The Smalitalk Report

The International Newsletter for Smalltalk Programmers

October 1991

Volume 1 Number 2

A

MATTER

OF

STYLE

By Ed Klimas & Suzanne Skublics

Contents:

Features/Articles

| A matter of stlye
by Ed Klimas and Suzanne Skublics

9 Exception handling in Smalitalk
by Boris Girtner
Columns

6 Getting Real: How should teams organize

their applications? :
by juanita Ewing

16 GUIs: Giving application windows

" dialag box functonality in Smalitalk/V PM

by Greg Hendley and Eric Smith
Departments

19 Book Review: Practical Smalitalk
reviewed by Dan Lesage

20 Software Review: Tigre: an interface
builder for Objectworks\Smalitalk
reviewed by Cahan ORyan

ONSISTENCY? WHY BOTHER?
In an era where the software industry is concerned with reliability, standard
interfaces, duplication of effort, maintenance cost, feature creep and in-

creasingly shorter market windows, code reuse is proving to be a solution.
Smalltalk is a language that promotes code reuse. The industry is recognizing Smalltalk’s
potential for reducing development costs, improving reliability, improving productivity,
and improving a company’s software competitive edge.

Code reuse does not come automatically by simply using Smalltalk. Just because code
can be used does not mean it can be reused. Applying a clear and consistent programming
style will help make code easier to read, maintain, and subsequently reuse. Strictly follow-
ing a set of style rules is not necessary; however, a set of simple and consistent style guide-
lines should help a programmer design reusable code. A guideline is simply a recommended
practice. A set of style guidelines is important: experience shows that without a sound and
consistent coding style, dirty code gets dirtier!

In this article, we present a sample set of guidelines to help make object-oriented
source code easier to read, maintain, and reuse. The guidelines are based upon existing
good software engineering practices that are used by developers of commercial software. In
many object-oriented programming language reviews, Smalltalk is used as the basis of
comparison because of its relatively complete set of features; it is a good language to use to
discuss object-oriented programming concepts. We use Smaltltalk terminology and exam-
ples to present our guidelines; however, the principles of style apply to all object-oriented
languages.

REAL PROGRAMMERS CAN WRITE FORTRAN IN ANY LANGUAGE

Many procedural programmers new to Smalltalk tend to program with the style of their
mother tongue programming language. This usually leads to convoluted code that does not
take advantage of the features of Smalltalk that make it suitable for rapidly building high-
quality systems. Unfortunately, a set of guidelines to follow when programming in
Smallealk has yet to be presented. We attempt to fill that void with our “Smalltalk with
Style” column. In this, our first column, we address source code presentation from a
Smalltalk perspective. Future columns will cover naming conventions, standard protocols,
frameworks, good object-oriented Smalltalk programs, quality assurance and testability,
and software metrics.

GUIDELINES FOR EVERYONE!

The guidelines are intended for people involved in the development of software systems
written in an object-oriented language such as Smalltalk. Readers with different levels of
Smalltalk experience and different roles in a software project will use the guidelines in dif-
ferent ways. We do not necessarily recommend that you follow the guidelines strictly but,
rather, that you adapt them to suit your particular project or organization. The most im-
portant idea to keep in mind is consistency.

continued on page 4...

EDITORS’
CORNER

Paul White

John Pugh

t seems very strange to be writing the editorial for our second issue without the
benefit of feedback from you on our premiere issue. Such are the vagaries of publica-
tion deadlines! In any event, we look forward to receiving your letters and com-
ments on the contents and format of The Smalltalk Report.

As the lead article in this issue, “A Matter of Style,” we focus on style in
Smalltalk programming. Many organizations have successfully developed projects us-
ing Smalltalk technology, and it is important that the experience gained and lessons
learned from these projects be passed on to the organizations that are just now mi-
grating to Smalltalk. In the first of their regularly appearing “Smalltalk with Style”
columns, Ed Klimas and Suzanne Skublics offer stylistic guidelines for the presenta-
tion of Smalltalk source code. In upcoming issues, they plan to address topics such as
reusability, naming conventions, finding application frameworks, and software met-
rics. This column will be a “must read” for both beginning and experienced
Smalltalk programmers.

