Reflection
	The Multiple Document Interface

	By Author Name
	Beck, Kent
	Hendley, Greg
	Kerroum, Tarik
	Knight, Alan
	Lizeray, Stephane
	Smith, Eric
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	GUIs
	Putting it in perspective
	Smalltalk idioms

