The Smalltalk Report

The International Newsletter for Smalltalk Programmers

November/December 1992 Volume 2 Number 3

xception handling is an important part of many languages. Al-
though not provided in the original Smalltalk-80 or in Smalltalk/V,
it is supported in the latest version of ParcPlace’s Smalltalk-80. This
article will show how to build an exception handler for any version

' TAKING
S EXCEPTION To of Smalltalk and will use Smalltalk/V 286 as an example. Along the
way, we’'ll show you why it’s useful for languages to treat seemingly internal

SMALLTALK mechanisms such as processes and contexts as first-class objects.
Tik=liv9 The exception handler was first built for an early version of Tektronix’s
Smalltalk-80. It was modeled after a version described in an article by Evelyn Van

PART I Orden,' and we used it in the type inference system of Typed Smalltalk.? When we
i ported Typed Smalltalk to ParcPlace Smalltalk, we wanted to use their faster ex-

ception handler, so we modified ours to be compatible. Thus, our exception han-
dler is similar to ParcPlace’s, but less powerful. We then developed the V 286 ver-
sion described here, both to test the generality of the solution and to make the
work interesting to a wider audience.

By Bob Hinkle & Ralph E. Johnson A QUICK LOOK AT EXCEPTIONS
Brietly speaking, exception handling is the provision for non-lexical flow of con-
trol in a program when something out of the ordinary (i.e., exceptional) occurs.

Contents:

: An exception handler is a part of the program (usually a block in Smalltalk) that
. Features/Articles can deal with some possible but unlikely event, such as reading past the end of a
1 Taking exception to Smalltalk, file, dividing by zero, or referencing out of bounds in an array. In the usual

Part |
by Bob Hinkle & Raiph E. Johnson

Columns

6 GUIs: Significant supported events in
Smalltalk/V PM as illuminated in

scheme, a program registers an exception handler for a particular kind of event
and then continues with its normal processing. If an exceptional event does occur,
a signal is raised as a notification to the system. The system finds the last handler
that was registered for that signal by searching down the context stack. If one is
found, control passes into the exception handler. Depending on the system, the

Window Builder
by Greg Hendlley & Eric Smith handler will have different options. The handler can usually make whatever
9 Getting Real: How to manage source changes are necessary; execution can then resume where the signal was raised or
without t‘ools . where the handler was registered, or return from where the handle was registered.
by Juanita Ewing This description shows that implementing an exception handler requires ac-
12 ;hqulﬂes’t(af'cl:atmp.lang.smalltalk cess to processes and their context stacks. An exception needs to search the con-
15 S};naI;:Ik Z;zams: Collection idioms text stack to find the correct h-.u.1dlcr for a given signal and implement no.n.—local-
by Kent Beck control flow. As a resull, exception handling could only be added to traditional
20 Putting it in perspective: languages by the language designer. In Smalitalk, however, where processes ure
Describing your design objects and contexts can be objects, exception handling can be added by a pro-
by Rebecca Wirfs-Brock grammer. Smalltalk’s first-class treatment of contexts is one aspect of a concept
. Departments called reflection, which is the idea that languages and systems should objectify

22 Book Review: OBJIECT-ORIENTED their internal mechanisms to make them accessible to the programmer. In that
[ENGINEERING by John R. Bourne

by Richard L. Peskin
23 Highlights

way, programs can monitor and change their behavior, in a sense reflecting on
themselves. Our example of exception handling shows how some reflectiveness
makes a language more adaptable.

contimicd on page 3.

The Smalitalk Report

EDITORS’ | ot
CORNER | [ssshucics

Advisory Board

Tom Acwood, Object Design

Grady flooch, Razional

George Basworth, Digealk

Brad Cox, information Age Consulting
Chuck Duff, The Whitewazer Group
nother OOPSLA has come and gone. This conference represented a significant milestone, Adele Gaildberg, ParcPiace Sysearm
both personally (since it’s finally done and behind us!) and as Smalltalk users. Based on Tom Lave, Onitare, .

: . . Bertrand Meyer, ISE
this conference, it would appear the language wars of the past are now over. Smalltalk is Meitir Page-jones, Wayand Sysvems

definitely well-entrenched as the language of choice within many organizations and few, if | Sesha Pratap, CenterLine Softwara

any, of the so-called research-language-type complaints about Smalltalk were to be ;”":""‘ mAm Labe

found. Smalltalk has clearly made it. Dave Thomss, Object Technalogy ncermational
Interestingly, the void left by the language wars seems already to have been filled by a

John Pugh Paul White

full-fledged, drag-em-out war over methodologies. It seemed there were nothing but _TH-! SHAI.I.TALK Reroxr
methodology tools vendors on the exhibit floor. Many were designed specifically for Jim Anderson, Digiai
methodologies such as Booch or Rumbaugh, while others were “applicable to all method- Adale Goldberg, ParcPlace Systems
ologies” (which, of course, more often than not means “useful for none”). . m;hﬂ% Kngwiedge Systsras Corp.
Two aspects of this methodology war are worth noting. First, it is not clear that any mm ﬁbhn."T rctoy intervational
one will emerge as the winner. That is not such a bad thing. Just as no one language is ap-
propriate for all applications, even within an organization, no one methodology should be Columnists
applied universally. Like the language wars before it, though, this plea for reason and tol- juania Ewing, Digiak
erance will likely be lost among the battle cries. Grey Hendley, Knowledge Systems Carp.
The second and more subtle aspect of this war is that these methodologies seem better Ed Klimas, Linea Engineering Inc.
Alan Knight, Carleton Universicy
geared for the C++ world. Smalltalk developers seemed, for the most part, removed form Suzanne Siaublics, Object Technology'htematlonal

the debate. They talked much more about tools that would help you deliver and much less | Eric Smith, Knowledgs Sysroms Corp.

about methodologies. We will have more to say on this subject and the need for better Rebecca Wirfs-Brack, Digtal

tools that go beyond any particular methodology in future issues. -SIGS Publications Group, Inc.
It is with great pleasure we introduce Ralph Johnson and Bob Hinkle, two well-known Richard P. Friedman

members of the Smalltalk community, as our featured writers this month. Over the next Faunder & Graup Publsher

few issues, they will address in detail the issue of exception handling using Smalltalk. This Kristina Joukhadar, Masaging Edior
is a topic important to all computing languages and one that is often misunderstood. In Susan Cuitigan, Pigyim Road, Lo, Creacive Diraction|
their opening article, they describe the interface for their exception handler, along with Karen Tongish, Producsdan Edior

the machine-independent aspects of its implementation.

Also in this issue, Kent Beck continues his survey of the Collection classes, highlight-
ing interesting facts about many of the more popular classes. Rebecca Wirfs-Brock
speaks about the need for properly described classes and applications. Juanita Ewing de-
scribes a straightforward mechanism for managing source code on small projects. Greg
Hendley and Eric Smith survey the events supported by PM’s Pane classes. Richard Pe-
skin reviews John Bourne’s new textbook, written for engineering programs that intro-
duce the object-oriented paradigm. Finally, Alan Knight returns with more discussion
from the USENET world.

Happy holidays to all!

The Smalltalk Report (ISSN# 1036-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues.
Published by SIGS Publications Inc., 588 Broadway, New York, NY 10012 (212)274-0640. © Copyright 1992 by SIGS Publications, Inc. All rights re-
served. Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation af the US Copyright
Law and is flatly proh ial may be reproduced with express permission from the publishers. Mailed First Class, Subscription rates 1 year, (9
issues) domestic, 365, Foreign and Canada, $90, Single copy price, §8.00. POSTMASTER: Send address changes and subscription orders to: THE G4+ ROy, THE SMALETALK REPORT, THE INTERNATIONAL
SMALLTALK REPORT, Subscriber Services, Dept. SML, P.O. Bax 3000, Denville, N] 07834. Submit articles 1o the Editors at 91 Second Avenue, Q0P Dmscrony, and THe X JounmaL

Ottawa, Ontario K15 2H4, Canada, R e -

2 THE SMALLTALK REPORT

TAKING EXCEPTION TO SMALLTALK continued from page 1

This article and its sequel next month present a Smalltalk im-
plementation of exception handling. This month, we’ll describe
the systemn’s interface and the machine-independent aspects of
its implementation. Next month, we’ll complete the picture by
describing the V 286-specific implementation.

THE EXCEPTION HANDLING INTERFACE
At the heart of the exception handling system are the classes
Signal and Exception. An instance of Signal represents an excep-
tional event that might occur and its most important methods,
handle:do: and raise. Sending handle:do: to a Signal object regis-
ters a block that can be evaluated if that event occurs. For ex-
ample, suppose OutOfBoundsError is a global variable that holds
a Signal object. As the name implies, this signal is intended to
signify out-of-bounds references in arrays and might be used
in a method of class Array as follows:

checkFifthElement

OutOfBoundsExmror

handle: [:exception | "self handleException: exception]
do: [~self at: 5]

The effect of handle:do: is to evaluate the second parameter
(do: block), with the addition that a raised OutOfBoundsError
will be handled by evaluating the first parameter (handle:
block). So, as you might expect, evaluating #(1 2 3 4 5) check-
FifthElement will return 5, but evaluating #(1 2 3 4) check-
FifthElement will cause the block [:exception | self handleExcep-
tion: exception] to be evaluated. What happens next depends
on Anray>>handleException: It might define a default value for
that array, prompt the user for information, or form some
other appropriate response.

For this scheme to work, the system must use OutOfBounds-
Error to signify the out-of-bounds condition. This can be done
by sending the raise message to OutOfBoundsError in the midst
of at: (and methaods like it), as follows:

at: anIndex
<primitive: 60>
(self outOfBounds: anIndex)
ifTrue: [~OutOfBoundsError raise]

One interesting aspect of the handleException: message is its
parameter exception, which is an instance of the class Exception,
Each time a signal is raised, a new exception is created to ob-
jectify that fact. The exception is a convenient place to encap-
sulate information about both the signal and the context in
which it was raised. Particular error information or a special
error message can be associated with an exception by using
variations of the raise message, in this case raiseWith: and
raiseErrorString:, respectively. In this way, an exception han-
dling block can learn a great deal about the error by accessing
the exception, which allows it to respond more intelligently.

In addition, class Exception provides support for common
exception-handling techniques, including the messages
proceed, reject, restart, and return. When an exception pro-
ceeds, control resumes in the context where its signal was

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,
dBASEII], Lotus, and Excel.

Intelligent Systems, Inc.

{ 506 N. State Sireet, Ann Arbor, M 48104 (313) 996-4238 (313) 996-4241 fex

raised, and a value can be returned if desired. This is how a
new default value can be defined for an array. Thus, handleEx-
ception: could be implemented as:

handleException: anException
anException proceedWith: 'Bob’

This will cause the string '‘Bob' to be returned as the value for
any index outside the array’s bounds. In addition to proceed,
you can send restart to an exception, which causes the handle:do:
context to be restarted, or send return, which causes the han-
dle:do: message itself to return, again with the option of return-
ing a specified value. Finally, sending reject to an exception is a
way of saying that the current handler can’t solve the problem.
The system looks for the next handle:do: context down the stack
that can handle the signal and evaluates its handle: block. These
possibilities are illustrated in Figure 1.

For the purposes of this example, we assume that Array>>foo
is implemented as:

foo
Transcript show: self checkFifthElement printString

Now, if #(1 2 3 4) foo is selected and evaluated, when fetch-
HandlerBlock returns, the context stack will be as shown in Fig-
ure 1, with the exception’s instance variables signalContext and
handlerContext referring to the indicated contexts.

There are several ways to define Array>>handleException:.
One possibility is for it to proceed from the exception, as in

1 Exception propagatePrivateFrom:

2 Exception propagateFrom:

3 Signal raiseWith:startingAt:
extraString:proceed:

4 Signal raise

5 Array at: -4—— gignalContext

6 Signal handle:do: <¢—— handlerContext

7 Array checkFifthElement

8 Array foo

Figure 1. Stack during exception handling.