An exception-handling mechanism for gracefully taking corrective action when
unusual and unanticipated conditions arise has long been a feature of languages such
as Ada. ParcPlace first introduced facilities for handling exceptions in release 2.4 of
Smalltalk-80, but no such facility has been added to Digitalk’s Smalltalk/V. In his
article, "Exception Handling in Smallealk,” Boris Gartner looks at a number of po-
tential ways in which a simple mechanism could be implemented for Smalltalk/V.
He first describes a method for adding a handler for a newly defined application class
and then expands his implementation to handle exceptions generated by class meth-
ods. Finally, he proposes a more general approach.

In the continuation of their first column, Greg Hendley and Eric Smith complete
their study of how to give application windows dialog box functionality in
Smalltalk/V PM with a discussion of window ownership in OS/2. Also in this issue,
Juanita Ewing makes suggestions as to how Smalltalk programming teams might orga-
nize their applications.

Complementing the review of the WindowBuilder/V product from Acumen,
which appeared in our premiere issue, Cahan O’Ryan reviews the Tigre Program-
ming Environment for Objectworks\Smalltalk. Also, Dan Lesage reviews Dan
Shafer and Dean Ritz's book entitled Practical Smalltalk.

This is a busy time of the year for conferences of interest to Smalltalkers. The
Smallzalk Report will have a presence at the first Digitalk Developers’ Conference in
Los Angeles, OOPSLA '91 in Phoenix, and the first Eastem European Conference
on Object-Oriented Programming in Bratislava, Czechoslovakia. We look forward
to seeing you there!

Enjoy the second issue!

—_)’;L..\ ?‘TJE__ Q 3\ \.K‘\)La'y

John Pugh and Paul White
Editors

The Smalltalk Report

Editors
John Pugh and Paul White
Carleton University & The Objact Peopla

SIGS PuBLICATIONS

Torn Atwood, Object Technology
Grady Booch, Rational

Geocrge Bosworth, Digitaik

Brad Cox, Information Age Consulting
Chuck Duff, The Whitewater Group
Adele Galdberg, ParcPlace Systems
Tom Love, Consultant

Meifir Page-Jornes, Wayland Systems
Bertrand Meyer, ISE

P. Michael Seashols, Versent
Bjame Stroustrup, ATST Bell Labs
Dave Thomas, Qbject Technelogy

THE SMALLTALK RePoRT

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systams

Reed Phiilips, Knowledge Systems Corp.

| Mike Taylor, nstantiations

Dave Thamas, Object Technology Intemational

Colummists

Juanita Ewing, instantlatiors

_Gug Hendlay, Knowledge Systems Corp.
&d’ ﬂm Allen Bradiey

Suzsnne Slasblics, Object Technology
Eric Smith, Knowledge Systems Corp.
Allen Wirfs-Brock, nstantiations
Rebacca Wirfs-Brock, Tektronix

SIGS Publications Group, Inc.
Richerd P, Friedman, Group Publisher

Art/Production

Elisa Varian, Production Manager

Susan Culligan, Creative Director

Krigtin R. Juba, Production Editor

Caren Polner, Desitop Designer
Circulation

Diane Bachway, Cirutation Business Manager
Kaﬂ\hcncanmng Fulfilienent Manager
John Schréiber, Circulation Assistant
Marksting/Advertising

James Kavetas, Advertising Director
Diane Morancie, Account Executive
Administration

David Chatterpaul, Accounting
Suzanne W Dinnerstain, Conference Manager
Jennifer Fischer, Assistant to the Publisher
Laura Léa Taylor, Administrative Assistant

