The Smalitalk Report

The International Newsletter for Smalltalk Programmers

September 1992

Volume 2 Number |

EXPERIENCES

WITH SMALLTALK

ON A LARGE

DEVELOPMENT
PROJECT

By Bran Selic
Contents:
Features/Articles:
| BExperiences with Smalltalk on a
Large Development Project
by Bran Selic

8 SmallDraw—Release 4 Graphics
and MVC, Part 3
by Dan Benson

Columns:

|4 The Best of
Comp.Lang.Smalitall: What else
Is wrong with OOP?
by Alan Knight

17 Getting Reak
Bxtending the Collection
Hierarchy
by Juanita Ewing

I9 Smalltalk idloms:
ValueModel Idioms
by Kent Beck

Departments:
23 Product News & Highlights

ne of the most frequently asked questions about object-oriented

technology is whether it was used as the primary technology on a

large project. This question is particularly relevant to Smalltalk

because it is often said that Smalltalk is a language well-suited for

prototyping but not for “real” product development. In this arti-
cle we will describe our experience using Objectworks\Smalltalk from ParcPlace
Systems as the basic implementation language for a commercially available CASE
tool called ObjecTime. This project is currently in its sixth year and at one point
involved over 30 Smalltalk programmers.

THE PRODUCT

Bell-Northern Research (BNR) designs and develops real-time distributed
telecommunications systems for its parent company, Northern Telecom. The
software driving these systems is often surprisingly complex and usually involves
many millions of lines of high-level code. To meet the extreme quality and ro-
bustness requirements of such systems, it is obvious that powerful computer-
based development tools are required. ObjecTime (previously known as Telos) is
one such CASE tool created at BNR for constructing the next generation of dis-
tributed event-driven systems. It can be used for analysis, design, implementation,
and verification. The tool is a key component of a methodology called Real-Time
Object-Oriented Modeling (ROOM), which is characterized by a set of high-level
design paradigms and a highly iterative development process.! With ObjecTime,
users graphically capture the high-level aspects of their designs and combine them
with specifications written in C++, or a simple rapid prototyping language for the
more detailed aspects. These designs can be executed directly using ObjecTime’s
built-in run-time environment. ObjecTime is currently the most widespread
CASE tool within BNR. It has been made available to external (non-BNR) cus-
tomers and has already been purchased by several major corporations.

The software comprising the tool is quite elaborate and includes an interactive
graphical user interface, several complex semantic editors, a high-level language
compiler, and an event-driven run-time system. This system’s level of complexity
can be deduced from the size of the class hierarchy, which currently contains close
to 1,400 Smalltalk classes.

THE PROJECT AND ITS CHRONOLOGY
The project has so far progressed through three principal stages: a prototyping
stage, a development stage, and a commercial product stage.

The prototyping stage
The prototyping stage started in late 1986 and lasted approximately 18 months,
during which time the project team grew from three to 18 people. None of the

continued on page 4...

Editors

EDITORS e escres
CORNER bbb

SIGS PUBLICATIONS
Advisory Board

Tom Atwood, Object Design

Grady Booch, Rational

George Bosworth, Digitalk

John Pugh Paul White Brad Cox, Information Age Consuiting
Chuck Duff, The Whitewater Group
Adele Goldberg, ParcPlace Systems

APPY ANNIVERSARY! We thought somebody should say it, as we roll into year two of Tom Love, Consuiant
Bertrand Meyer, ISE

THE SMALLTALK REPORT. We trust you have been satisfied with the quality of articles over | g Page-jones, Wayland Systsms
the past 12 months. Subscriptions are constantly climbing, as is the number and diversity Shesa Pratap, CenterLine Sofoware

!

|

|

|

of Smalltalk users. We have tried to include articles that have a broad band of appeal yet :}::.::T::ﬁ::i:ﬁ. Labe I
|

i

|

|

«

are specific enough to give you more than just a “warm feeling.” Certainly the best part of | p,ve Thomas, Object Technology Intemational
this job has been the opportunity to meet many of you (albeit electronically in most
cases!!). Please, keep coming forward with ideas.

THE SMALLTALK REPORT

. N . . Editorial Board
As you are all. aware, one requirement st?rely lacking in our niche of the software in- Jim Anderson, Digieak
dustry is a repository of documented experience reports. Other than OOPSLA’s experi- Adele Goldberg, ParcPlace Systems
ence reports, very little is available in terms of actual documented case studies. Newcom- :::d _:““I“P‘- Knawledge Systsms Carp.
. . . . ike Taylor, Digialk
ers to object-oriented technology, and Smalltalk in particular, want to see proof that the Dave Th:m :WT rclogy Incermational

technology has been successful. And those of you trying to get on with the development of -
software know how much easier life would be with a reservoir of experiences from previ- Columnists
. . s ys , Kent Beck, First Class Software
ous projects, both good and bad, on which to draw. If you're like us, you’re constantly left | jnica Ewing, Digiai
with the feeling that “this has been done before,” especially in terms of adapting tradi- Greg Hendley, Knowledge Syscems Corp.

tional management strategies to Smalltalk projects. It’s time we started to reuse more than | £ Klimas, Linea Engincering Inc.
Alan Knight, Carleron University

ju‘St code. Suzanne Skublics, Object Technology'Incernational
Bran Selic’s feature article describes many experiences gained during the development Eric Smith, Knowledge Syscems Corp.

of the CASE tool ObjecTime at Bell Northern Research. He gives a chronology of the pro- | Rebecca Wirfs-Brock, Digrlk

ject, highlighting things that worked well and some of the ptifalls encountered. SIGS Publications Group, Inc.
Also in this issue, Dan Benson concludes his three-part series on the development of Richard P. Friedman

SmallDraw, his graphics editor, illustrating the “ins and outs” of MVC, He adds facilities Founder & Group Publisher

to SmallDraw to all ing, layering, and al f objects, cut/copy/paste facili- | ki Coucton

o SmallDraw to allow grouping, layering, and alignment of objects, cut/copy/paste facili- Kristina Joukhadar, Managing Edior
ties, and scrolling. Pilgrim Road, Ltd., Creative Direction

Karen Tongish, Production Editor

Three of our regular columns appear this month with each building on themes de-
Jennifer Englander, Art/Prod. Coordinator

veloped in earlier columns. Kent Beck’s column describes the inherent shortcomings of

Circulation
the change propagation mechanism and describes the ValueModel style of coding intro- Ken Mercado, Fulimen Manager
duced in Objectworks\Smalltalk 4.0. Juanita Ewing continues her discussion of proper Diane Badway, Circulation Business Marager
. . . : - _ John Schrelber, Circulaton Assistant

use of_mherltance thr.ough an 'exampl.e of adding an OrderedSet to the.Collectlfm hierar Marketing/Advertising
chy. Finally, Alan Knight continues his survey of many of the complaints registered on Diane Morancie, Advertsing Mgr—Easc Coast/Carad
USENET about OOP. Holly Meintzer, Advertising Mgr—West Caast/Europe

In closing, we would like to take the opportunity to thank those of you who have :‘:ﬁ'ﬁ""s""fﬂf EshibicRecrufmens Sales Manager

helped us out over the past year. A special thanks goes to our regular columnists, who Lorma Lyle, Promoxions Manager—Conferences

have yet to let us down and whose contributions form the pillar of the REPORT. Caren Polner, Promotions Graphic Arckt
Thanks, gang! Administration

Ossama Tomoum, Business Manager
David Chacterpaul, Accoundng
Claire Johnston, Conference Manager
Cindy Roppel, Conference Coordinator
Amy Stewart, Projects Manager
Jennifer Fischer, Public Relations
Helen Newling, Administrarive Assistant

Margheria R. Monck *
General Manager

WSIGS

PUBLICATIONS

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, every munth except for the Mar/Apr, July/Aug, and Nov/Dec combined issues. Pub-
lished by SIGS Publications Group, 588 Broadway, New York, NY 10012 (212)274-0640. © Copyright 1992 by SIGS Publications, Inc. Al rights reserved.
Repraduction of this material by elecironic transmission, Xerox or any ather method will be treated as a willful violation of the US Copyright Law and is Publishers of jaumnal of Object-Oriented Programming,
flatly prohibited. Material may be reproduced with express permission from the publishers, Mailed First Class. Subscription rates | year, (9 issues) domes- Object Mogazine, Hotline on Object-Oriented Technology,
tic, $65, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and subscription orders to: THE SMALLTALK REFORT, Sub- The C++ Report, The Smatitalk Report, The | ional
ribver Services, Dept. SML, P.O. Box 3000, Denville, NJ 07334. . OOP Directory, and The X journol.

Submit articles to the Editors at Smalltalk Report, 91 Second Avenue, Ottawn, Ontario K1S 2H4, Canada

2 THE SMALLTALK REPORT

Transition to
Obiject Technology by Design

ADVANCED TRAINING

ANALYSIS & DESIGN

MENTORIN,

APPRENTICE |

TEAM REQUIREMENTS

The Management Challenge
The transition to object technology
must be designed for success. The
management challenge is to:

* Produce Quality Software

¢ Deliver on Time

Build Maintainable Code

Model the Business Problem
Build Client-Server Solutions

* Manage Complexity

Knowledge Systems Meets
the Challenge

Knowledge Systems Corporation
(KSC) has emerged as the industry
leader in delivering pure object-
oriented product solutions. KSC

products and services are designed to

successfully transition business to
object technology.

GROUP DEVELOPMENT é

GROUP TOOLS

FRAMEWORKS

CUSTOM CONTRACTS

Transition Services

KSC Transition Services include

contract services and a complete

training curriculum that supports a

group development environment.

Multiple training tracks are designed

to ultimately attain self-sufficiency

and to produce deliverable solu-

tions. Program curmriculum includes:

* Mentoring: Process Support

* Apprentice: Small Group Project
Focus at KSC

» Finding the Objects (CRC)

* 0O Analysis and Design

¢ Introductory to Advanced
Programming in Smalltalk

* Introduction to Smalltalk for
COBOL Programmers

" SOLUTIONS

Development Environment
KSC now markets in the U.S. and
fully supports ENVY™/Developer, a
multi-user development environ-
ment. In addition, KSC provides
integrated services and tools to
enable construction of cooperative
processing applications.

Deslgn your Transition

Begin your successful transition to
object technology today. Join the
growing list of KSC clients such as
IBM, Hewlett-Packard, Texaco,
Fisher Controls, American Airlines,
First Union, Northern Telecom, and
Texas Instruments. For more infor-
mation on transition products and
services from Knowledge Systems,
call us at 919-481-4000.

-] 114 MacKenan Dr.
I(‘ Knowledge Systems Corporation ary NG 27511
J OBJECT TRANSITION BY DESIGN (919) 481-4000

© 1992 Knowledge Systems Corporation. ENVY is a trademark of Object Technology International, Inc.

B EXPERIENCES WITH SMALLTALK ON A LARGE DEVELOPMENT PROJECT

...continued from page |
team members had practical experience with O-O technology
but we decided to adopt an O-O approach.

Communications software traditionally has been designed
using an object-based approach, primarily because of the in-
herently distributed and asynchronous nature of communica-
tions systems. We were looking for a new technology that
could overcome some of the major limitations of traditional
software construction methods.