NOVEMBER / DECEMBER 1992

m TAKING EXCEPTION TO SMALLTALK, PART |

handleException: exception
exception proceed
In this case, when the handle: block of handlerContext is evalu-
ated, nil will be returned as the value of the Array>>at: message
send, the fifth context on the stack, and execution will proceed
in the sixth context. However, if handleException: is defined as

handleException: exception
exception retum

then nil will be returned as the value of the Signal>>handle:do:
message send corresponding to the sixth context on the stack,
and execution will proceed in the seventh context. Using
restart, as in

handleException; exception
exception restart
will cause the handlerContext, the sixth context on the stack, to be
restarted from the beginning, in effect reevaluating the do: block.
Finally, the exception handler may reject the Exception, as in

handleException: exception
exception reject

In this case Exception>>propagatePrivateFrom: will be called
again, but this time the search for a handler will proceed
downward from the context just below the handlerContext, in
this case the seventh one on the stack.

(=3
Briefly speaking, exception handling
is the provision for non-lexical
flow of control in a program when
something out of the ordinary (i.e.,
exceptional) occurs.
g o

There is one final part of the system that interacts with ex-
ception handling, though it’s not implemented in either of the
above two classes. This feature is something called an unwind
mechanism, which is a way for a programmer to ensure that
certain actions are performed, even if a context is skipped dur-
ing exception handling. For example, when an exception does
a proceed, restart, or return, the flow of control jumps into
lower contexts on the procedure’s stack, and any higher con-
texts are removed from the stack without ever returning to
them. This can be a problem: The contexts that were skipped
might have performed some clean-up actions, such as closing
files or releasing semaphores, if they’d been allowed to finish
execution and return normally. Skipping these contexts during

exception handling means skipping important clean-up jobs.
The solution to this problem is to define a special method,
whose purpose is to ensure clean-up blocks will be executed,
even in the presence of exception handling. The name of this
method in Smalltalk-80 is valueOnUnwindDo:. Assuming
aCollection is defined, evaluating

[aCollection checkFifthElement]
valueOnUnwindDo: [Transcript show: ‘Time to clean up!']

will cause the first block, [aCollection checkFifthElement], to be
evaluated. If aCollection has five or more elements, the value of
the fifth element will be returned, and nothing more needs to be
done. However, if aCollection has four or fewer elements, and if
the exception handler for OutOfBoundsError causes control to re-
turn past the context of the valueOnUnwindDo: method (in effect
skipping it), the second block will be evaluated, allowing any
clean-up or finalization to be done. In Smalltalk-80, unwind
blocks are even executed if they’re skipped by a normal method
return, because up-arrow is treated just like a return from an ex-
ception. In V 286, though, the meaning of up-arrow is hardwired
into the virtual machine, so we can’t duplicate this behavior.

THE MACHINE-INDEPENDENT IMPLEMENTATION

Although an implementation of exception handling inevitably
delves into system-specific code, much of our solution is sys-
tem independent. In fact, the same implementation of class
Signal is used for Tektronix and Digitalk platforms (and poten-
tially for ParcPlace), and most of class Exception is common as
well. This section considers the system-independent aspects of
the exception-handling package.

To begin with, there are a number of predefined signals, all
of which are defined in the Signal class>>initialize method and
accessible using messages to Signal. These basic signals include
ones for unhandled exceptions and keyboard interrupts. In ad-
dition to these, a class variable called ErrorSignal is added to
Object (just be careful how you add it!) and is accessible by us-
ing Object>>errorSignal.

To create a new signal, you send the message newSignal to
an existing signal. So, for example, we could create the signal
OutOfBoundsError by evaluating

OutOfBoundsError := ErrorSignal newSignal

either in a workspace or (more likely) in a class initialization
method. The newSignal method creates the new object and sets
its parent instance variable to the receiver. The parent variable
in class Signal is used to provide more structure in signal han-
dling. When a signal is raised, it can be handled by an excep-
tion handler for the signal, by one for the signal’s parent or by
one for any of the signal’s ancestors. In this way, a programmer
can define some general response for a tree of signals by regis-
tering a handler for the signal at the root. This response can
then be specialized by registering more specific handlers for the
signals further down in the tree.

Once a signal has been defined, sending it handle:do: regis-
ters an exception handler for it. The code for handle:do: is

4

THE SMALLTALK REPORT

S-7-

Now available!
silence 2.0
for Windows
and PM

O

Adlgommo solutions

15.00 mail. §25.00 courier inside Morth Amenica. $25.00 mail, call Tor courier price oulside Horth America. Vi

-e-n-c-e

Multi-user source code control

and versioning system
for Smalltalk /V

NEW! ode manoged on o dienl-server model «
NEW! qutomalic background updating
NEW! linked sub-projed suppor
NEW! UFO persistenl object laalkil
NEW! Aulomalic reporl generalion
automalic change docwmenting
ship campiled code without source =
package ond lock releases =
change log browser and restorer «

Starting from

$149.95

source code induded

orders add 5% NO AMEX OR MASTERCARD.

1 Unil 6, 387 Spadina Avenue, Toronlo, Onlario, Canada, M5T 2Gé Phone: (416) 351-8833 Fux: (416) 408-2850 CompuServe 75430,400
Shipairig ani \ haneling S

Canadion arders add 7 GST Onlaio arders add 8 PST silence is o drademark ¢

figomma solulions

alhalk Vi n irademurk o Digilalk, Inc.

handle: handlerBlock do: doBlock
"Evaluate doBlock. If all goes well, retum its value, If an exception
occurs then the returned value could be generated by evaluating
retumBlock."
| returnBlack |
returnBlock := [:value | *value].
~doBlock value

This method’s most significant role is as a placeholder. Its basic
function is simply to evaluate its second parameter, the do:
block. But it also marks a place on the context stack so the sys-
tem can find an appropriate handler when an exception oc-
curs. How this happens will be explained next month when we
consider Exception>>fetchHandlerBlock:. The block stored in the
retumnBlock temporary variable is used to make implementing
Exception>>return easier.

The only other method we mentioned for class Signal was
raise. As we said before, there are actually many variations of
the raise message, depending on whether the exception han-
dler can proceed through the exception, whether there’s a pa-
rameter or error string needed, and so on. All these raise
combinations call the same private method, which is Sig-
nal>>raiseWith:startingAt:extraString:proceed:. This is imple-
mented as follows:

raiseWith: parameter startingAt: context
extraString: str proceed: aBoolean
"Create a new exception and have it look for handlers
starting at context,"
| exception |
exception := self newException
signal: self
parameter: parameter
extraString: str
proceedBlock:

(aBoolean
ifTrue: [[-value | *value]]
ifFalse: [nil]).
~exception propagateFrom: context

This method creates a new instance of Exception, passing the
signal as one of the parameters in the creation message. In ad-
dition, if aBoolean is true, the signal is “proceedable”, which
means that the handler is allowed to send the exception the
proceed message, in effect declaring the error completely re-
solved and causing a return from the raise message send. If it is
proceedable, the new exception will be passed the block [:value
| ~value]. Like returnBlock in the handle:do: method, the block
here simplifies our implementation, in this case making Excep-
tion>>proceedDoing: much simpler. Finally, this new exception
is sent the message propagateFrom: with the context passed in as
a parameter. This begins the process of finding a handler for
the exception.

Exceptions have five instance variables: signal, parameter,
extraString, proceedBlock, and handlerContext. The first four
are set by the signal:parameter:extraString:proceedBlock: mes-
sage, which is sent by a signal when the exception is created.
The value of proceedBlock, if it isn’t nil, is the [:value | *value]
block we saw above. After creating a new exception, a signal
sends the propagateFrom: message, which in turn calls the
propagatePrivateFrom: method. In addition to error handling,
propagatePrivateFrom: sends the message fetchHandlerBlock: to
find the right handler for the exception (in the process, it sets
the instance variable handlerContext to the appropriate han-
dle:do: message’s context) and evaluates that handler. The
implementation of fetchHandlerBlock: is described in next

continued on page 14...

NOVEMEBER / DECEMBER 1992

5

Uls

Greg Hendley and Eric Smith

Significant supported events in Smalltalk/V PM
as illuminated by Window Builder

fyou have used Window Builder by Cooper & Peters, then

you have taken advantage of its fill-in-the-blank way of

writing when:perform: statements for the open method.
You have probably noticed there are more events than you
thought you needed. You may have even asked yourself,
“Should I be using these events and, if so, how?”

In this installment of GUI Smalltalk, we will discuss some of
the significant supported events for the subpanes and controls
directly supported by Window Builder. This is not intended to
be an exhaustive discussion of every event; it will, however, get
the adventurous off to a good start.

We decided classes that implement supportedEvents would
be the most interesting to look at. The remaining classes should
inherit their superclasses’ behavior. We will discuss each class in
turn, including some significant supported classes.

TopPane

Nearly all windows involve some kind of TopPane, which is
usually the window containing all the other controls. TopPanes
support a number of events that no other kind of window is
interested in.

» #validated. This event is generated as the final act in open-
ing a TopPane. When this occurs, the pane represents a
valid Presentation Manager (PM) window. This event sel-
dom requires a handler. However, in some rare instances, it
provides an opportunity to do any necessary twiddling of
the PM frame window after it has been opened but before
any of the children have been opened.

#activate. When a frame window becomes the “active’ win-
dow (i.e,, it is selected, given the active window border
color, and the input focus), the window message WM_ACTI-
VATE is sent along to the PM frame window. In Smalltalk,
this results in the #activate event. A newly opened window
usually becomes the active window, so this happens when
the window is opened as well as each time the frame win-
dow is activated.

#menuBuilt. The #menuBuilt message is generated after the
menu bar has been created but before children are opened
or the TopPane validated. If you are using WindowBuilder, this
event is unlikely to occur. Cooper & Peters have circum-
vented the normal menu bar creation methods in their open

methods. Ordinarily, this event might be used to initialize
the enable/disable state of the various menu choices, add
custom menus, etc. When using WindowBuilder, these sorts
of activities can be performed in the #initWindow method.

"« #close. Whenever TopPane, not ViewManager, receives the
message #close, it will generate the event #close before tak-
ing any action. If there is no handling method, or the han-
dling method returns nil, then the close operation will pro-
ceed normally. Otherwise, no panes will be closed. Handlers
for this event are quite common, particularly if dependents
are used. This provides the ideal place to clean up depen-
dents, PM resources, and other potential garbage as the
window disappears.

« jthelp. The #help event occurs when help is called for via
the F1 key. Using the help menu (should one be available)
will not generate this event. The handling method may do
whatever it pleases by way of providing help (e.g., tossup a
dialog, open another application, put up a message box). If
there is no handling method, or the handler returns nil,
then the problem will be passed along to the PM help man-
ager. Note that if you have a HelpManager defined for a win-
dow as well as a handling method for the help event, then
unless the handling method returns nil, the PM help man-
ager will not come up when F1 is pressed.

* #timer. This event will be generated whenever the frame win-
dow receives the window message WM_TIMER. This only occurs
in special circumstances beyond the scope of this column.

#topened. This event is a red herring. It won’t hurt a TopPane
to have a handler for this event, but that handler will never
be activated because TopPanes don’t generate this event.

DialogTopPane

DialogTopPanes behave just like TopPanes in most respects (in-
cluding those having to do with generating events). All the
events described for TopPane above are inherited, except that
those having to do with the menu bar will not be given a
chance to occur. One additional event is generated by dialogs:

* #opened. After a dialog is built, but before processing be-
gins, the event #opened occurs. This provides the owning
ViewManager with the opportunity to fill in entry fields, ini-
tialize button choices, etc.

THE SMALLTALK REPORT

SubPane

SubPane is included even though it is an abstract class. Many
normal behaviors are described in this class. We will take ad-
vantage of inheritance in our descriptions and only deviations
and additions will be described for subclasses.