Margharita R. Monck, Genersl Managar

.PUBLICATIONS

hﬂdmdm&lﬂu&&pm The C++ Re-

The Smallalk Report (ISSN# 1056-7976) is published 9 times a year, every month excepr for the Mar/Apr, July/Aug, and Nov/Dec combined issues. Published by OOOT, Inc., a member of the SIGS Publicatiuns
Group, 588 Broadway, New York, NY 10012 (212)274-0640. © Cnpy-nd\t l991 by COOT, Inc. All rights reserved. Reprduction of chis material by electronic mransmission, Xerox or any other method will be treated as

a willful violation of the US Copyright Law and is flatly prohibi ial may be ion from the publish

d with express p

Mailed First Class. Subscription raves 1 year, (9 issues) domestic, $65, For-

eign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and subscripriun orders to: THE SMALLTALK REPORT Suhscriber Services, Dept. SML, P.O. Box 3000, Denville, NJ 07834. Submit

arricles to the Editors at 91 Second Avenue, Ottawa, Ontario K15 2H4, Canada, (613) 230-6897, or fax (613) 235-8256.

THE SMALLTALK REPORT

Fastest Path to Platform independence.

(Editing: Tigre Demo App)

combining text, images - even sound
and video - in minutes, nol months.

UNIX

Sun SPARC
DECslation
IBM RS6000
HP/Apollo

Buiid a database application

Macintosh Il
I family

Madify the user interface

Windows 1.0-

compatible

while your application
runs, just by making
selections in the editor.

Leap free of platform limitations and deliver full-color
GUI applications in half the time...with Tigre™.

Introducing an incredible
OOP breakthrough: A complete
development environment that lets
you create object-oriented, multi-
user applications that run across all
major platforms and networks. And
lets you deliver them up to 80%
faster than ever before.

Tigre™ Programming Environment,
running with Objectworks®\
Smalltalk Release 4, offers a set of
tools that turns a major hassle into
a quick drag. Literally. Because it

lets you build customized, color

GUISs just by dragging and dropping.

You'll choose from a large library
of user interface components. Objects
like scrolling text fields, check boxes,
radio buttons and more.

Drag them from the palette onto
your application screen. Move and
resize them as often as necessary.
No recompiling needed. And
virtually no code to write. Tigre's
Interface Designer automatically
creates the Smalltalk GUI for you.

TIGRE OBJECT SYSTEMS, INC.

Give the interface your unique
imprint by clicking selections to
change color, font, borders, icons, etc.
And you can add your own custom
GUI creations to the library for reuse.

Use Tigre's multi-user, object-
oriented database manager, to
provide network-compatible access
to text, images, icons, sounds — any
type of stored data.

Phone now for a comnplete package
of information on Tigre. There’s never
been a faster track to freedom.

Call: (408) 427-4900, Fax: (408) 457-1015
3004 Mission Street, Santa Cruz, CA 95060

H A MATTER OF STYLE

continued from page 1...

If you are a novice programmer leaming Smalltalk, you
will gain an advantage by following guidelines and methods
early In your programming career. This will help you develop
a clear programming style that effectively exploits whatever
languages you will be using.

If you are an experienced Smalltalk programmer, you prob-
ably already develop code that conforms to many of the
guidelines. The set of guidelines in this column embody a
widely accepted approach thar will make your code more con-
sistent and easier to reuse.

If you are a technical manager, you probably already follow
a set of corporate standards. Guidelines will help technical
managers ensure that the software produced during a project
is correct, reliable, easy to maintain, and reusable. The diffi-
culty lies in creating a project-wide commitment to adhere to
. aset of guidelines.

SOURCE CODE PRESENTATION

In an environment such as Smalltalk, more time is spent read-
ing code than writing it. The physical layout of source code
on the page or screen strongly influences how easy it is to
read. “A program is not only a set of instructions for a com-
puter, but a set of instructions that must be understood by a
human, especlally the one who reads it the most—the pro-
grammer."! In the OO community, easy-to-read code relates
directly to greater code reuse: it is more likely that someone
will be able to reuse code if they can at least read and under-
stand it. It is important for code to be well structured, for ex-
ample, in terms of indentatjon and naming standards. How-
ever, defining a good structure is subjective. We present a
number of guidelines that define general principles of a good
layout but do not prescribe a particular layout style. The deci-
sions about how to apply these principles are better left to the
project leader or organization.

GUIDELINE 1: BE CONSISTENT

The formatting of Smalltalk source code affects how the code
looks, not what it does. The most important guideline to fol-
low is to be consistent throughout the application and the
project.