After some deliberation, we chose Smalltalk as the imple-
mentation language for our prototyping. Various object-
oriented flavors of C (Objective C, C++) were also considered
and discarded. We felt that a qualitatively different technology
was required to deal with the complexity we had forecast for
the coming generation of software systems. We were interested
in programming abstractions that could deal with entire sub-
system architectures and complex graphics. The semantic gap
between these and the low-level machine-oriented abstractions
provided in C and similar languages was just too great.

We originally selected Smalltalk/V from Digitalk Inc. After
about a year, we switched to Smalltalk-80 from ParcPlace Sys-
tems because ParcPlace software ran on the Unix-based work-
stations used by most of our client base. In addition, our own
performance benchmarks indicated that at that time (late
1987), our application would execute more than twice as fast
on ParcPlace Smalltalk than on Smalltalk/V on the same plat-
form. The port of our code to Smalltalk-80 was straightfor-
ward with most of the difficulties stemming from differences in
the graphics paradigms.

There was no formal design process but the issue was dis-
cussed at length, with great fervor and some dissent. The
highly interactive Smalltalk development environment was un-
like any the team had experienced before. It obviously had
great potential that was not exploited fully by traditional linear
models of software development.

Our initial development consisted of a set of disjoint proto-
types of different toolset components, each one designed and
implemented by a single developer. In the latter part of the
prototyping stage the distinct components were integrated,
one-by-one, into a composite whose functionality roughly ap-
proximated that of the desired system. There were no commer-
cially available team programming environments at that time
so we eventually evolved a “manual” process for synchronizing
the activities of programming teams,

This process was based on a weekly integration cycle. At the
beginning of each week a new version of the system was gener-
ated by the system integrator. Once this image was available,
designers would copy it to their own environment and make
further changes to it as necessary. At the end of the week, de-
signers would submit their changes for inclusion in next week’s
image. To minimize conflicts, all the classes in the hierarchy
were partitioned so that each class was owned by a group. Only
members of the group owning a class were allowed to submit
changes for that class. Also, it was possible to specify the inte-
gration order of a submission relative to other submissions. A
common “patches” repository was maintained for any changes

that needed to be shared in the interval between successive in-
tegrations. These could be filled in at the discretion of the indi-
vidual developer.

To our surprise, we found that this manual process was ef-
fective even in later stages of the project when the development
team was much larger. We attributed this to the decoupling ef-
fect of partitioning the class hierarchy across different groups
as well as to the highly modular and loosely coupled architec-
ture of the application.

The development stage

Following our prototyping experience we commenced the ac-
tual implementation in September of 1988. This second stage
lasted approximately two years. During that time the internal
architecture of the tool was reorganized and almost all of the
prototype code rewritten. The development team doubled in
size to eventually include over 30 developers (not including
managers), all of them programming in Smalltalk.

The software was developed gradually, in four successive
releases, each release extending the capabilities of the previous
one. One of those releases included porting of the complete
software from a Macintosh platform to a Unix workstation
(Sun Microsystems SPARCstation 1). This porting effort
turned out to be trivial despite significant differences between
the underlying hardware and operating systems. The ease with
which this was accomplished confirmed the portability claim
of the ParcPlace Systems Objectworks\Smalltalk product.

A more formal development process was used during this
stage since we were working on a production version of the
software and a much larger tearn was involved. The final ver-
sion of this process is described in a later section.

The commerclal product stage

Until the end of 1990 ObjecTime was exclusively targeted to
internal BNR projects. In 1991 the potential for more
widespread use was recognized and a decision was made to
market the technology. This meant setting up a full-fledged
support organization, “robustification” of the software to com-
mercial-quality standards, creation of high-quality user docu-
mentation, and functional extension with features required by
a much wider open market. With basic toolset architecture and
functionality in place this was accomplished by a smaller and
more focused team,

The current release of the toolset, ObjecTime Release 4.0,
contains close to 1,400 classes and the initial image requires 5.8
MB. Despite these relatively large numbers, we have not yet
encountered nor do we anticipate any fundamental technical
or resource limitations of either the language or the ParcPlace
Objectworks\Smalltalk environment.

EXPERIENCE WITH SMALLTALK
This section surnmarizes some of the salient aspects of our
Smalltalk experience.

continued on page ...

4

THE SMALLTALK RErPORT

10 Years Ago,
en OTI Suggestec
at Object-Oriented
echnology Would
Revolutionize
The Software Industry,
People Called Us
r

Now, They Simply Call Us.

For over 10 years, OTI has been on the
leading edge of object-oriented software
engineering. And today, as more and more
companies adopt this exciting, new
technology, OTI remains the leader in
providing industrial and commercial
object-oriented solutions.

Partners in

Object-Oriented Development

OTT’s unique technology alliance program
provides a means of accelerating product
development and introducing new software
technology. OTT’s technology is being used
in products ranging from pen computers to
real-time systems. Through these alliances,
we've earned a solid reputation for developing
high-quality, reliable software — on-time,
within budget and to demanding product
specifications. This success is attributed to

OTI’s ENVY®%Developer - the first multi-user
development environment for object-oriented
engineering.

OTI’s ENVY/Developer - Product
Development Tools For Smalltalk

With ENVY/Developer, large and small
software engineering teams work within an
interactive, shared programming environment.
Inside this environment, team members share
common development tools, common software
components and common source code — that
means faster cycle times, increased productivity,
virtually no duplicated code, and no wasted
effort.

Applications are created efficiently and
effectively, from beginning to end. Using
ENVY/Developer, the team passes the
application through each phase of the software

manufacturing lifecycle - conceptualizing,
prototyping, manufacturing, testing, release
and maintenance — without ever leaving the
environment. ENVY/Developer also tracks
this process by providing complete software
version control and multi-platform
configuration management.

Interested?

If your organization is interested in joint
research and development or you would like
more information on ENVY/Developer and
object-oriented programming environments,
call us today.

Object Technology
international inc.
Engineering Ideas
Into Products

Canada Telephone: 613-820-1200 ® Fax; 613-820-1202 e E-mail; info@oti.on.ca USA Telephone; 602-222-9519 e Fax: 602-222-8503
ENVY is a registered trademark of Object Technology International Inc.

M EXPERIENCES WITH SMALLTALK ON A LARGE DEVELOPMENT PROJECT

continued from page 4...

Productivity

We are convinced that Smalltalk, with its sophisticated and
customizable environment, source-level debugging capabil-
ity, extensive class library, and automated storage reclama-
tion, is significantly more productive than most other devel-
opment environments (including, to a lesser degree, other
0-0 environments).

This is substantiated to a certain extent by an interesting
case that occurred during the project. As part of our develop-
ment we were required to implement a general purpose graph-
ical windowing system using Objectworks\Smalltalk. Simulta-
neously, a second development group was independently
implementing a similar facility in C based on an X Window
System toolkit. This substantial application amounted to ap-
proximately 66,000 lines of C code, while the same functional-
ity in Smalltalk required only 6,200 lines of Smalltalk—a func-
tionality ratio of 10 to 1 per line of code! A more conservative
estimate, based partly on these results and partly on our overall
experience on this project, is that Smalltalk gave us a produc-
tivity advantage three to five times over a traditional program-
ming language such as C.

We believe that Smalltalk has a significant productivity edge
over other O-O languages as well. Although we have no hard
quantitative data, our rough estimate is that Smalltalk is at
least two to three times more productive than C++.

Performance

ObjecTime is a computing-intensive application: It has a
graphical interactive user interface, it must perform complex
semantic checks in real time, and it must efficiently execute
complex high-level designs. By far the greatest portion of this
functionality is implemented in Smalltalk. (Lesser portions
[approximately 5%] were implemented in C++, not for perfor-
mance reasons, but to enable execution of the C++ segments of
a user’s design.) Although we occasionally encountered perfor-
mance problems, in most cases we were able to improve per-
formance to acceptable levels either via straightforward code
optimization or through readjustment of the architecture.

The only potentially serious problem relating to performance
is an occasional pause for memory compaction, which is part of
the automatic garbage collection mechanism. For our applica-
tion, we found that this pause becomes unacceptable in situa-
tions where there is not enough real memory so part of the
garbage collection involves swapping memory from disk. To
eliminate this problem we stipulated a minimum amount of real
memory for our application. Memory requirement is a function
of the size of the user design. For ObjecTime release 3.5.1, mini-
mal memory requirement starts at 16 MB (on a Unix worksta-
tion) for small to intermediate designs and goes up to 40 MB for
the largest designs. With sufficient memory in place, the garbage
collection pause is relatively short (between 4 and 10 seconds)
and occurs infrequently (every 15-20 minutes).

Quality
Most of our development was done with the ParcPlace Systems

product, Objectworks\Smalltalk (from release 2.1 through release
2.5). In over four years we encountered only two problems, both
minor, which required product fixes by the vendor.

Usability for large system development

Our experience demonstrated that Smalltalk was a practical so-
lution for moderately large development teams (30 program-
mers) even without the assistance of specialized team pro-
gramming tools. Of course, if such tools are available (e.g.,
ENVY/Developer from Object Technology International), they
should be used, since they add significant value and can extend
the applicability of Smalltalk to even larger projects than ours.

Training

Carleton University is one of the major world centers of
Smalltalk expertise. The School of Computer Science at Car-
leton organized a short course, taught by professors John
Pugh, Wilf LaLonde, and Dave Thomas, which for most team
members was the initial exposure to Smalltalk. We were also
able to hire, on a temporary basis, a group of graduate and un-
dergraduate students who served as consultants on proper
Smalltalk usage. The presence of such experienced Smalltalk
programmers significantly cut down on our training time.

In addition to the Carleton course, we took an “intermedi-
ate” level Smalltalk course offered by ParcPlace Systems, which
focused on common techniques for effective usage of the envi-
ronment. This course visibly increased the confidence level of
the development team.

It takes between one and three weeks for an experienced pro-
grammer to learn enough Smalltalk to start using it on the job.
However, for a programmer to effectively use Smalltalk, it is
necessary to become familiar with the O-O paradigm, the class
library, and the programming environment itself. In our experi-
ence the majority of programmers needs an additional 6 to 20
weeks to reach an “intermediate” level of proficiency. (Keep in
mind that the same amount of time is needed to learn the envi-
ronmental particulars [e.g., code libraries] for any large project.)

The development process

Our development process differed somewhat from the tradi-
tional model. First of all, we wanted to take advantage of the
rapid prototyping capability of Smalltalk. Proper use of this
feature helps designers gain valuable insight early in the devel-
opment cycle and before major implementation effort is ex-
pended. Inheritance also adds a new aspect to the overall de-
sign effort. Typically this requires additional effort consisting
of another pass through the design after the desired functional-
ity is fully achieved. Further design optimization is accom-
plished from the perspectives of reuse and abstraction. We ul-
timately settled on a process consisting of four main activities:

1. Functional design defines the functionality of the feature
being developed. The output of this activity is a Functional
Specification document which can be discussed with
clients. Once finalized, this specification is also given to an

6

THE SMALLTALK REPORT

independent verification group to allow early preparation
of test plans.

2. Object or class design is the fundamental synthesis process in
which a high-level design is worked out for the feature. If
the feature is complex enough, a formal Design Document
is produced for review purposes.