« #display. While SubPane supports this event, it is only re-
ceived by GraphPare. So for all other subclasses, unless you
write a method that sends event: #display, you can disregard
this event.

#iresize. This is sent after PM has resized a top pane (or
other subclasses of ApplicationWindow). Most applications
have no need for this event. Possible exceptions are special
uses of GraphPane and GroupPane. Most resizing is handled
with the normal get contents and display methods. This is
supposedly one of the advantages of using an existing win-
dowing system such as PM.

figetPopupMenu. This event normally occurs as a result of
the mouse button2 click. No surprise here.

f##getMenu. This event is usually not sent if the window was
built using Window Builder. The exception (there’s always
an exception) is when the pane looks for its pop-up menu.
If it can’t find one, it looks for its regular menu to use for a
popup. Therefore, it is your choice to use this or the previ-
ous event for your pop-up menus. Proper discussion of
menus would require its own column.

#igetContents. Now we are back on familiar ground. This
event is sent whenever a subpane is opened. It is used to set
the text of a text pane, list of a list pane or combo box, and
label or text for other controls. This setting is normally
done using the method contents:. It is also sent as part of
the restore and update methods for many classes.

#thelp. This is normally sent when the F1 key is pressed. Not
all subclasses receive this event.

TextEdit

« #textChanged. This event is sent each time a character key,
backspace, or delete is pressed. Think about whether you
want to respond. This event will be sent frequently if entire
paragraphs are being typed.

#horizSeroll. You normally will not care about this event,
which is sent when you scroll using the horizontal scroll
bar. It also happens with automatic scrolling, which occurs
when you type past the pane and word wrap is off.

#vertScroll. This is similar to horizScroll.

#help, #getPopupMenu, and #getMenu. None of these are
received.

TextPane
TextPane inherits events from TextEdit. It also adds one event:

* #save. This is sent through selecting the “save” item in the
pop-up menu for TextPane.

ListBox
« #charlnput. Most Smalltalkers do not use this event; they
use the event #select, which happens when a character is
typed. If a character is the first character of one of the items,
that item is selected.

#drawltem and #highlightltem. Seldom used by most
Smalltalkers, these are sent only when a user-drawn item is
included in the list of items. This deserves its own column
and will not be discussed here.

#select. This event occurs when an unselected item is se-
lected, not when a selected item is re-selected. It also occurs
when an item is selected by typing its first character.

#doubleClickSelect. This event happens whenever an item is
double clicked. Behavior is the sarne whether or not the
itern was already selected.

ListPane
Although neither super- nor subclass of ListBox, ListPane be-
haves similarly. The exception is as follows:

« #tselect. This event occurs when selecting an item that is al-
ready selected.

ENTRYFIELD

Entryfield is the Smalltalk class representing one-line entry ar-
eas commonly seen littered about dialogs, although they may
be used in any window. Most of Entryfield’s interesting behav-
ior can be used by paying attention to only two events:

« #getContents. As with most other panes, this event is gener-
ated by an Entryfield when it first comes up. It provides a
nice opportunity to initialize the text contained in the entry
field before the user gets to it. This is done in the handling
method by sending #contents: to the pane with an appro-
priate String as an argument.

#textChanged. Any time the contents of an Entryfield are
changed, the #textChanged event is generated. It doesn’t
matter how the change originated; whether the user typed
in more characters or somebody sent #contents: to the En-
tryfield, a #textChanged event is generated. This means that
setting the contents of an Entryfield in the handler for a
#textChanged generated by that Entryfield will lead to
infinite recursion.

ComboBox

» #textChanged. Be careful about using this event as a trig-
ger for other activities. We recommend you save the new
text somewhere or note that the text is changed. One thing
you do not want to do is update. This will create a circu-
larity. The event #textChanged is sent in response to sev-
eral activities: once when contents is set and twice when
you type the first letter of one of its list elements. It is not
sent when you type any other character. It is sent when

NOVEMBER / DECEMBER 1992

mGUIs

you press the pull-down button and when you select an
item from the list.

« #charinput. This happens whenever any character is typed.
Notice the difference between this and the previous event. A
character can be typed without being entered into the text
part of the combo box.

« #select. This event occurs at peculiar times the way
#textChanged does. It is sent twice when text is in the entry
field part and the list is pulled down. It is sent once when
no text is in the entry field part and the list is pulled down.
It is not sent when an item is selected that matches the text
in the entry field part. It is sent once when an item is se-
lected that does not match the text in the entry field part.

« #doubleClickSelect. This event does not happen for the
ComboBox. -

#drawltern. This event occurs when a user-drawn item
needs to be drawn. Most Smalltalkers will not use this event.

#highlightltem. This event occurs when a user-drawn item
needs to be highlighted. Most Smalltalkers will not use this

event.

« #listVisible. This happens when you press the pull-down
button. Most Smalltalkers will not use this event.

BUTTON

Button is the superclass of several kinds of controls that get
clicked. Nearly all of them generate events, which are expected
to be handled in similar ways.

» #getContents. This occurs when the pane first comes up. It
can be used as an opportunity to set the contents of the but-
ton. For most kinds of Button, the #contents: message ex-
pects a String as an argument, This String will become the
label for the button.

* #clicked. Any time a Button is pressed, the #clicked event
occurs. For instances of Button, all you need to know is that
the Button was pressed. For toggle-type buttons, the action
of your handler may depend on whether the button was
clicked on or off. This can be determined by sending the
message #selection to the button. The Boolean returned will
reflect the state of the button.

DrawnButton

The class DrawnButton represents a fairly special subclass of Button.
It isn't like the others in that it has no predefined look. Instead, the
owning window (or, in our case, the ViewManager) is expected to
draw whatever it wants on the button’s graphics context.

* #getContents. This event occurs when the pane first comes
up. It may be used as an opportunity to provide the pane
with a Bitmap, which it will draw on itself. DrawnButtons ex-
pect a Bitmap as an argument for the #contents: message.

* j#drawltem. Any time a DrawnButton pane that does not have
a Bitmap is asked to display, it will generate this event. When

the handling method gets control, the DrawnButton pane will
have a valid graphics tool. The handler method may then ask
for its pen and draw whatever it wants on it. Note that this
event also occurs as a result of the button being clicked.

« #hightlightitem. This message is genérated as a result of
pressing a DrawnButton. The underlying PM window messages
inform as to whether highlighting is to be added or removed.
Alas, by the time we reach the event level, this information has
been lost. As with #drawltem, the graphics tool of the Drawn-
Button in question is valid while this event is processed.

SpinButton

Admittedly, this class is not directly supported by Window
Builder. It is included in the standard image and can be added
to Window Builder as a custom pane.

* #igetMenu, #getPopupMenu, and #help. None of these are received.

» #textChanged. This is an unusual event in the number of
times it occurs for a given action. It is sent once for each
character typed. It is normally sent once when the up or
down button is pressed. When there is text in the entry field
that does not match any of its enumerated values, and the
up or down button is pressed, the event happens twice. It
happens once when the backspace key is pressed and twice
when the delete key is pressed.

« #up. This event is sent when the up button is pressed. Nor-
mally, you would only look at the #textChanged event.

* #down, This event is sent when the down button is pressed.
Normally, you would only look at the #textChanged event.

s #getContents, This event is ignored if the spin button is nu-
meric, When the spin button is non-numeric, it expects to
be told its list of enumerated values.

ScrollBar

Scrolling, with or without the scroll bar control, deserves
more space than we can give here. We can, however, point out
a few features.

The following events occur as a result of pressing the ar-
rows, clicking in the blank areas, or moving the tab: #nextPage,
#prevPage, #nextline, #prevline, #sliderPosition, #sliderTrack,
and #endScroll.

The following events do not occur: #getMenu, #getPopup-
Menu, and #help.

#getContents occurs in the same manner as for most sub
panes, but scroll bars do not know the method contents:. In-
stead, they use position:. B

Greg Hendley is a member of the technical staff at Knowledge Sys-
tems Corporation. His OOP experience is in Smalltalk/V(DOS),
Smalltalk-80 2.5, Objectworks Smalltalk Release 4, and
Smalltalk/VPM. Eric Smith is also a member of the technical staff at
Knowledge Systems Corporation. His specialty is custom graphical
user interfaces using Smalltalk (various dialects) and C. The authors
may be contacted at Knowledge Systems Corporation, 114 MacKe-
nan Drive, Suite 100, Cary, NC 27511, or by phone, 919.481.4000.

THE SMALLTALK REPORT

ETTING REAL

Juanita Ewing

How to manage source

without tools

any Smalltalk programmers develop significant ap-
Mplications without any source-management tools.

Although it takes a certain amount of discipline,
small- to medium-sized applications can be developed without
additional tools. This column will describe several sound prac-
tices for the successful management of application source.

The code in this column is for versions of Smalltalk/V un-

der Windows and OS/2. The ideas are applicable to other ver-
sions of Smalltall/V and to Objectworks\Smalltalk.

CONCEPTS
One concept is critical for successful management of applica-
tion source:

* Never view your image as a permanent entity.

And there are two corollaries:

« Don’t depend on your image as the only form of your
application.

» Store your application in source form and rebuild your
image frequently.

Viewing the image as a non-permanent entity doesn’t nec-
essarily imply that vendors are selling unreliable software.
There are several ways an image can become non-functional,
other than a serious Smalltalk bug or disk crash.

An image can become unusable because of some simple
mistake on the part of a developer, such as accidentally remov-
ing a class that is relevant to the application under develop-
ment. If the image is the only form of an application, recover-

ing sources for an application class can be difficult and tedious.

Another common mistake is the accidental deletion of the
change log or changes file. The source for all the changes
you've made to an image is stored in this file.

Not all motivation for storing an application outside an im-
age derives from mistakes. When your vendor releases a new
version, migration to the new version may be necessary to take
advantage of new features or continue to the highest level of
technical support.

PRACTICE

What is your application? In Smalltalk, this is not always a
straightforward answer. Images contain large class libraries,
and applications are developed by adding to and modifying

class libraries. There is no clear distinction between system and
application code. Because of this, it is very difficult to extract
all parts of an application from an image, especially after the
development is completed. It is better to extract or list the
parts of your application as you develop it. Then short-term
memory can help you decide if the modification you made was
necessary for your application or if a temporary modification
was needed for debugging. One of the most common errors is
to omit a critical piece of one’s application.

I will discuss two techniques for extracting your application
code as you develop it. The first technique uses the browser to
file out code right after it is developed. Most application code
will be located in new classes, which can be filed out as a unit.
Other application components are extensions to system classes,
which can be filed out at the method level. The result of this
technique is many small files.

There are dependencies among the classes defined in these
files. For example, a subclass depends on its superclass. I use a
script to reassemble all these files in correct order, rather than
try to remember what the dependencies are. It is possible to
create the script for reassembly at the same time the parts of an
application are filed out.

Figure 1 contains a script for installing multiple files. The
script consists of a list of file names, which is enumerated to in-
stall each file into the image.

“Read and file-in application files, "

#(
‘ExtendedListPane.cls'
'AviationGraphPane.cls'
‘JetEngine.cls’'
—
JetEngine.cls
9" ListPane-
listAttributes.mth

|

Figure 1. Example of reconstructing an application using multiple files.

NOVEMBER / DECEMBER 1992

m GETTING REAL

'PropEngine.cls'
'‘RudderMechanics.cls'
'ListPane-class-supportedEvents.mth'
'ListPane-listAttributes. mth'
'ListPane-listAttributes:.mth'
'GraphicsMedium-bezierCurve:.mth'

)
do:
[:fileName |
(Disk file: fileName) fileIn]

Another technique is to make a list of all relevant application
pieces as they are developed. The list can be maintained in order
of reassembly and used to extract all components of an applica-
tion on demand. The result of extraction is a single file. Recon-
struction of the application is a simple matter of installing one
file. The source can be partitioned into several files, if necessary.