GUIDELINE 2: USE A CONSISTENT SPACING STRATEGY
Spacing makes source code easicr to read because it empha-
sizes the dellmiters on a source statement line. Constructs are
easier to recognize irrespective of where they oceur in pro-
gram text. A consistent spacing strategy applies to many
facets of a piece of source code. For example, delimiters such
as binary operators and parenthesis are easier for the reader to
parse when separated from other programming constructs.

Examples:

3+4*36>=32+(-32).
#(123), #(456).
‘hello’, 'there'.

#((23) (3 4) (45))
#(red)

GUIDELINE J: INDENT AND ALIGN NESTED CONTROL
STRUCTURES AND CONTINUATION LINES CONSISTENTLY
Source code that is consistently indented is easier to read be-
cause the structure and flow of a program are easier to see.
Nesting levels can be clearly identified by indentation. Cas-
caded messages, for example, are easler to follow when the re-
ceiver object is separated from the messages, each indented
on a separate line. The fact that the code is indented consis-
tently is more important than the number of spaces used. An
indentation of four spaces or a tab is typical.

Related to indentation is alignment. Alignment makes it
easier to see the position of the operators and, therefore,
places visual emphasis on what the code is doing. Statements
that include nested control structures or long expressions that
continue over more than one line are easier to read and parse
if they are aligned on separate lines. The flow of control of a
program can also be reflected by alignment. The particular
style used is not as important as applying a consistent align-
ment. We recommend an alignment style in the examples
presented, such as matching alternative cases in an ifTrue:if-
False: message.

Examples:

"Single alternative statements on the same line as the condition.”
(self includesKey: aKey) ifTrue: [*self].

“Blocks with short expressions contained on single lines.”
aBooleanExpression

ifTrue: [aShortExpression]

{fFalse: [aShortExpression].

"Blocks with long expressions contained on several separate lines."
aBooleanExpression
{fTrue: [
aLongExpression.
aLongExpression]
ifFalse: [
aLongExpression.
alongExpression].

"Enumeration messages indented and aligned to reflect control
flow."
self value
ifTrue: [
aBlock value.
self whileTrue: aBlock].

“Indented cascaded messages on separate lines."
self

updateFather;

updateMother.

"Indented long key word messages to avoid line wraps.”
magnifiedForm

dlsplayOn: aDisplayMedium

at: absolutePoint - alignmentPoint

clippingBox: clipRectangle

rule: ruleInteger

mask: aform

"Long, cascaded key word messages with a blank line between each
message.”
anOrderedCollection

replaceFrom: 2

to: 3

with: #(abcdefg)

startingAt 3;

replaceFrom: 7

to: 8

with: #(abcdefg)
startingAt 5.

GUIDELINE 4: START EACH STATEMENT ON A NEW LINE; NO
MORE THAN ONE SIMPLE STATEMENT PER LINE
It is easier to locate variable assipnments when they are
aligned along the left margin. A single statement on each line
makes statements easier to distinguish. Similarly, the structure
of a compound statement is clearer when its parts are on sepa-
rate lines. If the statement is longer than the remaining space
on the line, continue it on the next line or restructure the
code so that it can be cascaded onto separate lines.

Examples:

"Follows guideline...”

compositionRectangle := compositionRect copy.
text := aText.

textStyle := aTextStyle.

firstindent := textStyle firstIndent.

rule := DefaultRule.

mask := DefaultMask.

"Does not follow guideline..."
compositionRectangle := compositionRect copy.
text ;= aText. textStyle :=aTextStyle.
firstindent := textStyle firstindent.

rule := DefaultRule. mask := DefaultMask.