3. Coding is part of the prototyping and refinement activity. In
the case of prototyping, this activity is often concurrent
with and supplemental to class design and even functional
design. Given the importance of user interfaces to our ap-
plication, a distinct subactivity is early modeling and evalu-
ation of the user interface design.

4. Documentation and testing are usually done in the final
stage. Each designer generates a functional test plan that is
reviewed and used for white box testing. For major features,
code inspections are also held. This phase also includes test-
ing of the software by an independent verification group.

Although the individual activities are listed in sequence, the
process allows for internal cycles to accomodate further refine-
ments, particularly following implementation.

The project management process

The iterative nature of the development process makes it
difficult to detect whether or not it converges. To get around
this we specified a linear progression of milestones, each one
tied to a concrete deliverable. The interval between successive
milestones was fixed in advance, based on a priori estimates of
the effort required. For example, the formal release of a Func-
tional Design document was the first milestone following the
start of feature development. Other major milestones included
the release of an Object Design document, the delivery of code
to a test group, and the successful completion of testing. Not
surprisingly, we had the most difficulty estimating the amount
of effort needed for individual milestones to be achieved. This
was especially problematic at the beginning because we had
had no previous experience with an iterative development pro-
cess or the O-O paradigm.

Additional observations
To conclude this summary of our experience, we list several
additional points pertaining to O-O development:

1. The management team must have an in-depth understand-
ing of O-O technology to gain maximum return from it.
This technology is different enough from traditional ones
(e.g-, the focus on reuse, iterative development process) that
many of the long-established management practices are in-
appropriate. Because this is a relatively new technology not
many technical managers are experienced with it.

2. There is a significant need to develop better management met-
rics to reconcile an iterative development process with the
needs of management so that a process stays within its allocated
resources. Successive refinement can indeed reach a point of di-

anyDeveloper at: AMIX make: money

Just opened!

The firet online Smalltalk marketplace where
any developer can eell or buy Smalltalk tools,
components, add-ons, advice or training, and
hook up with the right people. If you're looking
for the best in Smalltalk, come to the AMIX
online marketplace.

We're offering the AMIX software for free.

Vieit the AMIX Booth (#701) at OOPSLA,
October 18-22 in Yancouver. Or call us now at
415-903-1000 and we'll send you a disk today.

American Informatlon Exchange Corporation
18661 Landings Drive

Mountain View, CA 94043-0848

Phone: 415-903-1000

FAX: 415-903-1093

minishing returns. How do we detect when that point has been
reached? New metrics are also required to measure productiv-

ity; with refinement, the number of lines of code can actually
decrease with time through inheritance and reuse.

3. The ease and rapidity with which code can be changed and re-
compiled in Smalltalk can easily lead to hacking with little or
no time taken to reflect. (Smalltalk is one of those seductive
environments where it is very easy for the medium to become
the message.) This style of development tends to work bottom
up and does not extend very well to large system design. The
best way to avoid this is to ensure that a system architecture is
defined before any development of details takes place.

CONCLUSION

We have been using Smalltalk on our project for almost six
years; overall, our experience remains strongly positive. We
have confirmed not only that Smalltalk is powerful and robust
enough to be used for commercial-quality software, but also
that there are substantial benefits when compared with other
implementation options. Finally, we have demonstrated that
Smalltalk can be used successfully on large and long-term pro-
jects involving sizable programming teamns. B

References

1. Selic, B., G. J. Gullekson, and I. McGee Engelberg. ROOM: An
Object-Oriented Methodology for Developing Real-Time Sys-
tems, Montreal, Canada, July 6-10, 1992.

Bran Selic is Senior Manager responsible for real-time CASE technol-
ogy at Bell-Northern Research in Ottawa, Canada. He can be
reached at 613.763.3954 or at selic®@bnr.ca.

SEPTEMBER 1992

SMALL DRAW —

RELEASE 4

GRAPHICS AND
MVC, PART 3

Dan Benson

mallDraw is a simple structured graphics editor
that provides an example of graphics rendering
and MVC application construction in Smalltalk-
80 Release 4. The first article in this series con-
tained an introduction to graphics concepts and application
construction with the MVC architecture through the definition
of a “minimal” SmallDraw. The second article added the abil-
ity to select and modify objects in the view. This third and final
article extends the features of SmallDraw to include grouping
of objects, layering of objects, alignment of objects through a
DialogView, cut/copy/paste operations through a shared clip-
board, the use of command keys, and scrolling of the view. In-
formation on obtaining the complete source code for Small-
Draw is given at the end of the article.

GROUPING OBJECTS
Grouping objects together allows them to be treated as a single
unit. That is, a grouped collection of objects can be translated,
scaled, and copied as a single object. To do this, 2 new class is
defined as a subclass of SDGraphicObject, called SDGraphicGroup:
Object ()
SDGraphicObject (‘insideColor’ ‘borderColor’ lineWidth’ ‘handles’

‘boundingBox’)
SDGraphicGroup (‘elements’)

SDGraphicGroup’s single attribute, elements, holds a collec-
tion of SDGraphicObjects. It implements specific methods for
calculating its boundingBox, displaying its elements, testing for
point inclusion, and translation and scaling. For example, SD-
GraphicGroup defines the following method for translation:

translateBy: aPoint
self elements do: [:0 | o translateBy: aPoint].
self computeBoundingBox

The SmallDraw model is responsible for grouping objects.
When the group operation is selected from the menu, Small-

Draw creates a new SDGraphicGroup, setting its elements to the
currently selected set of objects. The selected objects are re-
moved from SmallDraw’s objects and the new SDGraphicGroup is
added to SmallDraw’s set of objects.

The inverse operation of un-grouping is also provided.
When this operation is selected, SmallDraw removes any in-
stances of SDGraphicGroup from the current selection, adding
each individual element to its set of objects.

LAYERING OBJECTS

As objects are added to the drawing they are placed on top of
existing objects; that is, they are conceptually layered. This idea
is also reflected exactly in the SmallDraw objects instance vari-
able as an OrderedCollection of objects.

It is often useful to change the relative positioning of ebjects
within the stack. This is accomplished by providing four menu
selections, shown in Figure 1, for moving objects to the front or
back of the stack, or forward or backward by one position.

new b
selection - move

edit dgroup (alt-g)
change » ungroup (alt-G)
display | align (alt-k)

alisnment

& forward (alt-f)
to front
backward (alt-))
toback

Figure 1. Menu selection for moving objects.

Moving selected objects to the front is done by simply re-
moving them from the list of objects and adding them to the
front of the list:

moveToFront
self hasSelection ifTrue: [| selection |
selection ;= self selectedObjectAssociations.
selection do: [:0a | self objects remove: oa].
self objects addAllFirst: selection.
self changed: #rectangle with: self selectedObjectsDisplayBox]

Moving objects forward by one position is done by insert-
ing the selected object before the object that was in front of it:

moveForward
self hasSelection ifTrue: [
self selectedObjectAssaciations do: [:0a | | before |
self objects first = oa
ifFalse: [before := self objects before: oa.

self objects remove: oa.
self objects add: oa before: before]].

self changed: #rectangle with; self selectedObjectsDisplayBox]

Moving objects to the back or backward one position is
done in a similar fashion.

8

THE SMALLTALK REPORT

S-171-

Now ovailable!
silence 2.0

for Windows
and PM

Adlgommo solutions

O

~-e-rr-cC-e

Multi-user source code control

and versioning system
for Smalltalk /V

NEW! rode managed on a dieat-server madel »
NEW! aulamalic batkground wpdating

NEW! linked sub-projed supporl »
NEW! UFQ persisten) object loalkit

NEW! Aulomatic reporl generation =

automalic chonge docwmenling =
ship compiled code wilhaut source

package and lock releases =

change log browser and resiorer »

Starting from

$149.95

source code incduded

arth America Viso arders ada 5 NO AMEX OR MASTERCARD

}] Unit 4, 387 Spuding Avenve, Toronto, Ontario, Canada, M5T 2G6 Phane: (4]6) 351-8833 Fax: (416) 408-2850 CompuServe 75430,400

ALIGNING OBJECTS
A difficult and time-consuming task in any graphics editor is
trying to get objects aligned with each other. Confining the
mouse to a low-resolution grid is helpful but not always ade-
quate. This task can be simplified with the use of a DialogView
to specify the type of alignment desired. Alignment can take
place in either of two directions and one of three positions for
each direction (see Figure 2).

The user has the option of choosing one or both directions.
For each direction, only one position can be specified using the

Alignment
Vertical

(O Center

(O Bottom

Horizontal
(O Left (®) Center () Right
OK |

Cancel |

Figure 2. Alignment Dialogview.

kA i regctered trodemark of Digilelk 1

radio buttons. The chosen alignment positions are retained by
SmallDraw so that they may be applied to selected objects with-
out bringing up the DialogView each time. Therefore, two menu
selections are added, one for applying the current alignment
and one for setting the stored alignment.

When the alignment is to be set, SmallDraw creates a Di-
alogView whose model is SmallDraw. When the DialogView is
opened, SmallDraw specifies a message selector (#finishedAlign-
ment) that determines when the view should be closed. Until
that message selector returns true, the DialogView interacts with
the user and SmallDraw to set and modify the alignment direc-
tions and positions.

The vertical and horizontal positions are represented as
symbols. These values are stored along with a flag that indi-
cates whether Cancel or OK was pressed in the DialogView.
Rather than adding three new instance variables to SmallDraw, a
single instance variable called alignment is added. This is an in-
stance of a three element Array to store the three pieces of in-
formation as follows:

initlalizeAlignment
"The alignment instance variable is an array of three elements:
1) vertical alignment | nil
2) horizontal alignment | nil
3) false | true | nil -> cancel | accept | not finished (used by
DialogView)

The last flag must be set to nil each time the DialogView is opened.
See openAlignmentDialog and finishedAlignment.*

SEPTEMBER 1992

B SMALLDRAW—RELEASE 4 GRAPHICS AND MVC PART 3

alignment isNil
ifTrue: [alignment = Array with: nil with: nil with: nil].
alignment at: 3 put: nil)

Methods are used to access the alignment array elements as
follows:

acceptAlignment

alignment at: 3 put: true
acceptedAlignment

Aalignment at: 3
cancelAlignment

alignment at: 3 put: false
finishedAlignment

~(alignment at: 3) notNil
horizontalAlignment

~alignment at: 2
horizontalAlignment: aSymbol

alignment at: 2 put: aSymbol.

self changed: #horizontalAlignment
verticalAlignment

Aalignment at: 1
verticalAlignment: aSymbol

alignment at: 1 put: aSymbol.

self changed: #verticalAlignment

Alignment is performed relative to the total boundingBox of
the currently selected set of objects:

doAlignment
self hasSelection ifTrue: [| bb repair |
bb := self selectedObjectsBoundingBox.
repair := self selectedOhjectsDisplayBox.
"Vertical movement."
self verticalAlignment = #top ifTrue:[
self selectedObjects do: [:0 | o translateBy:
0@(bb origin y - 0 boundingBox origin y)]].
self verticalAlignment = #center ifTrue:[
self selectedObjects do: [:0 | o translateBy:
0@(bb center y - o boundingBox center y)]].
self verticalAlignment = #bottom ifTrue:{
self selectedObjects do: [:0 | o translateBy:
0@(bb comer y - o boundingBox comner y)]].
"Horizontal movement.”
self horizontalAlignment = #left ifTrue:[
self selectedObjects do: [:0 | o translateBy:
(bb origin x - o boundingBox origin x) @0]].
self horizontalAlignment = #center iffrue:[
self selectedObjects do: [:0 | o translateBy:
(bb center x - o boundingBox center x) @0]].
self horizontalAlignment = #tight ifTrue:{
self selectedObjects do: [:0 | o translateBy:
(bb corner x - o boundingBox comner x) @0]].
self changed: #rectangle with: repair)

CUT/COPY/PASTE

A common metaphor in many applications is the cutting,
copying, and pasting of objects using a “clipboard” as an inter-
mediate storage mechanism. The Macintosh system is an excel-
lent example of using a common system clipboard to transfer a
variety of data objects between applications. Similarly, graphic
objects can be copied or cut to a common buffer accessed by
all SmatlDraw applications.