In Listing 1, the script has three lists: one for classes, one for
instance methods, and one for class methods. The classes listed
in the first script are written to the stream, then the methods in
the second list are written to the stream. The file-out code
makes use of ClassReader, which knows about Smalltalk source-
file format.

This script makes use of a new method, fileOutClassOn:,
defined in Listing 2. The new method, which writes a class
definition and its methods on a stream, takes an instance of
fileStream as an argument. It is similar to an existing method,
fileOut:, which takes a file name as an argument, creates the file,
then writes a class and its methods to the file:

The script in Listing 1 works in the simplest cases, in which
there are no forward references to classes. For example, if code
in the class JetEngine refers to the class PropEngine, the filein
will not proceed properly. This problem can be avoided by
defining all classes before any methods, as in the script in List-
ing 3. This script also has two lists, but the first list is enumer-
ated over twice. A supporting method is defined in Listing 4.

INITIALIZATION

Applications consist of more than classes and methods. In-
stances of windows, panes, and domain-specific classes are
also part of an application. Application reconstruction, there-
fore, must consist of more than filing in class and methods.
The expressions executed in a workspace or inspector to set
up the state of your application, such as initializing classes
and creating new objects, need to be re-executed when your
application is reconstructed. Save these expressions by col-
lecting them in a file and executing them after reconstructing
your application. In a future column I will discuss these types
of expressions, and ways to execute them as part of a script.

ERRORS

The most error-prone portion of these techniques is recording
pieces of the application as it is developed. Source-manage-
ment tools are quite valuable because they record this informa-
tion automatically. Because pieces of the application are
recorded by hand, it is also common practice to search back
through the change log to make sure no pieces have been for-

Listing 1. Example of creating a single file for application reconstruction.

| sourceStream reader |
"Create filestream for storing sources. "
sourceStream := Disk file: 'AviationSource_st'.
" Write application classes.”
#(
ExtendedListPane
AviationGraphPane
JetEngine
PropEngine
RudderMechanics)
do:
[:className |
reader :=ClassReader forClass: (Smalltalk at: className).
reader fileOutClassOn: sourceStream).

"Write standalone instance methods *
#(
(ListPane listAttributes)
(ListPane listAttributes:)
(GraphicsMedium bezierCurve:)
)
do:
[:classNameAndSelector |
reader :=ClassReader forClass: (Smalltalk at:
(classNameAndSelector at: 1)).
reader
fileOutMethod: (classNameAndSelector at: 2)
on:sourceStream].

*Write standalone class methods "
#(
(ListPane supportedEvents)
)
do:
[:classNameAndSelector |
yeader :=ClassReader forClass: (Smalltalk at:
(classNameAndSelector at: 1)class).
reader
fleOutMethod: (classNameAndSelector at: 2)
on: sourceStream].
sourceStream close.

]

r Listing 2. Supporting code in ClassReader for filing out a class onto a stream.—l

ClassReader I
instance method

fileOutClassOn: aFileStream

Write the source for the class (including the class definition,
instance methods, and class methods) in chunk file format
to afileStream.”

class isNil ifTrue: [*self].

CursorManager execute change.

afileStream lineDelimiter: Cr.

class fileOutOn: afileStream.

afileStream nextChunkPut: String new.

(ClassReader forClass: class class) fileOutOn: afileStream.
self fileOutOn: afileStream.

CursorManager normal change

Listing 3. Example of creating a single filefor application reconstruction.

| sourceStream classListreader | '
“Create file stream for storing sources.”
sourceStream := Disk file:'AviationSource.st'. }

L continued on next page

10

THE SMALLTALK REPORT

ﬁ RAML. Smalltalk/V users: the tool I
— for maximum productivity /

Listing 3 continued l

“Classes in the application ” ° Put related classes and methods into a single task-
classList := #(oriented object called application.
ExtendedListPane ° Browse what the application sees, yet easily move code
AviationGraphPane between it and external environment.
JetEngine ° Automatically document code via modifiable templates.
PropEngine ° Keep a history of previous versions; restore them with
RudderMechanics). a few keystrokes.
© View class hierarchy as graph or list.
"Write application class definitions. " ° Print applications, classes, and methods in a formatted
classList _ report, paginated and commented.
do: ° File code into applications and merge them together.
[:className | ° Applications are unaffected by compress log change
reader :=ClassReader forClass: (Smalltalk at: className). and many other features..
readerfileQutClassDefiniionOn: sourceStream].

Clast ioieted clasaes
Yamn i Deleted methods
History

Utilities.. i _Application printing | and more..
CodeIMAGER™ V286, VMac $129.95

" Write the methods for the application class "
classList FOWSErS..

do:

[:className |
reader :=ClassReader forClass: (Smalltalk at: className).
reader fileOutOn: sourceStream].

Imager:

" Write standalone instx thods " .
#(¢ standatone mistance metio VWindow & VPM $249.95
9 . ; Shipping & handling: $13 mail, $20 UPS, per copy
(ListPane listAttributes) Diskette: [3in] 53
(ListPane listAttribtes:) SixGraph™ Computing Ltd
GraphicsMedium bezierCurve: -
(Graphicstfedium bezlercurve:) :;'E formerly ZUNIQ DATA Corp.
do: . 2035 Céte de Liesse, suite 201
) Montreal, Que. Canada H4N 2M5
[:classNameAndSelector | MMPH
reader :=ClassReader forClass: (Smalltalk at: J " Tel: (116223.1,}23.!“1:?,} 1(,5 14) 956 1032
(classNameAndSelector at: 1)). | Smallulk/V is 2 reg. tmdemark of Digitalk,
reader
fileQutMethod: (classNameAndSelector at: 2) gotten. This activity is usually performed in a regular fashion,
on:sourceStream]. such as before each snapshot.
"Write standalone class methods ” Another common error is to rebuild an application on top
#(of an image that has been used for development. This is not a
(ListPane supportedEvents) good idea because the state of the image is unknown. There
) do: may be unwanted side effects from objects in the image. It is
o: [claxtameAndSelactur | imperative, ther?.fc.)re, .that the application is reconstructed
reader :=ClassReader forClass: (Smalltalk at: from a clean, pristine image.
(classNameAndSelector at: 1)class).
reader FREQUENCY

fileQutMethod: (classNameAndSelector at: 2)
on: sourceStream].

How often should the application be rebuilt? Early in develop-
ment, when many classes are being created, the scripts are
modified rapidly. It valuable to rebuild often to test the scripts; if
they're too far out of sync with the application source, it can be
difficult to debug the reconstruction process. In the middle stages
of development the scripts are not in so much flux and the appli-

sourceStream close.

Listing 4. Supporting code in ClassReader for filing out

a class definition without methods. cation doesn’t need to be rebuilt so often to test them out. Other
. fileOutClassDefinitionOn:aFileStream con_siderations may force_app_)lication reconstruct_ion, su.ch as re-
i "Write the source for the class (but not for the instance design of parts of an application. As the product is nearing com-
methods and class methods) in chunk file format pletion, the development team may want to reconstruct the ap-
to aFileStream.” plication often to confirm that the build process is bug-free.
class isNil ifTrue: [*self].
CursorManager execute change. Juanita Ewing is a senior staff member of Digitalk Professional Ser-
aFileStream lineDelimiter: Cr. vices. She has been a project leader for several commercial O-O sofi-
class FileOutOn: aFileStream. ware projects, and is an expert in the design and implementation of
aFileStream nextChunkPut: String new. O-O applications, frameworks, and systems. In a previous position at
CursorManager normal change Tektronix Inc., she was responsible for the development of class li-

braries for the first commercial-quality Smalltalk-80 system.

NOVEMBER /DECEMBER 1992 11

HE BEST OF comp.lang.smalltalk

Alan Knight

Smalltalk performance

any people think of Smalltalk as slow. Unfortu-
Mnately, they’re right, especially as compared with the
reference point of optimized C. This column will ex-

plore why Smalltalk code runs so slowly, just how slow it is,
and the possibility for improvement.

WHY IS SMALLTALK SLOW?

Although surprisingly fast for what it does, Smalltalk is slow for
various reasons. Conventional wisdom blames garbage collec-
tion. After all, Smalltalk collects garbage while those other, fast
languages don’t. Garbage collection does have a price, but not
nearly as high as people think. More time-consuming is safety
checking Smalltalk checks all array references to make sure they
are in bounds, every object reference for null values, every integer
operation for overflow, and so on. C does none of these things.

If you have a compiler like Turbo Pascal, which allows you to
turn array-bounds checking on and off, try doing it with a pro-
gram that uses arrays. The effect on performance is very notice-
able. I still leave checking on by default, and always turn it on
when I'm trying to debug, When Ilearned C I wasted a lot of
time trying to figure out how to turn on bounds checking, but I
finally did. It involves paying a lot for an interpreter so my code
can run more slowly than equivalent Smalltalk, but it’s worth it.

Of course, these approaches have the advantage that you
only pay the price during development. Safety features can be
turned off when shipping the “bug-free” production code. It
would be an interesting experiment for a vendor to provide a
fast, unsafe version of the Smalltalk virtual machine for stand
alone applications.

Another important factor is message passing, for two rea-
sons. First, message sends are a little pricier than function calls.
You have to additionally figure out which function to call at
runtime. However, the high cost of message sends is due to
their number. Everything in Smalltalk except instance-variable
access requires a message send. Even if messages cost less than
function calls, the fact that there are so many more in the aver-
age Smalltalk program than the average C program makes
Smalltalk slower.

HOW SLOW IS IT?

Quantitative performance measurements are always difficult.
Results vary greatly between applications and minor changes
can make a big performance difference.

Given this difficulty, we are fortunate to have someone with
a good knowledge of the subject, at least with respect to Parc-
Place Smalltalk. This impressive disclaimer is from Peter
Deutsch (deutsch@smli.eng.sun.com)

I was the principal designer and implementor of Parc-
Place’s Smalltalk code generators, including the portability
architecture, the code generation framework, the stack
management architecture, and the individual generators
for 680x0, 80386, SPARC, MIPS, and RS/6000. The opin-
ions expressed below are my own and should not be at-
tributed to ParcPlace or to Sun.

He then writes:

In my experience, based on a variety of both micro- and
macro-experiments, the ParcPlace Smalltalk system does
benchmark around a factor of 8 slower than optimized C
for integer, structure, and array computation that does not
contain large numbers of procedure-call-free loops. For
straight-line integer computation, the ratio can get down
as low as 4 or 5 to 1. (Of course, ParcPlace Smalltalk does
overflow checking on all arithmetic operations, so any such
comparison is not entirely appropriate.) For highly opti-
mizable loops, especially ones involving access to arrays or
strings (which ParcPlace Smalltalk always bounds-checks,
and C never does), the ratio can get up as high as 40 or 50
to 1 under the most unfavourable circumstances, such as
the 1-statement loops of strlen or strcpy.

It is because of these things that ParcPlace recommends
that, when necessary, users write their high-usage loops in
C. Smalltalk’s advantages are in areas other than highest
performance for unchecked inner loops.

IS THIS FAST ENOUGH?
For many applications, this kind of speed is high enough. The
numerous advantages of Smalltalk are worth the performance
hit in these areas. For other application areas, the speed is
definitely unacceptable, but this is partly psychological. If
Smalltalk is running as fast as it reasonably can, we must either
accept the performance or use another language. If, on the other
hand, it runs slowly because the implementors haven’t bothered
to make it go faster, then we may get annoyed about it.

A strong voice for the possibility of improving performance
comes from the implementors of Self. Self is a prototype-based
language that is even more difficult to optimize than Smalltalk,

12

THE SMALLTALK REPORT

but its implementation achieves much better performance.
This is done using an extremely aggressive optimizing com-
piler. For example, Self exploits range information in integer
computations. Using this information, it can omit overflow
checks in cases where they’re shown to be unnecessary.