GUIDELINE 5: BREAK COMPOUND STATEMENTS (LONG KEY
WORD MESSAGES) OVER MULTIPLE LINES
Examples;

"Follows guideline..."
aMenu
"Answer a menu with a list of miscellaneous operations."
~(Menu
labels: 'Clear\Copy\Paste\Fonts...\Pen size\BitEdit’
withCrs
Unes: #(4)
selectors: #(clear copyGraph pasteGraph changeFont
changeSize bitEdit))
owner: self;
title: "&0ptions’;
youxself

"Does not follow guideline ..."
aMenu
“"Answer a menu with a list of miscellaneous operations.”
~(Menu labels: 'Clear\Copy\Paste\Fonts...\Pen size\BitEdit’
withCrs Unes: #(4)
selectors: #(clear copyGraph pasteGraph changeFont
changeSize bitEdit))
owner: self; title: ‘R0ptions’; yourself

GUIDELINE 6: USE BLANK LINES TO CONVEY SEMANTICS

Blank lines should be used to separate chunks of code that
perform different tasks. It is easier to read and understand code
that is semantically grouped. The need for blank lines is not as
great in Smalltalk because methods group logical chunks of
code. However, this guideline should not be ignored simply to
make the code fit on the screen.

CONCLUSIONS

Object-oriented programming languages such as Smalltalk
support many of the modern software practices that can signif-
icantly improve the productivity and quality necessary to meet
today’s shorter commercial market development windows. We
have addressed how applying a clear and consistent program-
ming style can promote the software practice of code reuse.
We have presented a set of guidelines that will help an object-
oriented programmer develop code that easier to read, main-
tain, and reuse. We emphasize that the guidelines need not be
strictly followed but, rather, that the strategies of each be ap-
plied consistently. Applying source code presentation guide-
lines does not guarantee that code will be reused, but it is an
important step toward obtaining the full benefits of highly
reusable code development. ¥

REFERENCE

[1] Legard, H., P. Magin and J. Hueras, Pascal with Style: Programming
Proverbs, Hayden Book Co., Hasbrouck Heights, NJ, 1979, p. 2.

Ed Klimas has been involved with the implementation and application of
industrial software in industry as well as modern object-oriented program-
ming practices in commerical real-time industrial control systems.
Swzanne Slublics is the Education Manager at Object Technology In-
ternational. She has been involved with the Smallialk/object-oriented
programming community for several years, particularly with Carleton
University.

Ed and Suzanne are co-authors of Smallealk with Style, a forthcom-
ing book to be published by Addison-Wesley. The guidelines and exam-
ples for this column series are excerpts from this book.

ETTING REAL

Juanita Ewing

How should teams organize their

applications?

N MY PREVIOUS COLUMN, I began to address some important
| issues for teams of Smalltalk programmers. Teams of pro-

grammers are important because large complex applications
cannot be built by a single programmer. Continuing with is-
sues relating to teams, this column will present heuristics for
organizing applications. Organizational units can be the basis
of work assignments for team members and the basis for dis-
tributing completed portions of an application. An additional
benefit is that organizational units tend to represent reusable
units.

HOW SHOULD TEAMS ORGANIZE THEIR
APPLICATIONS?

When a team of programmers implements an application, the
development work needs to be structured and distributed
among the team members. Without some kind of organization,
development would be a free-for-all, and no schedule would be
possible. The most obvious organizational technique is to parti-
tion an application along class lines. In this organizational
scheme, each member of the team would be responsible for im-
plementing and maintaining a group of classes. In Smallealk, a
class is a unit that encapsulates the behavior and data specifi-
cations for a particular kind of object. An organization based
on classes has the advantage of being built on an existing sup-
ported Smalltalk unit and is able to use many of the existing
Smalltalk tools. But, classes don’t exist in isolation.

SHOULD HIERARCHICALLY RELATED CLASSES BE
ORGANIZED TOGETHER?

Classes are usually part of a hierarchy in which superclasses
also specify data and behavior. The behavior of an object is
defined by the behavior in its own class and the behavior of
its superclasses. Since a class requites its superclass to func-
tion, it is desirable to organize both classes together. This de-
sire is the basis of our first heuristic.

This kind of grouping usually involves several classes since
an inheritance tree is frequently larger than just two classes.
Entire trees of hierarchically related classes might be grouped
together to satisfy this heuristic, but it cannot be followed
blindly. If it were, most of the classes in an image would be
grouped together.

HOW DO YOU LIMIT THE HIERARCHICAL GROUPS?
If classes were grouped strictly by inheritance, the size of
groups would not be reasonable. Use the additional heuristic
that hierarchically related classes performing a similar func-
tion should be grouped together.