Intermediate storage implies an instance variable that can
reference collections of graphic objects. Sharing access to this
storage among SmallDraw instances suggests that a SmallDraw
class variable is the appropriate mechanism for a common
clipboard. Therefore, a class variable called Clipboard is added
to the SmallDraw class. The Clipboard can hold one object, or
one collection of objects, at a time. Copy and cut operations
are destructive because they overwrite the current contents of
the Clipboard. Pasting is nondestructive because a copy is made
of the Clipboard contents and added to the drawing.

It may seem trivial to implement the copy operation by
simply assigning the Clipboard class variable to a copy of the se-
lected objects:

copy
self hasSelection

ifTrue: [Clipboard := self selectedObjects copy]

However, care must be taken when copying and pasting ob-
jects to and from the Clipboard. The Smalitalk copy performs a
shallow copy, which simply duplicates references to the objects
to be copied (making them identical and thus equal), and the
Clipboard then points to the objects remaining in the drawing.
In contrast, a deepCopy creates exact duplicate objects that are
different from the originals (equal but not identical):

copy
self hasSelection

ifTrue: [Clipboard := self selectedObjects deepCopy]

It is not necessary to use deepCopy when objects are cut
from the drawing. In this case, the objects are removed from
the drawing and essentially transferred to the Clipboard:

cut
self hasSelection ifTrue: [
Clipboard := self selectedObjects.
self objects: (self objects reject: [:p | p value]).
self changed: #rectangle with; self clipboardDisplayBox]

When objects are copied to the Clipboard, they retain their
attributes including their location in the drawing. A copied ob-
ject immediately pasted back into the drawing covers its origi-
nal copy. A useful convention is to paste an object into the
drawing at an offset from its copied position. Each subsequent
paste of the same object would then be offset from the previ-
ous pasted object. This can be accomplished by defining a
paste offset constant and translating the contents of the Clip-
board with each paste operation:

pasteOffset

"Answer the default offset for pasting objects from their copied
positions.”
~10@10

self clipboardFull ifTrue: [
self deselectAll.
self objects addAllFirst: ((Clipboard do: [:o |
o translateBy: self pasteOffset])
deepCopy collect: [:0 | o -> true]).

10

THE SMALLTALK REPORT

B SMALLDRAW - RELEASE 4 GRAPHICS AND MVC, PART 3

PETERS

WINDOWBUILDER

The Interface Builder for Smalltalk/V

The key to a good application is its user interface, and
the key to good interfaces is a powerful user interface
development tool.

For Smalltalk, that tool is WindowBnilder.
—| Instead of tediously hand coding window definitions and

racany l‘j rummaging through manuals, you'll simply “draw” your

windows, and WindowBuilder will generate the code for
" = 8 you. Don’t worry — you won'’t be locked into that first,

[Rah e hw:.: [i inevitably less-than-perfect design; WindowBuilder
< [pushinen T M-m allows you to revise your windows incrementally. Nor will
| = 1a you be forced to learn a new paradigm; WindowBuilder

B OFbe generates standard Smalltalk code, and fits as seamlessly

into the Smalltalk environment as the class hierarchy
browser or the debugger.

Our new WindowBuilder/V Windows 2.0 is now available
for $149.95, and WindowBuilder/V PM is $295. Both
products include Cooper & Peters’ unconditional 60 day

guarantee.
¢, .. this is a potent rapid application development tool which For a free brochure, call us at (415) 855-9036, or send us a
should be included in any Smallialk/V developer’s environment.” fax at (415) 855-9856. You’ll be glad you did!
- Jim Salmons, The Smallialk Report, Septernber 1991
Coorer & PETERs, INC. (FORMERLY ACUMEN SOFTwARE) 2600 Ev Camino Rea, Sute 409 Paio Awro, Caurornia 94306 PHoNe 415 855 9036 Fax 415 B55 9856 Cowmruserve 71571,407

a letter key. The command key looks like #£ on the Macintosh
self changed: #rectangle with: self clipboardDisplayBox] and is the alt key on the IBM RS/6000. Other platforms may
Note that all pasted objects become the current selection by ~ vary. The Smalltalk class InputSensor refers to the command
setting the value part of the Association to true. Making dupli- keys as alt or meta (depending on the platform) and responds
cates of objects can be simplified by defining a duplicate opera- When either is pressed through the messages altDown and meta-

tion that bypasses the Clipboard: Down, respectively.
Command key equivalents can be defined for most of the

duplicate . .
"Add a copy of the current selection without changing the Clipboard.” operations that SmallDraw performs. Borrowing from a popular
self hasSelection ifTrue: [| newObjects | commercial structured graphics application, the following keys
newObjects := (self selectedObjectAssociations deepCopy do: [:0a | are used to invoke the following operations:
o0a key translateBy: self pasteOffset]).
self deselectAll.
self objects addAllFirst: newObjects. key operation
self changed: #rectangle with: self selectedObjectsDisplayBox] x cut
c copy
COMMAND KEYS v paste
.) . . i f move forward
As an input device, the mouse is a convenient mechanism when j move backward
working with modern bit-mapped graphical user interfaces. d duplicate
However, it is often faster and less tiring to perform a com- a select all
mand via the keyboard than to make a selection from a menu. k align
Keyboard commands are distinguished from normal typing g 3;?:& up

by pressing a combination of two keys: the command key and

SEPTEMBER 1992 11

B SMALLDRAW—RELEASE 4 GRAPHICS AND MVC PaART 3

66

[In SmaliDraw] the controller is
independent of command key processing
and additional keys may be added
to the model without changing the
controller’s method.

The SmallDawController is responsible for all input, and can
now check for keyboard activity in its normal control se-
quence. All of the operations listed above are performed by the
SmallDraw model. When the controller senses that a command
key has been pressed, it forwards the key to the model for pro-
cessing. This way, the controller is independent of command
key processing and additional keys may be added to the model
without changing the controller’s method. The SmallDraw in-
stance method that processes command keys looks very much
like the list of operations above:

processCommandKey: aKey
"Respond to aKey which may correspond to one of the receiver's
menu commands. If net, ignore it."
aKey = Character backspace ifTrue: [self delete].
aKey = $x ifTrue: [self cut).
aKey = $c ifTrue: [self copy].
aKey = $vifTrue: [self paste].
aKey = $FifTrue: [self moveForward).
aKey = $] ifTrue: [self moveBackward).
aKey = $d ifTrue: [self duplicate).
aKey = $a ifTrue: [self selectAll].
aKey = $kifTrue: (self doAlignment].
aKey = $g ifTrue: [setf group).
aKey = $G ifTrue: [self unGroup).

SmallDraw menus are modified to indicate the keyboard com-
mands that may substitute for menu operations (see Figure 3):

SmallDrawController is only slightly modified in order to han-
dle keyboard events. One method is added to detect and pro-
cess any keyboard activity:

new b
selection »
cut (alt-x)
change | copy (alt-c)
display | paste (alt-v)
—— duplicate (alt-d)
selectall (alt-a)

proceasKeyboard
"Determine whether the user pressed the keyboard. If so, read the

key and pass it on to the model."
self sensor keyboardPressed ifTrue: [| keyHit |
Keyilit :~ self sensor keyboardEvent keyValue.
*Check for hackspace here."
keyHit = Character backspace iffrue: ,
[self model processCommandKey: keyHit).
(self sensor attDown or: [self sensor metaDown]) iffrue: {
"KeyValues are lowercase so we must convert to uppercase if the
shift key is down."
self sensor shiftDown ifTrue:
[keyHit = keyHit asUppercase].
self model processCommandKey: keyHit]]
and one inherited method is overwritten to include the key-
board method in its control Ioop:
controlActivity
“First check the keyboard and then do the usual.”

self processKeyboard.
super controlActivity.

SCROLLING THE VIEW

SmaliDraw¥iew can become a scrollable view by defining it as a
subclass of ScrollingView. The class comments for ScrollingView
include the following information:

Subdasses must implement the following messages:
accessing
displayObject
scrolling

scrollBy:
scrollHorizontally:
scrollVertically:

DisplayObject must be able to respond to the message bounds.
DisplayObject is the object being scrolled in the view, in this case
the SmallDraw drawing. SmallDrawView needs to know how big
the SmallDraw document is so that the scroll bars can be prop-
erly scaled. SmallDraw’s new instance variable, pages, is an in-
stance of a Point that defines the number of pages lined up hor-
izontally and vertically. The minimum is 1@1, or one page. For
two pages side by side, pages would be 2@1, and so on. The
document automatically increases in pages if objects are trans-
lated or scaled such that they extend beyond the rightmost or
bottommost pages of the document. The SmallDrawController
ensures that objects are not allowed to extend beyond the left-
most or topmost pages.

The size of the document is obtained by asking SmallDraw
for its bounds:

bounds
*0@0 extent: self documentSize

where the page configuration is converted to pixels by multi-
plying an 8 1/2 x 11 inch sheet of paper (assuming 1/2 inch
margins all around) by the number of pixels per inch:

documentSize
"Answer the size of the document in terms of the number of 8.5 x

12

THE SMALLTALK REPORT

11 inch pages."
~self pages * self pageSizeInPixels
pageSizelnPixels
"Answer the size of one 8.5 x 11 inch page (with 1/2 inch margins),
scaled by the number of pixels per inch (72). This number is
calculated as: ((7.5@10) * 72) rounded."
A540@720

To ensure proper scaling of the scrolled object, Small-
DrawView defines the following method:

dataExtent
#self displayObject bounds extent * self displayScale

Scroll bars rely on a scrolling grid in which the inherited value
for scrollGrid is 1@1.Using pasteOffset, SmallDrawView can be
defined so that scrolling occurs in larger intervals. SmallDrawView
provides a menu option to turn the grid on or off and SmatlDraw-
Controller uses its view’s grid for selecting points in the view.

Opening SmallDraw with a scrolling view is done as before
by placing the SmallDrawView in an EdgeWidgetWrapper but now
a horizontal scroll bar is also included (see Figure 4):

openScrolling
"SmallDraw new openScrolling”
ScheduledWindow new
label: ‘SmallDraw’;
component: (EdgeWidgetWrapper on:
(SmallDrawView model: self)) useHorizontalScrollBar;
openWithExtent: 200@200

Smalibraw o]

Figure 4. Two scrolling views (25% and 100%) and two pages side by side.