Bruce Samuelson (bruce@ling.utafl.edu) doesn’t think cur-
rent Smalltalk performance is fast enough. He writes:

ParcPlace, your dynamic compilation technology, is indeed
impressive. . . . But you can do better, and you have chosen
not to because you don’t think it is high priority:

1) The Self authors claim in the literature that Smalltalk could
be sped up by about a factor of 5. They claim in person that
PPS is not interested in doing so (at least as of OOPSLA ’91).
2) Mike Khaw'’s recent posting showed that Smalltalk did
integer arithmetic in a tight loop about 1/8 the speed of
C....This is in the ballpark of what one would expect for
such low level comparisons.

3) A Smalltalk “VM implementor” told me at OOPSLA 91
that the machine code generated by the dynamic translator
is of “plain vanilla,” unoptimized quality, For example, he
thought the code for SPARC machines (he was not the
SPARC VM implementor) did not make use of register win-
dows, SPARC'’s idiomatic technique for passing function ar-
guments efficiently. Perhaps he was wrong, or perhaps I mis-
understood him, but times past when I’'ve posted this and
asked for comments from PPS, you have remained silent. It
seems like this is one area in which you could apply some
fairly standard optimization techniques in your VM that
wouldn’t require modifications to the compiler in the V1.

4) A PPS employee was engaged in a serious optimization
project before he left PPS. I have not heard from PPS on the
status of this project, except a comment I would paraphrase
as follows: “We are impressed with the speed of forthcoming
new machines [based, I suppose, on DEC Alpha, HP-PA, In-
tel 586, TI Viking, etc.] and feel that hardware vendors will
solve possible Smalltalk performance problems.”

5) Critique of (4): Yes, Smalltalk grows faster in proportion
to the hardware. But so does every other language, and
Smalltalk remains 5-10 times slower than C. The hardware
vendors are not improving the competitive position of
Smalltalk, except to make it feasible to use at all, and they
already did that a few years ago. As machines get faster, ap-
plications get more ambitious and demand more cpu cy-
cles. . .. A software vendor offering a development envi-
ronment should regard decent optimization as a priority.
Reviews of software products, whether of languages or ap-
plications, usually give performance a prominent place.
You will make us, your customers, look better if you give
us the tools to write blazing applications.

6) I have had to spend more time on optimizing my
Smalltalk code than I would have liked, which has taken
time away from more productive activities. I imagine this
has happened to other programmers.

7) A turbocharged Smalltalk that could even modestly
compete with C and C++ in speed would be an absolute

dynamite product. How many of the postings to
comp.lang.c++ give efficiency as a reason for using this
“engineering compromise”? Take away efficiency as a criti-
cism of Smalltalk and a lot of programmers and managers
will take note.

8) Digitalk must have had some money to spend to able to
buy out Instantiations. What if they put some of their
money into doing a bang-up job at optimizing ST/V?
Where would that leave ParcPlace?

9) Despite all these comments, which are directed to PPS in
response to Tim Rowledge’s posting, I realize that PPS is a
small company with finite resources. Your founders have
profoundly influenced the entire computer industry
(GUIS, object orientedness) for the better. And you sell a
very nice Smalltalk environment indeed. So I will counsel
myself to remain patient and trust your marketing in-
stincts. But please don’t keep performance on the back
burner forever...

REGISTER WINDOWS

There are quite a few complaints here, and I entirely agree with
the main thrust that ParcPlace needs to place more emphasis on
performance. I'd like to specifically deal with one of the claims
that attracted particular attention on the net: the assertion that
ParcPlace Smalltalk does not use register windows on the
SPARC. For those of you even more blissfully ignorant of hard-
ware than myself, I will attempt to explain register windows.

Machine registers are very fast to access and CPU designers
like to have lots of them. The downside of this (apart from
having to use valuable chip space) is that when there are many
registers, more bits in the instruction word are needed to spec-
ify which one you want.

There are various ways of getting around this. One is to
have more than one set of registers, used for different purposes
(e.g., integer and floating point). The SPARC designers pro-
vided lots of registers, but made only a few of them visible at a
time. By changing the register “window,” you change which
registers are visible.

Changing the window normally is done when making a pro-
cedure call. Rather than put arguments onto the stack, which is
in main memory and therefore slow, one can put them into reg-
isters, then change the register window. Since the windows have
some overlap, values put into the bottom of the register window
of the calling routine will appear in the top of the window of the
called routine. The arguments are immediately available and the
called routine has its own set of registers to play with.

This technique can speed up procedure calls quite a bit.
SUN claimed in some document [once read that register win-
dows were aimed specifically at incrementally compiled lan-
guages like LISP and Smalltalk. In these languages, the compiler
doesn’t have as much time to think about how to optimize code
and there are many procedure calls. Register windows are sup-
posed to allow these calls to be easily optimized.

If SPARC can’t or doesn’t exploit SPARC register windows,
it sounds like there’s a serious communication problem be-
tween chip and language designers.

NOVEMBER / DECEMBER 1992

13

=m THE BEST OF COMP.LANG

m TAKING EXCEPTION TO SMALLTALK, PART |

This claim provoked discussion about how easily register
windows could be used—whether they would interfere with
garbage collection (since values in registers outside the current
window would not be easily visible) and other such topics.

Urs Hoelzle (urs@xenon.stanford.edu) mentioned that Self
has been using SPARC register windows with garbage collec-
tion for some time. Peter Deutsch provided a comprehensive
analysis of reasons for Smalltalk not to use them:

The problem of pointers buried in register windows is in-
deed a significant one, but it is not the reason why I would
recommend against modifying the Objectworks/Smalltalk
(Ow/ST) implementation to use register windows. First,
the performance gains would not be dramatic. Ow/ST
spends a substantial fraction of its time in support code
written in C, which would not be affected. A substantial
fraction of the time in compiled Smalltalk code is spent do-
ing message sends, type checks, etc., which would also not
be affected. Also, since Smalltalk stacks get very deep and
fluctuate more deeply than C stacks, the 7- or 8-register
window on current SPARCs would over- and underflow
significantly often. My best guess was that we would not
see more than 20-25% performance improvement. (On fu-
ture SPARC processors, where both the cost of memory
references relative to register accesses and the number of
register windows might be larger, this improvement might
be somewhat greater.) Second, one of the keys to Ow/ST’s
remarkable portability is that it uses a very similar internal
storage format for stack frames on all platforms. However,
because saving and restoring register frames is done on the
SPARC by code that is not accessible to ParcPlace, we can-
not affect the storage format for these frames. So in order
to use the SPARC register frames, we would have to either
provide a complete second set of, or add radical new flexi-
bility to, the large body of code in the runtime support sys-
tem that manipulates stacks. The bottom line is that, in my
opinion, the work required to fit Ow/ST to the SPARC’s
frame model would not justify the relatively small perfor-
mance improvement. As for the comparison against Self,
the Self authors acknowledge that the factor of 5 is only
achievable under some circumstances. I do think it would
be exciting to apply the Self compilation ideas to Smalltalk,
and doing this could well produce dramatic performance
improvements (on all platforms), but this would require
wholesale redesign of most of the platform-independent
code {(other than the memory manager) in the Ow/ST run-
time support system. The optimizing compilation experi-
ments I did at ParcPlace were based on an alternative ap-
proach that would not have required such substantial
changes to the Ow/ST virtual machine, but might have re-
quired type declarations (or at least type hints) provided
by the user (or a type inference system). #

...continved from page 5

month’s system-dependent section because it depends on the
layout of contexts.

Once the handler block is found, it’s evaluated with the ex-
ception as a parameter. This allows the handler block to send
the proceed, reject, restart, and return messages to the exception,
and to query the exception for information about the error.
Below are the implementations for proceed and reject—those
for return and restart are in next month’s article because they
depend on some specifics of the V 286 system.

Proceeding is simple: Since we have the instance variable
praceedBlack, all we need to do is evaluate it, perhaps with
some meaningful parameter, as in

proceedDoing: aBlock
"Return the value of aBlock as the value of the raise signal. Unwind
the stack up to that point and resume execution in the context that
raised the signal."
| answer |
answer := aBlock value.
signalContext unwindLaterContexts.
proceedBlock value: answer

Evaluating proceedBlock causes control to return into the
context where the signal was first raised. The only subtle
thing to remember concerns the unwind mechanism. Before
evaluating proceedBlock, we call unwindLaterContexts, which
evaluates the unwind blocks of every context we'll skip by
proceeding.

Implementing reject is also quite simple. The current han-
dler context (as found by fetchHandlerBlock:) is stored in the
exception’s handlerContext instance variable, so to find the next
handler below the current one, we just need to look for some
handler for the exception’s signal below handlerContext. We
can do that by sending propagatePrivateFrom: to the receiver ex-
ception with handlerContext as the parameter.

At this point we have a system-independent implementa-
tion for much of our package. The class Signal is complete and
we need only three more methods for class Exception: retum,
restart, and the private method fetchHandlerBlock:. We also
need to implement unwindLaterContexts to implement our un-
wind mechanism. Finally, we need some extra functionality for
class Process. Next month, we will describe these final aspects
of our system, such as the need to create a new set of context-
related classes to make dealing with contexts in V 286 consis-
tent and relatively trouble-free.

References

1. Van Orden, E. Application talk, HOOPSLA! 1(2), 1988.

2. Graver,]. Type-checking and type-inference for object-ori-
ented programming languages. Doctoral thesis, University of
1llinois at Urbana-Champaign, 1989.

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada,

l
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| Bob Hinkle and Ralph E. Johnson are affiliated with the University of

Ilinois at Urbana-Champaign. Mr. Hinkle's work is supported by a

K2C 3P3. He can be reached at +1 613.788.2600 x5783, or by e-mail) fellowship from the Fannie and John Hertz Foundation.

at knight@mrco.carleton.ca.

14

THE SMALLTALK REPORT

MALLTALK IDIOMS

Collections idioms:
standard classes

ur previous column focused on enumeration methods
and how to use all of them to advantage. This column
covers the common collection classes, how they are

implemented, when you should use them, and when you
should be careful.

COLLECTION CLASSES

Array

Use an Array if you know the size of the collection when you
create it, and if the indices into the elements (the first argu-
ment to at: and at:put:) are consecutive integers between one
and the size of the array.

Arrays are implemented using the “indexable” part of ob-
jects. Recall that you can declare a class indexable. You can
send new: anInteger to an indexable class and you will receive
an instance with anInteger-indexable instance variables. The
indexable variables are accessible through at: and at:put:. Array
needs no more than the implementation of at: and at:put: in
Object, and the implementation of new: in Class to operate.

Many people use OrderedCollections everywhere they need a
collection. If you

« want a dynamically sized collection without the OrderedCol-
lection overhead (see below)

» are willing to make the referencing object a little less flexible

* don’t often add or remove items, compared with how often
you access the collection

you can use arrays instead. Where you had:
injtialize
collection := OrderedCollection new
you have:
initialize
collection := Array new "or even #()"
then you replace add: and remove: sent ta collection with copy-
With: and copyWithout: and reassign collecton

foo
collection add: #bar

becomes
foo
collection := collection copyWith: #bar
The disadvantage of this approach is that the referencing object
now has built into it the knowledge that its collection isn’t re-

Kent Beck

sizable. Your object has, in effect, accepted some of the collec-
tion’s responsibility.

ByteArray

ByteArrays store integers between 0 and 255 inclusive, If all the
objects you need to store in an Array are in this range, you can
save space by using a ByteArray, Whereas Arrays use 32-bit slots
(i.e., soon-to-be-obsolete 32-bit processors) to store object ref-
erences, ByteArrays only use 8 bits.

Besides the space savings, using ByteArrays can also make
garbage collection faster. Byte-indexable objects (of which
ByteArrays are one) are marked as not having any object refer-
ences. The collector does not need to traverse them to deter-
mine which objects are still reachable.