For example, suppose you are developing an application
that has a plumbing system. The plumbing system is composed
of plumbing components such as valves, spigots, and pipes.
All of the plumbing components are subclasses of an abstract
class, PlumbingComponent. PlumbingComponent is a sub-
class of Object. A group based on function would contain
PlumbingComponent and all its subclasses, but would not
contain the superclass Object because it does not fulfill the
same function as a plumbing component.

SHOULD COLLABORATING CLASSES BE ORGANIZED
TOGETHER?

Frequently, an application contains several classes that send
messages back and forth. These classes collaborate. Collabo-
rating classes require each other to function. Because these in-
dividual classes don’t stand alone, it is desirable to organize
these classes together.

The degree of collaboration affects this organizational
heuristic. If two classes collaborate with just one message,
then the degree of collaboration is small. Many messages indi-
cate a large degree of collaboration and a stronger reason to
organize the classes together.

Suppose our plumbing system contains a water heater. A
water heater has a water tank, a heating element, and a ther-
mostat. The heating element must be turned on and off when
the water temperature, as sensed by the thetmostat, reaches up-
per and lower limits. The thermostat sends messages such as

heating
element

thermostat

Figure 1. Grouping collaborating objects.

THE SMALLTALK REPORT

heating
element

production

water
tank

L §

temperature water volume
heater

Figure 2. Determining which objects should be included
in the water heater group.

turnOn and tumOAf to the heating element. These two classes
collaborate and, therefore, should be grouped together (Fig. 1).

We haven't addressed the issue of how to organize the wa-
ter tank class in our example. The heating element would
send messages indicating how much heat it has produced, and,
based on the volume of water, a temperature rise could be cal-
culated. Does the water tank perform the temperature rise cal-
culation? No. The water tank is responsible for knowing its
volume of water. However, nothing about a generic water
tank suggests that it be able to calculate temperature rises.
(We will ignore volume fluctuations based on temperature
variations.)

Our system also needs to include a water heater object that
performs operations specific to a water heater, such as calcu-
lating the temperature rise. The heating element communi-
cates with the water heater object to pass on heat production,
and the water heater tells the thermostat the current tempera-
ture. (See Fig. 2.)

Because of the collaboration between the water heater and
both the heating element and the thermostat, the water
heater should also be included in the organization based on
collaboration. The water tank collaborates with only one of
the other classes in this example. Because of the small degree
of collaboration and also because the information doesn't take
an active role in the primary calculation, we leave it out of
the water heater group.

Our group contains three classes: heating element, thermo-
stat, and water heater. This organization is based solely on
collaboration (Fig. 3).

WHAT IF YOUR CLASSES ARE IN A HIERARCHY AND
COLLABORATING?
It is likely that your application contains classes that belong to
a hierarchy and also collaborate with other unrelated classes.
Both hierarchical and nonhierarchical relationships should be
taken into account. Classes in the hierarchy should be orga-
nized together, and tightly coupled classes in the application
should be organized together.

Let’s examine the water heater example. Some of the ob-
jects in this system are hierarchically related. The thermostat

and the heating element are part of an electrical component
hierarchy, and the rank is part of the plumbing component hi-
erarchy. Yet we also want to capture the relationships based
on collaboration, as depicted in Figure 2. There is a desire to
associate the heating element with other electrical compo-
nents as well as with the other classes comprising the water
heater.

HOW DO YOU ORGANIZE A CLASS IN MORE THAN
ONE WAY?

We have discussed a unit that captures a single organization.
Let’s call this unit the primary organizational unit. To represent
multiple overlapping associations, we need another type of or-
ganization. Configurations are another type of organization
that is used to represent secondary relationships. Configura-
tions refer to other organizational units. As such, they are an-
other level of organization. They can be nested, so that one
configuration may refer to another configuration or simply to
a group of primary organizational units.

In most cases, a hierarchical relationship forms the basis for
the primary organizational unit. This unit can then be com-
bined with other units via configurations. This tactic reflects
the point of view that the hierarchical relationship is tighter
and more stable than collaboration-based relationships.