SUMMARY

Building on the first two SmallDraw articles, this final article
has presented further enhancements to SmallDraw to demon-
strate Release 4 graphics and MVC application construction.
Though far from perfect, it should give beginners a good start
on their own development.

Certainly many improvements and enhancements can be
made to SmallDraw. New types of graphic objects, such as
Text, Images, and Bezier curves (included in Release 4.1),
can be added. Other object operations can be defined, such
as rotation, smoothing of polygons, editing individual points
on a polygon, undo, or auto scrolling of the drawing while
translating or scaling objects beyond the extent of the view.
Advanced functionality can be provided to allow for saving
drawings to files, PostScript or LaTeX printing of the draw-

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management
for all Smalltalk{V applications
® Transparent access to all kinds of Smalltalk objects on disk.
® Transaction commit/rollback of changes to virtual objects.
® Access toindividual elements of virtual collections for ODBMS up
to 4 billion objects per virtual space; objects cached for speed.
® Multi-key and multi-value virtual dictionaries for query-building
by key range selection and set intersection. (np)
® Works directly with third party user interface & SQL classes etr.
® (Class Restructure Editor for renaming classes and adding or
removing instance variables allows applications to evolve. (np)
® Shared access to named virtual object spaces on disk; object
portability between images. Virtual objects are fully functional.
® Source code supplied.
Some comments we have received about VOSS:
“...clean ,..elegant. Works like a charm.”
~Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.” —Raul Duran, Microgenics Instruments

VOSS/286 $595 (Personal $199), VOSS/Windows 5750 (Personal $299)
(Personal versions exclude items marked (np)).

Quantity discounts from 30% for two or more copies. (Ask for details)
Visa, MasterCard and EuroCard accepted. Please add $15 for shipping.
Logic Arts Ltd 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: +44 223 212392 FAX: +44 223 245171

logic

ARTS

ing (e.g., a GraphicsContext subclass that outputs
PostScript), or sharing of graphic objects with other
Smalltalk applications.

The complete source code corresponding to each of the
three SmallDraw articles can be obtained from the University
of Illinois and Manchester archives. They are identified as
SmallDrawl, SmallDraw2, and SmallDraw3. The source code
is available to all with no restrictions. I ask only that proper
credit be given so that I may hear from those who have
benefited. I also encourage those who make improvements or
additions to SmallDraw to make them available through the
archives for others’ education and use. Bl

Dan Benson completed his PhD in Electrical Engineering at the Uni-
versity of Washington where he developed a 3-D spatial database for
human anatomy using Smalltalk and the GemStone ODBMS. He is
now a Research Scientist with Siemens working in the area of Image
Management and Distribution. He may be contacted at: Siemens
Corporate Research, Inc., 755 College Road East, Princeton, NJ
08540, or by email: benson@siemens.siemens.com.

TO SUBSCRIBE TO

The Smalitalk Report,

caLL 212/274-0640 oOR
FAX YOUR REQUEST TO 212/274-0646

SEPTEMBER 1992

13

HE BEST OF comp.lang.smalltalk

Alan Knight

What else is wrong with OOP?

ple on USENET think is wrong with OOP?” While there
are certainly areas in which OOP could be improved,
there are many misconceptions and false criticisms—so many,
in fact, that I ran out of space for them last month and am
continuing the topic here.
Let’s start with one of the most common complaints: appli-
cation areas for which OOP is inappropriate.

This might more accurately be called “What else do peo-

OOP CAN'T HANDLE PROBLEMS LIKE...
Harry Erwin (erwin@trwacs.fp.trw.com) writes:

OOP can be a disadvantage if the problem domain does
not lend itself conveniently to object representations. For
example, many algorithms consist of a primary control
loop operating on passive things, and a Pascal or Ada pro-
gram of the traditional mode is more efficient and clearer.

If true, this represents a severe restriction of the OOP do-
main. Many algorithms fit the pattern of a loop operating on
passive things; if OOP can’t handle them, most programming
is ruled out. Objects will have to be relegated to simple GUI
tasks, error handling, and other algorithmically trivial areas.

In my opinion, it is not difficult to describe many algo-
rithms in terms of a main loop. The loop can be written as:

aBunchOfPassiveThings do: [:passiveThing |
algorithmManager process: passiveThing].

The code gets more complicated if we include initialization
and post-processing code, or if it has to use a more complex
method of choosing the next itemn, but I do not think a Pascal
or Ada program could be clearer.

The complicated part is the processing of each “passive
thing,” which usually consists of elaborate manipulations of
various data structures. The algorithms literature considers it
good form to describe these manipulations in terms of opera-
tions on abstract data types. OOP usually handles abstract data
types very well, so it is actually very good for this kind of work.

BUT THAT’S NOT REALLY OBJECT ORIENTED

I’'m quite happy with the general method of writing “tradi-
tional” algorithms using OOP because (1) the program struc-
tures correspond well with typical algorithm description, (2)
there’s good potential for reuse of abstract data type classes,

(3) it’s clearly suitable for implementation in an OO language,
and (4) it nicely groups together the algorithm data in the
AlgorithmXManager class.

A recurring theme among complaints about OOP is that it
is “not really object-oriented.” But OOP solutions to problems
are often rejected as not being faithful to the principles of
object orientation because of a misguided idea of what objects
are about.

THE PRINCIPLES OF OOP

What does it mean for a solution to be object-oriented? On
what basis are these kinds of solutions rejected? Are these ideas
valid and, if so, are they important enough to make us discard
good solutions?

The standard definition of an OO language says that it
should support encapsulation, polymorphism, and inheri-
tance. True, but these are language features, not a set of guid-
ing principles. The dictionary is even less helpful. Mine traces
the word object to the Latin objectum, literally meaning “some-
thing thrown before or against.” Its roots are the words ob
(against) and jacio (to throw). Since we are interested in per-
ceptions of OOP, let’s find out what people on USENET think.

David Myers (dem@meaddata.com) writes:

Once people learn Object-Oriented Design, they seem to
fall into two schools of thought. I'm interested in your
thoughts on which, if either, is more correct.

The first camp I'll call “Strict OOD.” They believe that all
functions that need to modify some object must necessarily
be member functions of that object....

The second camp I'll call “Reality OOD.” They don’t be-
lieve in taking things as far as the first camp if the resulting
model wouldn’t fit with their perception of reality....The
Reality OOD folks want to build an OO system so that its
components closely represent the world they are trying to
model....

and later expands:

You want to model a cow, and want to get milk from the
cow and put it in a vat...Strict OOD might say, “Just add a
method ‘Cow, milk yourself,’ which puts the milk right in
the vat. Leave the details to the cow.” Obviously, Reality
OOD would say something different. “Cow, present ud-

14

THE SMALLTALK REPORT

H THE BEST OF COMP.LANG

ders. Udders are the interface here, and we can ‘pass’ a cow
to a farmer object to get the cow milked and the milk in the
vat. The farmer contains the knowledge of how milking
should be done, not the cow.”

...say we now have a better way to milk a cow, with a milk-
ing machine, Strict OOD would say, “Modify the cow to
understand how to use the milking machine...” Reality
OOD would say, “Just ‘pass’ the cow to the new machine.
The cow doesn’t need to change as it already provides the
necessary interface.”

...Another example. Say you have some glob of data, and
you want to run N validation processes against it...Where
do these processes go? Strict OOD, “Part of the glob, obvi-
ously. That’s what they act upon.” Reality OOD, “They’re
separate from the glob, and use whatever interface is pro-
vided by the glob to do their work.” '

This is quite interesting, because it’s a well-considered,
thoughtful posting based fundamentally on false ideas of OOP.
It arises from the basic question of where to put methods, but
in my opinion gets the principles wrong. I see the method
placement question as a conflict between the principles of
coupling and cohesion.

Consider the validation example, which expresses this most
clearly. A Validator class is a good idea. It groups related meth-
ods (for testing) together, and removes clutter from the class
being tested. It’s easy to add additional validation checks, and
seems to be the only method that generalizes to consistency
checks involving several different objects.

On the other hand, we should hide internal representations
to minimize coupling. The internals of a class should not be
exposed, and we expect validation to require access to these de-
tails at least some of the time.

A good compromise is to use both techniques. Use class
methods to implement tests that depend on internal representa-
tions, preferably using a consistent naming scheme. Tests that
can be done through the public interface should be implemented
through a Validator class, which when validating can also invoke
the appropriate self-testing methods in the individual class.

The above posting is based on two false ideas, one in each
camp. Mr. Myers presents “Strict OOD” as the orthodoxy of
the OOP gurus. It dictates that any method modifying an ob-
ject’s state must belong to the class of that object. On the sur-
face this sounds reasonable, very much like encapsulation, but
it’s an overgeneralization that simply cannot work in practice.

Encapsulation restricts the set of methods that can access
an object’s internal representation to those in its class. This is
enforced in Smalltalk, but it is possible to short-circuit the re-
striction by writing get/set methods for each instance variable.
A method that accesses an object’s state through message sends
could be placed anywhere, but if it operates primarily on one
object it is good style to make it a method in that class.

There’s a big difference, however, between good style and
an enforced rule. In particular, the “strict” position does not
allow the possibility of methods that modify (or even access)
more than one object. This disallows such a simple thing as a

bank transaction, where one account is incremented and an-
other decremented.

The “Reality OOD” camp allows such methods, but then
runs back into the question of method placement, as K. Srini-
vasan (srini@gtsurya.gatech.edu) points out:

I am interested in developing OO models to represent
manufacturing enterprises. I ran into the very same prob-
lem you’ve described — A method “process a part” seems
to alter the states of the part object, the machine object and
the operator object, and hence is a candidate for being a
method belonging to any of them. To make it a method of
one, say “part,” and make that object a client of other two
objects (operator and machine) will work. However, it
seems to be a highly arbitrary decision.

I agree wholeheartedly, If two or more things interact, and
the states are all changing, then the decision to place a method
handling this interaction is arbitrary. If the interaction is
sufficiently important, it may be worthwhile modeling it as an
object itself. Ralph Johnson (johnson@cs.uiuc.edu) discusses
this in the context of the milking example.

The real issue is how to divide responsibilities among ob-
jects.... Why not give the vat responsibility for taking the
milk from a cow? Without knowing anything about the
real world domain and what is likely to change, any of
three possibilities is just as likely. We have a transaction
between object C and object V, and the question is whether
we should introduce a new object F to model the transac-
tion (transactor) or we should make the transaction a
method of C or V. In general, it all depends!...If we have a
simple system whether nothing changes, then it might
make sense to put the responsibility for the transaction in
C. If we knew that the transaction itself was never going to
change, and that C was, (i.e. we want to milk sheep, goats,
horses, yaks, etc.) then it might be better to putitin V. If
the transaction itself is going to change (i.e. use a milking
machine) then it would be better to make it an object.

Once again we hear the cry that this solution is “not really
object-oriented,” which brings us to the second, and more im-
portant, fallacy.