As I mentioned in the last column, any class can be declared
indexable. Instances are then allowed to have instance variables
that are accessed by number (through at: and at:put:) rather
than by name. Similarly, you can declare classes to be byte in-
dexable. at: and at:put: for byte-indexable objects retrieve and
store one-byte integers instead of arbitrary objects. A
significant limitation of byte-indexable objects is that they
can’t have any named instance variables. This is to preserve the
garbage-collector simplification mentioned above.

If you want to create an object that is bit-pattern oriented,
but shouldn’t respond to the whole range of collection mes-
sages, you should create a byte-indexable class. Such objects
are particularly useful when passed to other languages because
the bits used to encode the objects in a byte indexable object
are the same as those used by, for instance, C, whereas a full-
fledged Smalllnteger has a different format than a C int.

Dictionary
Dictionaries are like dynamically sized arrays where the indices
are not constrained to be consecutive integers. Dictionaries use
hashing tables with linear probing to store and look up their
elements (Figure 1). The key is sent “hash” and the answer
modulo the basic size of the Dictionary is used to begin search-
ing for the key. The elements are stored as Associations.
Dictionaries are rather schizophrenic. They can’t decide
whether they are arrays with arbitrary indices or unordered collec-
tions of associations with the accessing methods at: and at:put:. It
doesn’t help that Dictionary subclasses Set to inherit the imple-
mentation of hashed lookup. I treat them like arrays. If I want to

NOVEMBER / DECEMBER 1992

15

B SMALLTALK IDIOMS

—® 'mauve’

—% 27

Figure 1. A typical Dictionary.

think of them as associations I use the message “associations” to
get a set of associations I can operate on unambiguously.

‘When a Dictionary looks up a key it uses = to determine if it has
found a match. Thus, two strings that are not the same object but
contain the sarne characters are considered to be the same key.
This is why when you reimplement =, you must also reimplement
hash. If two objects are =, they must have the same hash value.

If you read your Knuth, you will see that hashed lookup
takes constant time—it is not sensitive to the number of ele-
ments in the collection. This mathematical result is subject to
two pragmatic concerns, however: hash quality and loading.
When you send hash to the keys you should get a random dis-
tribution. If many objects return a number that is the same
modulo the basic size of the Dictionary, then linear probing de-
generates to linear lookup. If most of the slots in the Dictionary
are full, the hash is almost sure to return an index that is al-
ready taken and, again, you are into linear lookup. By random-
izing the distribution of hash values and making sure the Dic-
tionary never gets more than 60% full, you will avoid most of
the potential performance problems.

IdentityDictionary

IdentityDictionaries behave like Dictionaries except that they
compare keys using == (are the two objects really the same ob-
ject?). IdentityDictionaries are useful where you know that the
keys are objects for which = is the same as == (e.g., Symbols,
Characters, or SmallIntegers).

!
|
|
|
|
L

—

#puce 14

—""'"#mauve ’27

Figure 2. A typical Identity Dictionary.

Instead of being implemented as a hash table of associa-
tions, IdentityDictionaries are implemented as two parallel ar-
rays. The first holds the keys, the second the values (Figure 2).

This implementation saves space because each association
in a Dictionary takes 12 bytes of header + 8 bytes of object refer-
ence = 20 bytes. The total memory usage for a Dictionary is 12
bytes for the header of the Dictionary + 4 bytes times the basic
size of the Dictionary + 20 bytes times the number of entries.
The memory required for an IdentityDictionary is 24 bytes for
the header of the object and the value collection + 8 bytes times
the basic size.

For example, a 10,000-element Dictionary that has 5,000 en-
tries free would take 12 + (4 * 15000) + (20 * 10000) = 260,012
bytes. You can see how the overhead of the Associations adds
up. The same collection stored as an IdentityDictionary would
take 24 + (8 * 15000) = 120,024 bytes.

OrderedCollection

OrderedCollections are like Arrays in that their keys are consecu-
tive integers. Unlike Arrays, they are dynamically sized. They
respond to add: and remove:. OrderedCollections preserve the or-
der in which elements are added. You can also send them
addFirst:, addLast:, removeFirst, and removelast.

Using these methods, it is possible to implement stacks and
queuses trivially. There are no Stack or Queue objects in
Smalltalk because it is so easy to get their functionality with an
OrderedCollection. To get a stack you use addLast: for push, last
for top, and removelast for pop (you could also operate the
stack off the front of the OrderedCollection). To implement a
queue you use addFirst: for add and removelast for remove.

As an example of using an OrderedCollection for a queue,
let’s look at implementing level-order traversal. Given a tree of
objects, we want to process all the nodes at one level before we
move on to the next:

Tree>>levelOrderDo: aBlock
| queue |
queue := OrderedCollection with: self.
[queue isEmpty] whileFalse:
[| node |
node := queue removeFirst,
aBlock value: node,
queue addAllLast: node children]

OrderedCollections keep around

extra storage at the beginning ‘

and end of their indexable parts

to make it possible to add and ‘

remove elements without having ' last] 3
I

OrderedCollection
first] 2

to change size (Figure 3). 1l il
Because OrderedCollections are

. . 2] 25
dynamically sized they preallo-
cate a number of slots when they 3| 37
are created in preparation for 4| ni

objects being added. If you are |

using lots of OrderedCollections
and most are smaller than the

Figure 3. The result of (Ordered-
Collection new: 4) add: 2.5;
add: 3.7.

16

THE SMALLTALK REPORT

initial allocation, the space overhead and its effect on the stor-
age manager can be significant. I have heard stories of pro-
grams speeding up by a factor of 60 just by replacing Ordered-
Collection new with OrderedCollection new: 1 at the right spot.
Gather statistics on the number and loading of your Ordered-
Collections to determine if this optimization will help you.
Another performance implication of using Ordered-
Collections is the level of indirection required to access ele-
ments. at: as defined in Object just invokes a primitive to index

into the receiver's indexed instance variables. To implement at:

and at:put:, OrderedCollections have to take first into account:

OrderedCollection>>at: anInteger
anlnteger > self size ifTrue: [self error: 'Out of bounds']. *
.super at: anInteger + first - 1

RunArray

RunArrays have the same external protocol as OrderedCollection,
but they are optimized for storing collections in which the
same object is added consecutively many times. Rather than
just store the objects one after the other, RunAnays store two
collections: one of the abjects in the collection, the other the
number of times the object appears (Figure 4).

Each entry in a RunArray requires two object references.
RunArrays require storage related not to the number of ele-
ments in the collection, but to the number of times adjacent
objects are different. In the worst case, RunArrays require twice
as much storage as an OrderedCollection.

Indexing into a RunArray is potentially an expensive opera-
tion, requiring time proportional to the number of runs. Here
is an implementation of at:

RunArray>>at: anInteger

| index |

index := 0.

1 to: runs size do:
[:each |
index + (runs at: each) >= anlInteger

ifTrue: [*values at: each].

index := index + (runs at: each)]

This simple implementation makes code like:

1 to: runArray size do: [:each | runArray at: each]

RunArray
values |~
runs
5 #plain
2 #bold
3 #boldItalig

Figure 4. The result of RunArray new addAll: (plain plain plain plain plain
bold bold boldltalic bolditalic boldlialic).

take time proportional to the number of runs multiplied by the
number of elements in the collection. Because the access pat-
tern for RunArrays usually marches along the collection from
first element to last, RunArrays cache the beginning of the run
in which the last index was found. Looking up the following
index only requires checking to make sure that the new index
is in the same run as the old one:

RunArray>>at: anInteger
~anlInteger >= cachedIndex
ifTrue: [self cachedAt: anInteger]
ifFalse: [self lookUpAt: anInteger]

cachedAt: anInteger
anlnteger - cachedIndex > (runs at: cachedRun)
ifTrue:
[cachedIndex := cachedIndex + (runs at: cachedRun).
cachedRun := cachedRun + 1].
~values at: cachedRun

lookUpAt: anInteger

| index |

index := 0.

1 to: runs size do:
[:each |
index + (runs at: each) >= anInteger

ifTrue: [“values at: each].

index := index + (runs at: each)

With this implementation, an access pattern like the one above
will now be slightly slower than the equivalent OrderedCollec-
tion because of the overhead of checking for the common case.
Accessing the RunArray in reverse is now proportional to the
number of runs squared.

Interval
Another kind of run-length encoded collection is Interval. An
Interval is created with a beginning number, an ending num-
ber, and an optional step number (one is the default). #(1 2 3
4) and Interval from: 1 to: 4 are equivalent objects for most pur-
poses. Number>>to: and to:by: are shorthand for Interval
class>>from:to: and from:to:by:.

Intervals are commonly used to represent ranges of num-
bers, such as a selection in a piece of text. A common idiom is
using an Interval with collect:,

foo
~(1 to: self size) collect: [-each | each -> (self at: each)]

Species is sent to an object when a copy is being made for use
in one of the enumeration methods collect: and select:. The de-
fault implementation in Object just returns the class of the re-
ceiver. SequenceableCollection implements collect: and select:,
and expects the result of self species to respond to at:put:. Since
Intervals don't respond to at:put:, they have to override species
to return the class Array.

SortedCollection
Another dynamically sized collection is the SortedCollection.
Unlike OrderedCollections, which order their elements ac-

NOVEMBER / DECEMBER 1992

17

N SMALLTALK IDIOMS

cording to the order in which they were added, SortedCollec-
tions rely on a two-argument block to determine, pairwise,
the order for elements. This block defaults to {:a:b | a <=b],
so simple SortedCollections sort their elements from lowest
to highest.

One thing to watch out for when using SortedCollections is
sending them add: when you don't have to. add: does a binary
search of the collection, moves all of the elements after the
added object down one, and inserts the added object. Moving
the elements to make room takes time proportional to the size
of the collection. If you know you are going to be adding sev-
eral elements at once, use addAll:, which will stick the new ele-
ments at the end and resort the entire collection. Here is a
method for comparing time spent using these two methods
(notice that I don't hold myself to the same coding standards
in workspaces):

| sertit2 |

sc == SortedCollection new.

r := Random new.

11 := Time millisecondsToRun:

[1000 timesRepeat: [sc add: r next]].

sc := SortedCollection new.

t2 := Time millisecondsToRun:

[sc addAll: ((1 to: 1000) collect: [:each | r next])].

'Add: ', t1 printString, ' addAll: ', 12 printString

Executing this results in 'Add: 10725 addAll: 1386'.

String
Strings in Smalltalk are like Arrays whose elements are restricted
to Characters. Strings are byte-indexable for compactness. They
redefine the indexing methods to convert from 8-bit numbers
to characters and vice versa:
String>>at: anInteger
*Character value: (super at: anInteger)

String>>at: anlnteger put: aCharacter
~super at: anInteger put: aCharacter asciiValue

It is common to use , to concatenate Strings. You can
use , to concatenate any two sequenceable collections
(OrderedCollection, Array, RunArray, and so on). Less com-
mon is the use of the other collection methods with
Strings. You can capitalize all the characters in a String
with collect:

asUppercase
~self collect: [:each | each asUppercase]

Interestingly, even the ParcPlace release 4.1 image imple-
ments this method with five lines containing an explicit loop
and indexing.

Digitallc’s String class is implemented with the simple model
described here. ParcPlace has a much more elaborate imple-
mentation that takes care of multibyte characters and different
character sets on different platforms, even for odd characters.
The design requires six classes for strings and three more for
symbols.

Symbol

Symbols behave in most ways like Strings, except that if you
have two symbols containing the same characters, they are
guaranteed to be the same object. So while String>>= takes time
proportional to the length of the strings, Symbol>>= takes con-
stant time:

Symbol>>= an0bject
~self == anObject

To preserve uniqueness, Symbols cannot be changed once
they are created. at:put: is overridden to raise an error.