Another way to think about different organizations is to
imagine scenarios for reuse and maintenance. If developers are
more likely to reuse a hierarchy of classes than a group of col-
laborating classes, then the primary organization should be
based on inheritance. If a group of classes will be maintained
as a unit, this means that they are closely related and should
be grouped together.

In the plumbing example, all the plumbing components
can be organized into a primary unit. This unit contains
classes related by inheritance. The same should be done for
the electrical components. A configuration representing the
water heater would contain three primary units:

o the plumbing components unit (for the water tank)

4 N
heating
element

production
thermostat
/
temperature water
heater
\ J

Figure 3. The water heater group.

VoL. 1, No. 2: OcTOBER 1991

B GETTING REAL

e the electrical components unit (for the thermostat and
heating element)

¢ the water heater unit consisting of only the water heater
class

With inheritance as the organizational basis for primary
units, collaboration-based relationships can be represented by
configurations. In our example, this organization is useful be-
cause the plumbing components can exist in different systems.
You can imagine the configurations and primary organiza-
tional units needed to represent a well and pump or a solar
hot water heater.

WHAT ABOUT RELATED CODE IN OTHER CLASSES?
All parts of an application might be neatly contained in
classes. Frequently, though, methods will be sprinkled
throughout the class library.

Suppose a way to distinguish between other objects and
plumbing components is needed. It is reasonable for a devel-
oper to define a method in Object that answers whether the
receivert is a plumbing component (isPlumbingComponent).
This method returns false. A similar method implemented in
PlumbingComponent returns true. All classes inheriting the
method from Object will answer false when asked if they are a
plumbing component. Subclasses are free to override the
method.

SHOULD CODE ORGANIZATION BE BASED ON
CLASSES?

In our example, a single method in an unrelated class has
functionality that relates to another class. How should this
method be organized? Should the method in Object be associ-
ated with the class Object or should it be part of the plumbing
component unit? Obviously, this method relates to plumbing
components and not to the generalized behavior of objects in
a Smalltalk system. It should be assaciated with the plumbing
component classes.

Organizing strictly along class boundaries is not flexible
enough. [advocate a flexible grouping scheme in which
classes and methods can be organized together into primary
units. (We will refer to classes and methods as definitions.)
Use the heuristic that functionally related definitions should
be organized together without regard to class boundaries.

In the plumbing system example, the classes composing the
plumbing component hierarchy and the method Object>is-
PlumbingComponent should be bundled into one primary
unit. Both implementations of isPlumbingComponent would
be contained by the same primary unit. It is likely that many
of the definitions would be used rogether and maintained to-
gether. In particular, if the meaning of Object>isPlumbing-
Component is changed, then PlumbingComponent>isPlumb-
ingComponent is also likely to change.

Use these heuristics to organize your application:

® organize hierarchically related classes together

® use functionality to limit the size of hierarchically based
groups
® organize collaborating classes together

® put functionally related definitions together

Two types of organization are required to represent differ-
ent kinds of relationships and to retain the flexibility required
in a highly productive environment like Smalltalk. With the
primary organization units, a developer can bundle definitions
together that are closely related—either through inheritance
or collaboration. These definitions are maintained togerther
and reused together. Primary organizational units contain log-
ical groups of definitions that cannot stand alone.

Configurations are another level of organizational structure
that represent secondary relationships. The components of a
configuration stand alone and are more likely to be used in
other situations. Developers should be encouraged to mix and
match different organizational units to extend the usability of
a set of definitions. Secondary relationships, represented by
configurations, are the basis of mixing and matching.

Primary organizational units are suitable for organizing the
development of an application. Each team member should be
assigned to implement one or more primary organizational
unit, and the implemented units should be distributed to
other team membets. Configurations are used to build up the
various subsystems in an application and ultimately to specify
the application itself. <

Juanita Ewing is a senior staff member of Instantiations, Inc., a soft-
ware engineering and consulting firm that specializes in developing and
applying object-oriented technologies. She has been a project leader for
commercial object-oriented software projects and is an expert in the de-
sign and implementation of object-oriented applications, frameworks,
and systems. In her previous position at Tektronix Inc., she was re-
sponsible for the development of class libraries for the first commercial
quality Smalltall-80 system. Her professional activities include Work-
shop and Panel Chairs for the OOPSLA conference.