OOP AND THE REAL WORLD

Choosing the right name for something is important. A name
should be short, easy to remember, and clearly communicate
the essential idea. Unfortunately, “object-oriented” fails in the
last category.

The problem is that everyone knows what an object is. We
intuitively “know” that object-oriented programming is all
about objects: concrete, physical things that we can, with
enough machinery, pick up and throw. Processes can’t be ob-
jects. Relationships can’t be objects. Concepts can’t be objects.
OOP is “good” because it writes programs that perfectly mimic
the real world, and an OO program is “good” in direct propor-
tion to its mimicry—like neural networks, which we all know

SEPTEMBER 1992

15

I THE BEST OF COMP.LANG

work just like human brains. Being told that OOP is good for
simulation and that it naturally models the problem domain
only makes these misconceptions worse.

Smalltalk programmers tend to transcend these ideas more
quickly than others because they’re confronted with examples of
Schedulers, Controllers, Associations, and other non-concrete
classes, Even so, the misconceptions are very widespread. Let’s
look at some concrete examples.

Objects are always concrete nouns
Dan Weinreb (dlw®@odi.com) writes:

This topic comes up again and again whenever semantic
data modeling is being discussed. I've seen it in papers from
over ten years ago. After reading a bunch of the literature in
this area I have come to the conclusion that there doesn’t
seem to be any completely satisfying answer. Either you end
up having these objects that only model relationships rather
than modeling “things” in the problem domain, or else you
end up inventing constructs that are annoyingly complex
and often disturbingly similar to objects themselves.

and Doug MacDonald (doug@softwords.bc.ca) writes:

This thread raises what I have always considered to be a
shortcoming of OO scheme of modeling the world: while it
allows us to capture complex classifications and instances,
it does NOT provide the idea of relationships among ob-
jects. Yes, we can “send messages” among objects, provide
well-structured access functions. But this does not address
the central problem. We end up with forced concepts like
relationship classes to deal with the cow-milk type puzzles.

This literal interpretation of objects corresponding only to
physical “things” is probably the single most prevalent miscon-
ception about OOP. It is the main reason people reject solutions
that include an AlgorithmManager or a class representing the rela-
tionship between cows and farmers. I've seen many other exam-
ples, including database discussions that assumed an ODBMS
could model only physical things, and that an RDBMS could
only model relationships. In a similarly literal vein, I've seen C
described as a functional language because it has functions.

Naturally, there are many who do not share these beliefs.
Eric Smith (eric@tfs.com) writes:

There is nothing “forced” about relationship classes. Rela-
tionships are objects, period. The word “relationship” is a
noun. A relationship object should contain references to its
target objects, functions to return information about its
target objects and about various aspects of the relationship
between them, and functions to modify the relationship.

Mike Wirth (mcw@cs.rice.edu) writes:

Nothing unnatural about it at all. Associations between ob-
jects are every bit as much “real world” objects as the objects
being associated. Ask your spouse or “significant other.”

And Raiph Johnson (johnson@cs.uiuc.edu), who seems to

have encountered these ideas before, anticipated the objections
in the same posting quoted above:

There is NOTHING wrong with having objects that repre-
sent processes. It is true that novice OO designers make a
lot of such objects that are bad design, but good OO de-
signers make those kinds of objects, too. You just need to
have a good reason for introducing a new object.

The fundamental point of OOP is abstraction. A good OOP
design should correspond to ideas in the problem domain.
Whether those happen to be ideas about things that can be
touched or about relationships, processes, or concepts is irrele-
vant. One of the best metrics for this is naming. If someone fa-
miliar with the domain can look at a class name and immedi-
ately have some idea what it does, then it’s probably a good
class for that domain.

There is exactly one “right” OOP design for a problem
Given that the objective is a perfect model of reality, then all
OO designs should converge. After all, there’s only one real
world. This results in much disappointment when people dis-
cover that OOP, like any other kind of programming, still has
design decisions and trade-offs.

David A. Hasan (hasan@ut-emx uucp) writes:

...the “map” between OO methods/objects and what is go-
ing on in the real world is NOT unique. There can be
different interpretations on which objects should carry out
which methods based on how the real world activities are
“best modeled.” Therefore a choice must be made in speci-
fying object interfaces, and making this choice might un-
duly constrain future versions of the system...

This is entirely true, but it is based on vastly inflated expecta-
tions of what OOP can do.
bobm@Ingres.COM (Bob McQueer) replies:

What problem you are trying to solve defines “proper,” I
think. I can see us having the same problems we have al-
ways had when trying to “grow” new functionality into a
design that didn’t anticipate growth in that direction. Note
that expediency will dictate that you can’t make provisions
for EVERY possible direction of growth, also as it always
has.... I think what ’m saying is that while the 0O
paradigm is a useful tool, you can’t expect the existence of
a paradigm to do all your work for you, There is NOT a
unique map, and it takes proper use of the tool to define
the map which serves your purposes.

THE REAL WORLD AGAIN

The idea of modeling the real world in detail is fallacious. In
what we call “reality,” most things are human-imposed con-
cepts. Reality consists mostly of interactions between elemen-
tary particles; the higher-level structures we perceive are ab-

continued on page 22...

16

THE SMALLTALK REPORT

ETTING REAL

Juanita Ewing

Extending the Collection hierarchy

heuristics for selecting superclasses. This month I will con-

tinue the discussion on subclassing with a case study that
extends the Collection hierarchy. We will create a new Collection
class that contains unique elements and also maintains the or-
der of these elements.

In my last column, I discussed creating subclasses and two

HEURISTICS REVIEW
A key step in creating a new subclass is to select a suitable su-
perclass. The heuristics for selecting a superclass are:

Heuristic One: Look for a class that fits the is-kind-of or
is-type-of relationship with your new subclass.

Heuristic Two: Look for a class with behavior that is similar
to the desired behavior of the new subclass.

CASE STUDY
We want to create a new data structure class that holds ele-
ments in order and disallows duplicate elements. When sent a
request to add a duplicate object, the request should be quietly
ignored.

This new data structure class contains elements similar to
Artays, Strings and other Collecton subclasses. Because of these
similarities, we will begin our search for candidate superclasses

in the Collection hierarchy. Two classes immediately stand out:

« OrderedCollections keep elements in order.

- Sets store each element only once, disallowing duplicate
elements.

The combination of these characteristics is what we want
for our new class. A good descriptive name for our new class is
OrderedSet.

APPLY HEURISTICS
Where should we insert our new class, OrderedSet, into the hier-
archy? Our first heuristic is to look for potential superclasses
that match the is-kind-of criteria. We use is-kind-of as a short-
hand for categorization based on characteristics. The significant
characteristics and their classes used in this determination are:

* vary number of elements (Collection)

* store arbitrary objects (Collection)

* dynamically add and remove elements (Collection)

« enumerate (Collection)

« store elements in order (OrderedCollection)

* store unique elements (Set)

The desired characteristics of OrderedSet are closest to those
of OrderedCollection and Set, so OrderedSet could be a-kind-of
Set or a-kind-of OrderedCollection.

In a system that supports multiple inheritance, we might be
tempted to have two superclasses, Set and OrderedCollection. In
Smalltalk we must choose a single superclass, either Set or Or-
deredCollection.

Our second heuristic is to choose candidate superclasses with
suitable public behavior. Let’s compare the candidate classes
we’ve selected, Set and OrderedCollection, in terms of behavior.
Set and OrderedCollection have a common superclass, Collection,
so we can ignore public behavior from the Collection on up.

If we were to make OrderedSet a subclass of Set, it would in-
herit these methods from Set:

add:

do:

includes:
occurencesOf:
remove:ifAbsent:
size

All of these methods also have an implementation in the
abstract superclass Collection, so Set doesn’t add any new public
behavior to the behavior from the common superclass.

If OrderedSet were a subclass of OrderedCollection, it would
inherit behavior from OrderedCollection and IndexedCollection
(or OrderedCollection and SequencableCollection in Object-
works\Smalltalk). OrderedCollection has adding and removing
methods and many more methods related to its element-
ordering characteristic. The list of methods includes:

add: addfirst;
add:after: addLast:
add:afterIndex: remove:ifAbsent:
add:before: removeFirst
add:beforeIndex: removelast

Many of these methods are extensions of the public behav-
ior from the common superclass Collection.

The public behaviors for Sets and OrderedCollections have
some similarities. In fact, the behavior of Set is a subset of the
behavior of OrderedCollection, which makes Set the behavioral
supertype of OrderedCollection. Set doesn’t add any additional

SEPTEMBER 1992

17

B EXTENDING THE COLLECTION HIERARCHY

behavior, so we just need to determine whether the additional
behavior in OrderedCollection is desirable.

Because instances of OrderedSet maintain elements in order,
we will need public behavior to support the ordering charac-
teristic. The behavior in OrderedCollection is a good set of be-
havior for supporting this characteristic. In addition, if the be-
havior of OrderedSet is the same as for OrderedCollection, the
interchangeability of the classes is better and therefore the
classes are easier to reuse. Based on behavio_ral analysis, the
best superclass for OrderedSet is OrderedCollection.

IMPLEMENTATION

We can also look in more detail at what is required to imple-
ment OrderedSet. The implementation of OrderedCollection uses
an indexable portion or indexable object, as well as instance
variables to keep track of valid indices, Set is implemented with
hashing for efficiency in determining uniqueness of elements.
If a Set already contains an element, it quietly ignores the re-
quest to add an element.

OrderedSet needs to support instances with a large number
of elements. Hashing the elements is a good way to support
large numbers. OrderedCollections would potentially have to ex-
amine every element before determining if the addition of an
element would be a duplication. To maintain order and en-
force uniqueness we will use two structures, one to implement
the unique elements characteristic, and one to implement the
ordering characteristic, as shown in Figure 1.

atructure for
cinguni

structurs far
maintaining order

1O
;:8 “
O
~— (A

Figure 1. Using multiple structures.

Now we will examine the implementations with each of our
candidate superclasses. If OrderedSet is a subclass of OrderedCol-
lection, we inherit the portion that stores elements in order and
we need to implement the portion that hashes and enforces
uniqueness. The structure and behavior for maintaining order
is inherited from OrderedCollection, and the structure for en-
forcing uniqueness can be stored in an instance variable. This
structure could be an instance of Set.

With this alternative, some inherited methods would need
to be overridden. All the add and remove methods must po-
tentially be altered to maintain both structures. As seen in the
list of public behavior, there are a number of these methods,
such as add:, add:after:, add:afterIndex:, addfirst:, removefirst and
removelast. Fortunately, not all these methods have to be over-

ridden because some of them call each other. We would want
to override includes: because the hashing used in the unique-
ness structure gives us a quick lookup of elements. We would
not override do: because it operates on the inherited structure
that maintains order.

If OrderedSet were a subclass of Set, the inherited structure
is the one that enforces uniqueness; an auxiliary structure for
maintaining order is referenced from an instance variable. Pre-
surnably, the order maintaining structure would be an instance
of OrderedCollection.

We would also need to override adding and removing
methods—there is just one of each. The majority of coding is
in implementing behavior that implements the element order-
ing characteristic. We would not need to override includes: be-
cause we inherit the version that makes use of hashing, but we
would need to override do: so that we process elements in the
ordered defined by the order maintaining structure.