Like Interval, because Symbols don't respond to at:put:, they
override species. Symbol>>species returns the class String.
Thus, executing "#abc , #def" returns 'abcdef’, a String, not a
Symbol,

If you are programming in Smalltalk/V, be careful of cre-
ating too many symbols. There is a limit of 2*16 Symbols.
While this may seem like a lot, after you have created many
new methods and used Symbols for indices in several places,
it is very possible to run out of Symbols. The scrambling you
have to do to climb out of the “limited Symbol pit” is not
pretty.

A last oddity of Symbols and Strings is the asymmetry of =.
"abc' = #abc" returns true because the String receives the mes-
sage and successfully checks to see that the characters in the re-
ceiver are the same as those in the argument. "#abc = 'abc’ " re-
turns false because the two objects are not identical. I can
remember long debates at Tektronix over the propriety of this
strange fact. The upshot of the debates was that it's regrettable
things work this way, but the alternatives are all less attractive
for one reason or another.

Sets

Sets are dynamically sized collections. They respond to add:
and remove: but, unlike OrderedCollections, they don't guarantee
any particular ordering on the elements when they are used
later (e.g., by do:). Sets also don't have any indexed access (no
at: or at:put:).

Sets implement includes:, add: and remove: efficiently by
hashing. The element to be added is sent hash, and that
value is used modulo the size of the storage allocated for the
Set as the index to start looking for a place to put the ele-
ment (or remove it). Note that storage for a Set will contain
more indexed variables than the Set has elements, so hash-
ing is likely to encounter an empty slot. The Set contains an
instance variable, tally, which records how many of the slots
are filled. Set>>size just returns tally.

You can eliminate duplicates from any collection (albeit
while losing its ordering) by sending it asSet.

IdentitySet

Sets use = to determine if they have found an object. Identity-
Sets use ==, They are useful where the identity of objects is
important. Most applications are in meta-object code, where

18

THE SMALLTALK REPORT

you are manipulating the objects but not asking them to do
anything. For instance, if you designed a remote object sys-
tem where transparent copies of objects were transmitted
over a network, you might store the objects in an IdentitySet.
If you transmitted two objects that were = but not ==, and
later changed one of them, storing them in an IdentitySet
would ensure that they were different objects on the remote
systems.

Bag
Instead of discarding duplicate elements like Sets, Bags count
them. Executing this code:

[s]

s := Set new.

saddAll: #(aabbc).s
size

returns 3. Changing it to a Bag:

[b]

b := Bag new.

b addAll: #(aabbc).

b size
returns 5.

Use Bags anywhere you want a quick implementation of in-
cludes—that is, when you don't care about the order of elements
and you need a compact representation of duplicate elements.

Bags are not used anywhere in the ParcPlace release 4.1 im-
age or in Smalltalk/V Mac 1.2. The only time I can remember
using Bags is in Profile/V., Every time I take a sample, I put the
program counter in a Bag. When I display the profile, I map
the stored program counters back to source statements, giving
the user profiling at the level of individual statements.

CONCLUSION

The Collection classes are one of the most powerful parts of the
Smalltalk system. Choosing the right collection for a circum-
stance has a dramatic influence on the behavior and perfor-
mance of your system. I have tried to lay out what each major
collection class does, what it is good for, what to watch out for,
and how it is implemented.

I am amazed at the richness of this seemingly simple set of
classes. Originally, 1 thought I would have to stretch to get
enough material for just one column. After two columns that
have covered the major issues in using collections, there is
still more to be written. I'll give it a rest for now, however,
and go on to something else—I'm not sure what just yet. If
you have any ideas call me at 408.338.4649 or fax me at
408.338.1115. B

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. He is also the
founder of First Class Software, which develops and distributes re-
engineering products for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226.

NOVEMBER / DECEMBER 1992

JUST

PUBLISHED!
White Paper

>

“An Evaluation of
Object-Oriented Analysis and
Design Methodologies”

This 72-page information-packed report compares and contrasts
eight leading O-O A8(D methodologies. Written in a clear, concise,
easy-to-read style, this report presents a rational approach for both
qualifying and quantifying the strengths and weaknesses of the lead-
ing eight techniques. Using a specific application domain as an exam-
ple, this white paper illustrates how you can identify the methodology
that best meets the needs of your project. This timely report is essen-
tial reading for anyone implementing or managing O-O projects.

“An Evaluation of Object-Oriented Analysis and Design Methodolo-
gies” is a functional resource clarifying and analyzing the differences
among notations, terminologies, and models proposed by the eight
leading analysis and design methods:

* Booch * Rumbaugh

» Coad/Yourdon » Shlaer/Mellor

« Edwards/Qdell/Martin » Wasserman/ Pircher
* Graham * Wirfs-Brock

Who should read this report?

Anyone about to introduce the benefits of O-O technology early in
the development cycle; specifically, project leaders, developers, soft-
ware analysts, and designers.

About the authors: John Cribbs, Colleen Roe, and Suzanne Moon
work in the Advanced Projects Group at Alcatel Network Systems. To-
gether, these published authors have over ten years of
0O-0 A&D experience implementing and managing in-house O-O
projects.

ORDER FORM NY State resi
residents add
Please send me the white paper for just $400.00 -y~ applicable sales tax.

_Check endosed. (Make chedks payable to SIGS Books, US dollars drawn on a US hank.)

_Visa _MasterCard _AmEx card #

Signature | Exp. Date
Name

|
|
1
1
1
1
1
1
1
1
1
1
1
1
]
E Address
1
1
]
]
1
1
1
|
I
]
]
1

City State Zip

Country

Phone Fax
Return to White Paper, 588 Broadway, Suite 604, NY, NY 10012
PHONE 212/274-0640 or FAX to 212/274-0646

e e

UTTING IT IN PERSPECTIVE

Rebecca Wirfs-Brock

Describing your design

bjects can be simplistic and passive, holding on to
O small pieces of information, or they can be busy and

active, serving an important role in framing the over-
all architectural structure of an application. The possibilities
for what an object can represent are limited only by human
imagination. In this column I want to explore some effective
techniques for describing classes so they can be understood,
used, and refined by others. You, the author of a class or a
group of collaborating classes, know how you intend them to
be used. How can you effectively impart this knowledge to oth-
ers? However you describe a class, your original design intent
will be mulled over by different people, each with a slightly
different set of expectations, needs, and experiences.

There are basic things that need to be said about any class.
These essentials cover roughly 50% of the issues, which I’ll
cover first. Then I want to explore the remaining 50% that are
often left unsaid.

COVERING THE BASICS

Each class you construct in your design has a specific purpose.
You know what the class was intended to do and probably
what it was never intended to do. (It is easy for someone to
torture your code in ways you never dreamed of, but I don’t
know how to solve that problem.) You also know whether
your creation is of major or minor importance, whether you
have a polished implementation, or whether you have left
room for improvement. The exact details you need to commu-
nicate vary depending upon the role of the reader. Different in-
formation and levels of detail are needed by:

* a programmer wanting to use this class in a program

« a developer creating a subclass to add new functionality or
override existing behavior

+ someone adding new functionality to your class
* anyone trying to understand a class inheritance hierarchy
- a tester developing test suites
* someone fixing a programming error
‘When we describe our classes and our applications, we need
first to provide a global context {a road map of the territory).
This provides a broad view, allowing readers to understand how

individual classes fit into the overall fabric of your design. This
should then be augmented by a consistent discussion of classes

from both an exterior (usage) and interior (implementation)
perspective. Arguably, all potential readers of class documenta-
tion need a basic understanding of how a class should be used.

Let’s concentrate on what informed class users need to know.
At first glance, to use a class, a programmer needs to know:

« what the class was designed to do and not to do

* ways to create an instance of that class and, subsequently,
how it typically is used

« what it depends on, including other objects, global states, or
host-operating system features

= where to look for further details

Subclass developers need this information to ensure that
their new addition follows the expected patterns of behavior
defined by its superclass. They should not fix one problem only
to break pre-existing contracts with all current users of the
class. They need even more details than users, but all proceed
from these basics.

Not all basic information is gleaned by poring over a class-
browser reading code. Some have claimed that Smalltalk’s pro-
gramming environment eliminates much need to describe this
kind of information, but this is just another rather lame argu-
ment that XXX code (replace XXX with your favorite pro-
gramming language) is self-documenting.

Learning an application by reading code and performing
experiments can take a long time and often isn’t the most
effective way to transfer knowledge. We designers and imple-
mentors of classes should explain how to create and use our
objects. Documentation should supplement a programmer’s
ability to find and use the right classes for the job.

From an exterior view, I certainly need to know less than
someone who is intending to modify, extend, or create a subclass.
I want you, the designer, to hide those things I shouldn’t care
about. I really don’t want to concern myself with any of the ob-
ject’s instance variables, unless you explicitly choose to give me
access to them. I also don't care about implementation details
encapsulated within methods. And I certainly don't care about
code that is private, intended to be executed by sending messages
to self. So please label those private, internal details as such. Your
chosen method partly depends on your Smalltalk environment,
and partly on style guidelines used within your organization.

Understanding how to create and use an object can some-
times become confused by all that wonderful detail exposed by

20

THE SMALLTALK REPORT

the browser. This is precisely why more recent Smalltalk pro-
gramming environment extensions come equipped with mech-
anisms and tools that explicitly enable designers to package the
presentation of a class and its interfaces to casual users.

I do not want to digress into a discussion on the merits of
recent additions to Smalltalk programming environments. (I
am absolutely convinced of their utility.) Nor do I particularly
want to defend Smalltalk against languages with explicit sup-
port for public and private declarations (which have problems
in actual use). However, developers of these newer Smalltalk
environments have recognized the danger of information over-
load. Without removing detail, it may be difficult to discover
the essence of a class.

We often create an instance and only use a fraction of its
class’s features. And we are completely content to do so. I
strongly advocate a written textual description of a class, de-
scribing the typical and most important patterns of use. De-
scribe the essential 20%, 50%, or 80% (your percentage will
vary depending on how full-featured a class is and how much
exploration a programmer makes) in a few short paragraphs.
Accompany this description with a few pictures describing
typical object-interaction sequences. Leave the rest for me to
discover by either reading through a more detailed class-de-
sign document or by exploring your code and comments. If
you are trying to leave a helpful trail for users, embed a typi-
cal object-creation message with appropriate arguments in-
side a comment within an instance creation method. More
elaborate examples can be developed with detailed com-
ments, either to be filed into an image or executed.

SPEND TIME ON WHAT MATTERS

Not every class is worthy of the same amount of attention. A
class of limited utility, intended to be seen by a very small au-
dience, only deserves light treatment. I am not a proponent of
mandating equal discussion for all classes. That leads to either
lots of useless boiler-plate documentation or developer
mutiny. Instead, spend the time creating a well-considered dis-
cussion for classes that provide broadly useful functionality or
are central to your design.

Complex classes that require a lot of set up or have highly
stylized patterns of usage demand extra attention. From an ex-
ternal viewpoint, I need to know common patterns of usage, as
well as how to diagnose an object that’s broken and not func-
tioning as expected. We creators of initial designs often don't
realize how easy it is for someone else to misinterpret our
work. So this kind of discussion is definitely worthwhile, if
only to get an idea of potential hot spots.

MAKING THE CONNECTIONS

It is relatively easy to produce dacumentation for a class intended
to be used in isolation. It is much harder to describe classes that
are part of a larger framework and intended to be used in con-
junction with a number of collaborators. To use a framework re-
quires understanding how objects interact, what role each object
plays, and when and how objects should be created and used.

A description for a framework of interacting classes must
not only cover the central classes, but also establish a clear
model of how these classes are intended to work together. This
year’s OOPSLA conference had a refreshing paper by Professor
Ralph Johnson that explained his process describing a graphi-
cal editor framework in Smalltalk, called HotDraw. HotDraw
was originally developed by Ward Cunningham and Kent
Beck. In five pages of text, Ralph described the central ideas be-
hind HotDraw and documented some common patterns of
key objects and their interactions. A nice touch was clear refer-
ences to the next layer of detail as well as pointers to related
concepts for each pattern of use.