NAMING

Other criteria that might bias our judgment are implications of
a class’s name, If a class hierarchy is part of the public interface
for a library, it might be easier for users to locate a class located
in a logical place in the hierarchy. With a class called Ordered-
Set, users are more likely to look for this class as a specializa-
tion of Set. They might not find it as easily if it is a subclass of
OrderedCollection,

CONCLUSION
We make OrderedSet a subclass of OrderedCollection because:

* The behavior of OrderedCollection is more suitable than the
behavior of Set.

« It is more likely that the behavior will be interchangeable if
the relationship between the two classes is explicit.

* There are fewer methods, overridden and new, that must be
implemented in OrderedSet.

Furthermore, by browsing the Collection hierarchy, develop-
ers will generally examine several Collection classes at a time, and
will probably notice OrderedSet as a subclass of OrderedCollection.

The is-kind-of heuristic is useful for generating candidate
superclasses. Its intuitive nature can be an advantage. How-
ever, analysis of public behavior often yields a better selection.
If we only used the is-kind-of heuristic in our case study, we
would be most likely to make OrderedSet a subclass of Set. On
the other hand, when we use the public behavior heuristic, we
conclude that OrderedCollection is a better choice. Bl

Juanita Ewing is a senior staff member of Digitalk Professional Ser-
vices (formerly Instantiations Inc.). She has been a project leader for
several commercial O-O software projects, and is an expert in the de-
sign and implementation of O-O applications, frameworks, and sys-
tems. In a previous position at Tektronix Inc., she was responsible for
the develapment of the class libraries for the first commercial-quality
Smalltalk-80 system_ Her professional activities include Workshop
and Panel Chairs for the annual ACM OOPSLA conference.

18

THE SMALLTALK REPORT

MALLTALK IDIOMS

ValueModel idioms

y last column outlined ways of using dependency as
Membodied in Smalltalk’s update and changed mes-

sages. ParcPlace’s release 4 of Objectworks\Smalltalk
introduced a significant refinement of dependency called Val-

ueModel which addresses some of the shortcomings of the
classic style of dependency management.

CLASSIC SMALLTALK STYLE

Here is another example of the classic style of Smalltalk change
propagation. A Mandelbrot renders a portion of the Mandelbrot
set while it measures performance.

Mandelbrot
superclass: Model
instance variables: region flops

A Mandelbrot object renders the portion of the Mandelbrot
set in region (a Rectangle with floating point coordinates) on
an Image when sent displayOn:. Assume we have implemented
a primitive rendering method that returns the number of float-
ing point operations it initiates as it displays. The DisplayOn:
method divides the number of operations by the rendering
time to compute the number of floating point operations per
second, which will be stored in flops.

displayOn: anlmage

| time ops |
time := Time millisecondsToRun:

[ops := self primDisplayOn:anImage].
self flops: ops / time / 1000

The model responds to openflops by creating a window that
displays the value of flops.

openflops

| window |

window := ScheduledWindow new.

window addChild: (TextView on: self aspect: #flopsString

change:nil menu: nil)

window open

Some users complain that putting an open method in the
model allows too much of the interface to leak through. But in
my opinion one is free to open any kind of window, and if the
model offers a default way, so much the better. Putting open in
the model keeps the code together; if more flexibility is needed
later it can always be moved.

TextView’s symbol flopsString is used by the view both to rec-
ognize an interesting broadcast and as a message to the model

Kent Beck

to return a string suitable for viewing. The model thus needs to
respond to flopsString.

flopsString
~self flops printString, 'flops’

Now all that remains to update the view is to propagate a
change whenever the flops change.

flops: aNumber
flops := aNumber.
self changed: #fopsString

Already the interface is beginning to leak into the model. Be-
cause the example interface uses the symbol #flopsString, the
model must have this particular symbeol built in. Other interfaces
viewing other aspects of the model dependent on the measured
flops will require additional broadcasts when the flops change.
The model is no longer insulated from changes to the interface.

Let’s refine the model a bit to see where this style of change
propagation begins to fall apart. What if instead of displaying
the last value of flops we want to display the average of recent
values? flops holds an OrderedCollection instead of a Number.

initialize

flops := OrderedCollection new

The setting method adds to the collection instead of chang-
ing the instance variable.

flops: aNumber

fops addLast: aNumber.
self changed: #flopsString

The accessing method has to compute the average instead
of just returning the value.
flops
flops isEmpty ifTrue: [*loat zero].
~(flops inject: float zero into: [:sum :each | sum + each])
/ flops size

The above code is still fairly clean from an implementation
perspective. From a design standpoint, though, it is a danger-
ous path.

The first problem is that the needs of the interface influence
our implementation of the model. Conversely, our concept of
an interface is constrained by the way we have implemented
the model. The separation of model from interface, supported
at the implementation level by broadcasting changes, merely
reappears as a design problem. In other words, the letter of

SEPTEMBER 1992

19

This developer’s tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL /DS, DB2, RDB, RDBCDD,

Universal Database
OBJECT BRIDGE ™

dBASEII], Lotus, and Excel.

Mtelligemt Systems, Inc.

[504 N. State Street, Ann Arbor, Mi 48104 (313) 9964238 (313) 996-4241 fax

“separate model and interface” is satisfied because the model
makes no direct reference to the interface, but the spirit is vio-
lated because interface decisions have caused us to change a
model that should be oblivious to such concerns.

Other views with other aspects require inserting more hard-
wired broadcast messages. In large projects, this process of
broadcast accretion leads to a bewildering profusion of broad-
casts, often with intricate time dependencies.

Another problem is that this style of programming discour-
ages reuse. Each instance variable is a special case, to be handled
by special case code. For example, suppose we are working in a
multiprocessor environment and want to view a running aver-
age of the number of processors active during rendering. We
could add an instance variable, utilization, with accessing and
setting methods that are copies of the respective messages for
flops, but we could do no better at reuse than copy and paste.

This last point suggests that state change and change propaga-
tion somehow must be folded together into a new object. This ob-
ject will be used instead of a bare instance variable as a model for
views. We can create a family of these objects to model the differ-
ent ways of viewing state changes over time. By using various
kinds of objects in varying circumstances we can change the inter-
action supported by the model without changing the model itself.

The most common solution to these problems is to separate
the model into a “browser” object and a clean underlying
model without broadcasts (see Figure 1). The browser medi-
ates between the user interface and the “real” model, translat-
ing user requests into messages to the model and propagating
changes back to the interface. Although fairly simple conceptu-
ally, this style of programming introduces another layer of ob-
jects between the user and the model without addressing the
problem of multiple browsers on the same model (for exam-
ple, the problem of updating the source code of a method ap-
pearing in more than one Browser).

VALUE MODEL STYLE
ValueModels in Objectworks\Smalltalk Release 4 fill the role of
an interaction model. Rather than appearing between the do-
main model and the interface, ValueModels are placed “be-
neath” the domain model. This allows the view to interact di-
rectly with the state of the domain model and does not clutter
the model itself with interaction concerns.

Here’s how an ideal implementation can be applied to our
example:

B VALUEMODEL IDIOMS

VatueModel
superclass: Model
instance variables: value

value
“value

value: anObject
value := anObject
self changed: #value

We can recast Mandelbrot to use this simple ValueModel.
First, the initialization method sets flops to a ValueModel.
initialize
flops := ValueModel new

When accessing or setting the value you must remember to
send messages to flops and not just use the instance variable.
Religious use of accessing and setting methods, though, can
hide this detail from the rest of the object.

flops
“lops value

Note that when the value is set the Mandelbrot no longer
needs to propagate changes.

flops: aNumber
flops value: aNumber

When making a view to display flops the ValueModel is the
model of the TextView, not the Mandelbrot.

window := ScheduledWindow new.

window addChild: (TextView on: flops aspect: #value
change: nil menu: nil).

window open

We now have a system with the same functionality as the
simplest one described above, Figure 2 diagrams the relation-
ships between the various components in the value model-style
Mandelbrot.

The worth of ValueModels becomes apparent when we dis-
play a running average rather than a single value. The change is
made creating a subclass of ValueModel called AveragingValue-
Model, which accumulates a history of values in response to
value:messages.

AveragingValueModel

superclass: ValueModel
instance variables: none

Mandelbrot

Figure I. Classic separation of model and interface.

20

THE SMALLTALK REPORT

Object Oriented Database

Zipw

initialize
value := OrderedCollection new
value
value isEmpty ifTrue: [*Float zero].
~(value inject: Float zero into: [:sum :each | sum + each])
/ value size
value: anObject
value addLast: anObject

We can install the new behavior by changing
Mandetbrot>>initialize.
initialize
flops := AveragingValueModel new

No other changes to the model are necessary. When we want
to open a window on a running average of processor utiliza-
tion we can create another AveragingValueModel, We do not
need to duplicate any code.

The model has acquired a large measure of independence
from changes mandated by the interface. For many interface
changes we no longer need to touch code in the domain model
beyond modifying the initialization. We instantiate a new kind
of ValueModetl and the rest of the model remains unchanged.

THE REST OF THE STORY
The above code still doesn’t quite work. The TextView expects a
String or a Text from its model, and the ValueModel in this case
returns a Number. The release 4.1 solution is to interpose an-
other object, called a FluggableAdaptor, between the model and
the view. A PluggableAdaptor contains three blocks. The first is
invoked when it receives the message value. The block takes one
argument, the adaptor's model (in this case the ValueModel),
and by default returns the result of sending value to the model.
The block can be used to arbitrarily transform the value. In our
case we want to create a string from the number:
openflops

| window adaptor |

window := ScheduledWindow new.

adaptor := AspectAdaptor on: flops.

adaptor getBlock: [:m | m value printString, ' flops'].

window addChild: (TextView or: adaptor aspect: #value

change: nil menu: nil).
window open
The second block in a PluggableAdaptor is evaluated when

the adaptor receives the value: message. The block is invoked
with the model and the new value as arguments. By default it
passes the message along to the model. This block translates
the value from a form the view understands to one the model

Figure 2 ValueHolder style separadon of modal and incerface.