Simple, helpful descriptions of object-interaction patterns
are straightforward reading. They require that the author has a
clear vision of the core ideas of a framework and a simple, if
not terse, writing style.

It reminded me of the Choose Your Own Adventure books
my kids used to read. After one or two pages, you were asked a
question. Depending on your answer, you were directed to one
of two pages. You could read the entire book and get several
different stories, each with different endings. My kids were
never satisfied until they had explored all possible paths.

Documentation of interlocking classes of objects needs this
touch. First you need a description of core concepts. Then you
need to tour key interactions at your own pace, allowing you to
discover and explore according to your personal choices. De-
scriptions should let you navigate, point you to more detail (if
you want it), and let you move on (should you want to
broaden your understanding).

CONCLUSION

New, useful ways for describing classes of objects and groups
of cooperating objects are active research topics. There’s plenty
of room for formal techniques as well as informal descriptions,
What I constantly strive for are pragmatic ways to impart de-
sign insight to users.

I don’t want you to leave with an impending sense of
doom or writer’s block. I don’t like writing reams of paper
that no one reads. And I won’t recommend that you take ex-
traordinary measures nor do what I personally am not willing
to do myself.

I especially want to appeal to you cynics who might be
thinking as you read this, “But she’s a writer. Of course she can
recommend we do these things. Writing comes naturally to
her.” Writing is definitely not a natural act for me. I have to
struggle to write concise, precise documentation. But as a user
of some pretty nicely described systems, I encourage you to
perform an enormous service to your users. Take some time to
describe how to properly use your classes. il

Rebecca Wirfs-Brock is Director of Object Technology Services at Dig-
italk and co-author of DEsIGNING OBJECT-ORIENTED SOFTWARE.
Comments, further insights, or wild speculations are greatly appreci-
ated by the author. Rebecca can be reached via e-mail at
rebecca@digitalk.com. Her U.S. mail address is Digitalk, 7585 SW
Mohawk Street, Tualatin, Oregon 97062.

NOVEMBER / DECEMBER 1992

21

OOK REVIEW

Richard L. Peskin

OBJECT-ORIENTED ENGINEERING

by John R. Bourne

Using Smalltalk-80. It is to Bourne’s credit that he ad-

dresses the important topic of engineering applications
of object-oriented software systems. While simulation was a pri-
mary target of early object-oriented languages, such as Simula
and original versions of Smalltalk, more recent activity in the
subject area appears to emphasize business applications, data
base applications, etc. If Smalltalk is to take its place alongside
more commonly accepted languages, its success in scientific and
engineering applications will have to be demonstrated on a
much broader scale than is present today. Bourne’s effort pro-
vides an important step in that direction, namely a book that ad-
dresses uses of Smalltalk in the engineering domains.

The author has made some valuable contributions to appli-
cations of Smalltalk in the college classroom, one example be-
ing his work on engineering tutorial systems implemented in
Smalltalk. The book, however, is somewhat disappointing as a
classroom tool or general resource for engineers who want to
learn more about Smalltallk’s potential for technical applica-
tions, The material is much too general in its treatment of ac-
tual engineering applications, yet at the same time contains too
much code-level detail without providing sufficient prepara-
tion for beginners.

Part [is an overview of general concepts such as representa-
tion of physical processes in terms of objects and behaviors. A
serious deficiency is the lack of historical perspective and pre-
sentation of important recent contributions in engineering ap-
plications of Smalltalk. Notably absent is any mention of the
contributions of the (now defunct) Tektronix group. Applica-
tions such as INKA, a system that assists in instrurment service,
represent important real engineering Smalltalk projects. Also
omitted are the contributions of Thomas et al. on the uses of
Smalltalk in realtime instrumentation and control, work done
at Rutgers on scientific data management, and other real-world
cases discussed in recent journals and proceedings. Engineers
need to be motivated by actual applications.

Turning to more specific issues, this reviewer would have
liked to have seen more emphasis on behavioral paradigm, as
opposed to software structural aspects (inheritance, etc.). En-
capsulated behavior of objects is the crux of what Smalltalk has
to offer engineering simulation. Bourne puts much emphasis
on the MVC paradigm and attempts to draw real-world analo-
gies. Not only is MVC out of date, but the author’s analogies

T he subtitle of this book is Building Engineering Systemns

are somewhat questionable. My greatest criticism of this part,
and of the book as a whole, is the emphasis it places on use of
ACOM cards for the “pre-specification” of a Smalltalk design.
Bourne goes so far as say that one must use 4x6 cards as op-
posed to 3x5 cards for writing down the desired classes, proto-
cols, etc. This approach reflects the traditional “specification”
approach to software, not the interactive prototyping style that
is Smalltalk’s forte. Although he references a 1986 paper by
Cunningham and Beck as his rationale for emphasis on ACOM
cards, my own reading of that paper was that cards were only a
“literary aide” to help explain O-O concepts. The first part of
the book ends with an overview of other O-O languages, in
which the author does emphasize the importance of having a
combplete class library for a particular O-O environment to be
of real benefit.

Part II concentrates on “tools,” namely the Smalltalk lan-
guage and environment. This section does not flow smoothly
from topic to topic and I fear it will be difficult for beginners to
follow. Smalltalk code examples are presented in numerous
figures without proper preparation for the lay reader. Perhaps
Bourne intended this section to be covered by additional class-
room material. In addition to Smalltalk specifics, this section
covers issues such as “look and feel” (but omitting that PPS re-
lease 4 does not have a complete native platform look and feel)
and bit editors (without making clear that release 4 does not
really support this and Pens as part of the system). As in Part I,
great store is place on the ACOM card method and how to
transfer information from the cards to the Browser. However,
there are some useful pieces in this section. While the discus-
sion on page 147 mixes animation with drawing, at least one is
shown how to draw a line using PPS release 4. Chapter 8 con-
centrates on MVC, There is too much detail, particularly about
the viewBuilder, and that level of detail is really not germane to
the subject of engineering applications. It is interesting to note
that the author’s own code example for MVC illustrates the
typical MVC problem; that is, where to put drawing methods.
The “Counter” examples ParcPlace used to distribute would be
better in this context. The author discusses the “Pluggable
Gauges” package (from KSC), but doesn’t refer to the active
value concept that is central to that package and important to
engineering applications.

Part I1I deals with engineering applications, which I found to
be the most disappointing. Most of the discussion about exam-

22

THE SMALLTALK REPORT

ples is cursory at best. There is a need in this section for empha-
sis on real examples. The non-electrical engineering coverage is
understandably the weakest, but his circuit simulation example
is again too detailed with emphasis on code rather than simula-
tion of physical behaviors. As in prior parts of the book, details
of extraneous subjects take up too much space—the external in-
terface description is a notable example. While Bourne does not
face some critical issues in engineering applications of Smalltalk,
such as handling of large numbers of objects generated in tech-
nical computations, he does address performance problems with
a discussion of user primitives. However, he confuses user prim-
itives (which are limited by the context loss across calls in PPS
release 4) and a true C interface (not yet released for PPS at this
writing). Table 12.2 illustrates the serious problem with this
book. It is a method listing consisting of user prims (<primitive:
11106>, etc.) with no comments, and is presented before the
reader is even introduced to the necessary semantics. The book
does end with a fairly good discussion of simulation and
Smalltalk applications in simulation. Perhaps this discussion
should have been presented much earlier.

All in all, I was disappointed. Given the great need for
books and monographs on scientific and engineering applica-
tions of Smalltalk, perhaps I expected too much. In all fairness,
the book is accompanied by an instructor’s manual and code
disks, which were not available in time for this review. Perhaps
their presence would have presented the text in a different
viewpoint, Future books on this topic should emphasize
Smalltalk as a behavioral paradigm for computational simula-
tion of physical processes. This important “forest” should not
be hidden by “trees” of small details. B

Richard L. Peskin is Professor of Mechanical and Aerospace Engi-
neering at Rutgers University and director of the CAIP Center Com-
putational Engineering Systems Lab. He has been involved with engi-
neering and scientific aspects of Smalltalk since 1984. In addition to
doing research in computational fluid dynamics and non-linear dy-
namics, he is one of the designers of the SCENE (Scientific Computa-
tion Environment for Numerical Experimentation) system, a
Smalltalk-based distributed computing environment that implements
computational steering tools such as interactive scientific graphics
and data management, automatic equation solvers, and mathemati-
cal expert systems.

Highlights

Excerpts from industry publications

CONCEPTS
. . . In most languages, learning to program means learning the
syntax. Learning to program in Smalltalk, however, involves
much more. The programmer must have a clear grasp of ob-
ject-oriented concepts. In addition, Smalltalk’s development
environment strongly influences the entire approach to
software creation. It is absolutely essential that the developer
become familiar with the classes provided by the Smalltalk en-
vironment. Although this can take some effort, it's a prerequi-
site for developing more than the most trivial programs. Fortu-
nately, this is an interesting activity and is one of the best ways
to learn Smalltalk.

An earful of Smalltalk, John D. Williams, PCAI, 9-10/92

TASKS

. - . The tasks in an object-oriented effort are different. New
tasks are required to identify, characterize and document ob-
jects. These tasks focus on identifying objects and the interac-
tions required of these objects to provide a system that meets
stated requirements. Object-oriented efforts, like other devel-
opment approaches, need requirements and design
specifications. Yet these documents localize around objects,
and not functions or data. In addition, these specifications
clearly delineate which components are reused from an in-

house reusability library and which are developed from scratch
to support the application at hand. Tasks associated with the
construction of structure charts, data flow diagrams and other
function- or data-oriented modules are obsolete and replaced
with modeling approaches more in concert with object-
oriented development.

Designing the object-oriented way, Ron Schultz,

OPEN SYSTEMS TODAY, 7/20/92

END-USER DEVELOPERS
- . -No fundamental change in the pace of software develop-
ment can occur until there is a significantly higher level of appli-
cation development. In other words, end users must become de-
velopers. Object-oriented programming could allow end users
to do just that. The ideal application development environment
would consist of enormous libraries of prefabricated, modular
program parts (super high-level objects). These modules could
be configured and combined in virtually unlimited combina-
tions to build complete applications across the entire spectrum
of software use. Applications would be built exclusively in a
high-level tool of this sort. Conventional code-level program-
ming would focus on creating object components. . . . End users
would have unprecedented programming opportunities.

The new shangri-la?, Joseph Firmage, SOFTWARE MAGAZINE, 7/92

NOVEMBER / DECEMBER 1992

23

HE TOP NAME
IN TRAINING IS ON

THE BOTTOM
OF THE BOX.

Where can you find the
best in object-oriented training?

The same place you found ;

the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custorn engineer-
ing, and project planning. For
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

reduce your learning curve,
and you'll meet or exceed
your project expectations. All

¥ in a time frame you may now

DIGETNT K
staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalftalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
Strategies that immediately
boost your productivity. You'll

think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

_ Progressive Insurance,
Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM’s
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990’s. For a full description
and schedule of classes, call
(800) 888-6892 x412.

Let the people who put
the power in Smalltalk/V, help
You get the most power out of it.

DIGITALK

	By Article Title
	Collection idioms
	Describing your design
	How to manage source without tools
	Object-Oriented Engineering -- Book Review
	Significant supported events in Smalltalk/V PM as illuminated in Window Builder
	Taking exception to Smalltalk, part 1

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hendley, Greg
	Hinkle, Bob
	Johnson, Ralph E.
	Knight, Alan
	Peskin, Richard L.
	Smith, Eric
	Wirfs-Brock, Rebecca

	By Topic
	Book Review
	comp.lang.smalltalk
	Getting Real
	GUIs
	Smalltalk Idioms
	Putting it in Perspective