Management System
The ONLY ODBMS for Smalltalk

Objec(:

. Object Storage on Disk aZi
Oricnted B Towe Databre Rotriveal En!
M emory

Hiierarchical W
for Smalltall/V

and Smalltalk-80 , ﬁ!mttecl

All Platforma $199.95 12407 Mopac Expwy N., Suite #100.266
Source Code Included Amtin, TX 78758

pplications

for under $1000 hat delivers Persistent

(512) 837-2117

understands. If it was possible to change the flops rating, we
might write something like this:

openflops

| window adaptor |

window ;= ScheduledWindow new.

adaptor := AspectAdaptor on: flops.

adaptor getBlock: [:m | m value printString, 'flops'].

adaptor putBlock: [:m :v |
m value: (Number readFrom: v readStream)].

window addChild: (TextView on: adaptor aspect: f#value
change: nil menu: nil).

window open

The final PluggableAdaptor block is used to filter update
messages. The block takes three arguments: the model, the as-
pect from the update: message, and the optional parameter
from the update: message. The block evaluates to a boolean
that is used to decide whether or not to forward the update. In
our example we may not want to update the text if the flops
rating is too low. We could change openflops as follows:

openflops

| window adaptor |

window := ScheduledWindow new.

adaptor := AspectAdaptor on: flops.

adaptor getBlock: [:m | m value printString, ' flops'].

adaptor putBlock: [:m :v | m value: (Number readFrom: v
readStream)].

adaptor updateBlock: [:m :a :p | m value > 1e6].

window addChild: (TextView on: adaptor aspect: #value
change: nil menu: nil).

window open

When an object is dependent on two or more ValueModels it
is often important to distinguish which one is generating the
broadcast message. One solution is to take advantage of the full
generality of the update message:

A cleaner solution is to use the update block of a pluggable
adaptor to generate different updates for each ValueModel. The
initialization would look like this:

initalizeWith: model1 with: model2

| adaptor1 adaptor? |

adaptori := PluggableAdaptor on: modell.

adaptor1 updateBlock: [:m :v :p | v == #value
ifTrue: [adaptor1 changed: #value1]).

adaptorl addDependent: self.

adaptor2 := PluggableAdaptor on: model2.

adaptor2 updateBlock: [:m :v :p | v == #value
ifTrue: [adaptorichanged: #value2]].

adaptor2 addDependent: self

Then the update method can look like this:

SEPTEMBER 1992

21

B VALUEMODEL IDIOMS

update: aSymbol
aSymbol == #valuel ifTrue: [self updateValue1].
aSymbol == #value? ifTrue: [self updateValue2]

The preceding information is written assuming ValueModel
holds values. In the real system, though, ValueModel is an ab-
stract superclass, and the subclass acting as ValueModel above is
really called ValueHolder. PluggableAdaptor is also a subclass of
ValueModel. Other subclasses (like AveragingValueModel) should
arise as the full utility of the ValueModel style becomes apparent.

LAZY VIEWS
A final idiom that accompanies Objectworks\Smalltalk release 4
and later is lazy updating of views. Back when dinosaurs ruled
the earth and Smalltalk did its own window management, it was
common to directly redisplay a view in response to an update:
update: aSymbol
(self interestedIn: aSymbol) ifTrue: [self displayView]

A serious problem with this strategy is that the view will be
redisplayed several times if multiple update messages come in.
Multiple updates look bad and slow your programs down. This
is especially true with the expanded use of broadcast messages
in release 4.

When you implement views in release 4 and later, you
should never directly redisplay the view. Instead the view
should send itself an invalidate message:

update: aSymbol
(self interestedIn: aSymbol) ifTrue: [self invalidate]

These invalidations are pooled together. The next time a
Controller sends itself poll (or someone explicitly sends check-
ForEvents to ScheduledControllers) all views with some invalid
area will be asked to display. This ensures that if there is a
change to a model causing several views to update they will re-
display as simultaneously as possible.

CONCLUSION
The ValueModel style of coding manages complexity by strictly
separating interface and model.

We have just begun to explore the range of possibilities in-
herent in the ValueModel style. You can expect to discover new
uses as you begin using it yourself. If you find new ValueModels,
or new uses for the existing ones, please drop me a line so I can

publish them here. Bl

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPars Computer. He is also the
founder of First Class Software, which develops and distributes re-
engineering products for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226

THE BEST OF...continued from page 16

stractions useful in some specific domains. Reality can have
very poor software engineering principles.

Jeft Alger (alger@applelink.apple.com) writes:

Seldom are you ever modeling the real world in software.
The real world is the problem; why would you want to just
simulate it? Objects and classes in a piece of software are
nothing more than metaphors. In fact, direct simulations
of real-world objects lead to very poor object-oriented ar-
chitectures with little or no modularity and that are highly
unstable. Early on one learns that a Paycheck object should
print itself and a Block object should move itself around on
a screen. This is not the real world.

And Philip Santas (santas@inf.ethz.ch) points out:

There is no such thing as information hiding in the real
world.

CONCLUSIONS
Since this column has been devoted to what's wrong with OOP,
I ought to conclude with what I think is right:

1. OOP is not a panacea. OOP is good for improving reuse; it
does not make reuse automatic. If I write a Car class for
modeling traffic flow and you write a Car class for modeling
the physics of collisions, our chances of being able to use

the same class are small. Programs should carefully choose
what they’re trying to model.

2. Don’t try to model the real world in detail. Make appropri-
ate abstractions, try to make your classes correspond to sen-
sible entities, but don’t get caught up in the question of
whether or not something is an object. If it makes sense as a
concept, it’s probably a reasonable object. Good software
engineering is more important than good modeling.

Fundamentally, the difference between OO and procedural
programming lies in what entities are most important. In a
procedural language, procedures are the important thing, and
data is secondary. The basic insight of OOP is that many func-
tions can be expressed as operations on a data type, and that
this clarifies the design.

Other benefits spring from this insight. Using polymorphism
we can dynamically select semantically similar operations on
different data types, and specify data types using inheritance for
incremental modification. The essential idea is to place the data
type at the center. But not everything fits neatly into this model,
and it’s not the ultimate answer to all programming problems: it
is only an improvement on the preceding model.

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada, K15
5B6. He can be reached at +1 613 788 2600 x5783, or by e-mail as
knight@mrco.carleton.ca. .

22

THE SMALLTALK REPORT

PRODUCT ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors interested in being
included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave., Ottawa, Ontario K15 2H4, Canada.

The American Information Exchange Corp. (AMIX), a
subsidiary of Autodesk Inc., announced the opening of the first
of several key online markets for information and consulting
services. At the AMIX Smalitalk Components and Consulting
Market customers can buy and sell Smalltalk/V, Smalltalk-80,
and other object code as well as consulting and training ser-
vices. AMIX establishes transaction rules, facilitates negotia-
tions, and automates payments and collections.

For more information, contact AMIX, 1881 Landings
Drive, Mountain View, CA 94043-0848, 415.903.1000.

Digitalk Inc. has announced a new version of Smalltalk/V for
Windows that simplifies the complex task of writing programs
for Microsoft’s popular Windows environment.

The new version of Smalltalk/V includes support for Win-
dows Multiple Document Interface (MDI), a ToolPane (a row
of buttons that perform functions when selected), a StatusPane
that displays information on the status of applications, an Ob-
jectFiler for sharing objects with other applications and develop-
ers, HelpManager support for non-US character sets, and per-
formance improvements. In addition to standard Smalltalk/V
features, the package provides interfaces to Dynamic Data Ex-

HIGHLIGHTS

change (DDE), allowing information to be shared between
Smalltalk/V programs and other programs, and Dynamic Link
Libraries (DLLs), which provide a mechanism for calling code
written in other languages from within Smalltalk/V.

For more information, contact Digitalk Inc., 9841 Airport
Boulevard, Los Angeles, CA 90045, 310.645.1082, fax
310.645.1306.

Zoom (Zippy Object-Oriented Memory) is a simple
abject-oriented database written in Smalltalk/V for the 286, Win-
dows, PM, and Mac platforms. Zoom offers variable length keys
for random access messages at:, at:put:, removeKey: and seqeun-
tial messages do, first, next, prior, and last. A size method is
available and class method open: starts any database file while
new: guarantees a new file. Zoom works best by providing
keyed access to Digitalk Loader/Dumper object representation,
but an alternative representation requiring programming is
supplied. References between filed objects must be made by
name in your application.

For more information, contact Expertek, P.Q. Box 611,
Clatskanie, OR 97016, 503.325.4586.

Excerpts from industry publications

SMALLTALK

. . . If Smalltalk is so powerful, why does it have such a small
following compared with C++? Dan Shafer, author of the
book Practical Smalltalk, suggests that Smalltalk is so com-
pletely different from any other development environment
that the first reaction of procedural programmers is
panic...Smalltall’s classes and methods are not just a class li-
brary but an integral part of its environment that makes up
Smalltalk. Everything interacts with everything else. This can
be quite disconcerting for the beginner, and the fear of break-
ing something can often serve as the greatest deterrent to
learning Smalltalk...Ultimately, we return to the original
question: Why Smalltalk? Because you want an environment
built around object-oriented programming, not derived from
procedural programming. You want an environment that
provides extensibility while managing your code. You want
the flexibility of an interpretive language in which you can
play with and test your code, coupled with the performance
of a compiler. You want an interactive debugging environ-
ment that lets you inspect and modify your code and vari-
ables on the fly with instant results, instead of saving, compil-
ing, and linking between changes.

Why not Smalitalk? Williom Scott Herndon,
UNIX REVIEW, 5/92

PREDICTIONS
. . . The object-oriented programming revolution may be the
beginning of the biggest programming advance in the history
of computers. It may prove to be the software equivalent of the
microprocessor, allowing the mass creation of more capable,
less expensive software. We say “may” simply because it may
also be that object-oriented programming is just the beginning
of that revolution and will itself be swept away in a compara-
tively short time by the new technologies it makes possible
Object-ariented methodology, OPEN SOFTWARE JOURNAL, vol.5/no. | 1992

STRATEGIES

. . .Robert E. Lee said “Plan no more than necessary.” His ulti-
mate defeat was probably due more to the implementatijon of
this philosophy than its validity. The problem in development,
again, as in war, is how to know when to stop planning and
start moving. The answer is never stop planning but never let
planning prevent progress. The best methods today facilitate
iterative development. Use one with object-oriented tech-
niques for the appropriate tasks to get the most powerful and
complete approach available.

Planning, lookahead.and spiraling into control, Adrian Bowles,
OBJECT MAGAZINE, 7-8/92

SEPTEMBER 1992

23

SHOOT-0UT

WINDOWS AND 08/2:
PROTOTYPE TO DELIVERY
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, you don't.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just

Smalltalk 'V

So take a look at
Smalltalk/V today. It’s time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOKWHO'S TALKING

HEWLETT-PACKARD NCR
HP bas developed a network trouble- NCR has an integrated test program develop-
shooting tool called the Network Advisor. ment environment for digital, analog and
The Network Advisor offers a compreben- mixed mode printed circuil board testing.
séve set of tools including an expert system,
statistics, and protocol decodes to speed
problem isolation. The NA user interface is
built on a windowing system which all
maultiple applications to be executed
simultaneously.

MIDLAND BANK
Midiand Bank built a Windowed Technical
Trading Environment for currency, futures
and stock traders using Smalltalk V.

KEY FEATURES

B World’s leading, award-winning object-
oriented programming system

M Complete prototype-to-delivery system

B Zero-cost runtime

M Simplified application delivery for
creating standalone executable (EXE)
applications

i Code portability between Smalltalk/V
Windows and Smalltalk/V PM

B Wrappers for all Windows and OS/2
controls

l Support for new CUA "91 controls for
05/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

M Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

W Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

wmﬁﬁﬁmammﬁmnf

This Smalltalk/V Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications—and they're portable to
Smalltalk/V Windows.

	By Article Title
	Experiences with Smalltalk on a Large Developement Project
	Extending the Collection Hierarchy
	SmallDraw-Release 4 Graphics and MVC, Part 3
	Value Model Idioms
	What else is wrong with OOP?

	By Author Name
	Beck, Kent
	Benson, Dan
	Ewing, Juanita
	Knight, Alan
	Selic, Bran

	By Topic
	comp.lang.smalltalk
	Getting Real
	Smalltalk Idioms