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,
dBASEIII, Lotus, and Excel.

n;telligent Systems, Inc.

1_ 806 N. State Sfreet. Ann Arbor. MI 48104 (313) 996-4238 (313) 996-4241 fax

THE SMALLTALK REPORT

EXCEPTION

HANDLING

IN SMALLTALK

Boris Gartner

XCEPTION HANDLING is a method to be used when-
ever program crashes may not be tolerated in an im-
portant application. Most well known are the meth-
ods included in the languages Ada! and CHILL.?
Recently, ParcPlace decided to incorporate exception-han-
dling facilities into its Smalltalk-80 version 2.5 and Object-
works \ Smalltalk release 4 systems.3

The features of Objectworles \ Smalltalk are implemented
with newly introduced primitives. For the user of Smallealk/V,
it is a challenge to implement exception handling in the lan-
guage itself. This contribution sketches two methods based
solely on elements of Smalltalk as defined in the “blue book.”*
The simpler method is suitable if exception handling should be
limited to some classes, wheteas the more sophisticated
method offers as much generality as possible.

A SIMPLE METHOD

EXCEPTIONS IN NEWLY DEFINED CLASSES

Implementation of exception handling is simple if it can be
done from the very beginning. All you need to do is to provide
an instance variable where the exception handler can be stored.

A suitable handler will be provided during instance creation.
A handler can be any of the following blocks:

[<any sequence of expressions>
~gelf]

[:message | <any sequence of expressions>

~gelf]

[:sender :message | <any sequence of expressions>

~self]

To raise an exception, one has to write:

<exceptionHandler> value.
<exceptionHandler> value: <argument>
<exceptionHandler> value: self value: <argument>

The essential point is that a block is bound to the method
of its definition. Consequently, the execution of #self will ter-
minate the execution of the method containing the block
definition. The “self is nothing but a GOTO in disguise.

All three forms of exception handlers can be intermingled.
But, for uniformity as well as for clarity, it is convenient to use
only handlers with two arguments. The value of the first argu-
ment shall always be the signaling instance; the value of the
second argument shall be a symbol communicating the kind of
exception.

EXAMPLE: STACKS AND QUEUES

The class Storage implements the common protocol of its sub-
classes — Stack and Queue. The exception handling is part of
the common protocol of both classes.

Object subclass:
instanceVariableNames:
classVariableNames: "
poolDictionaries; "

#Storage
‘field exceptionHandler '

Storage Class Methods
new: amount atError: aBlock
“super new

exceptionHandler: aBlock;
init: amount

Storage Methods
capacity
~ field size
exception: aSymbol

exceptionHandler notNil

ifTrue: [exceptionHandler value: self

value: aSymbol]
ifFalse:
[super error: ‘unhandled exception: ', aSymbol asString]
exceptionHandler: aBlock

" aBlock is expected to be a block with two arguments. The first

argument should take the sender (i.e., self); the second

argument should take the message symbol. "
exceptionHandler := aBlock

isEmpty

VoL. 1, No. 2: OcTOBER 1991

10.

W EXCEPTION HANDLING

~self size =0
isFull

~self size = self capacity

Storage subclass: #Queue
instanceVariableNames: ‘input output count '
classVariableNames: "
poolDicHonaries: "

Queue Methods
init: amount
field := Armay new: amount.
Input :=1.
output :=1.
count :=0
pop
| var |
self isEmpty
iffrue: [self excepton: #isEmpty]
ifFalse: [var := field at: output-
count := count - 1.
output = output \\ |self size| + 1.
A var]
push: x
self isFull

iffrue: [self exception: #isFull]

iffalse: [field at: input put: x.
input := input \\ |self size| + 1.
count :=count + 1.
I\x]

size
“~count
top
self isEmpty

ifTrue:
ifFalse:

[self exception: #isEmpty]
[~field at: output]

#Stack
‘stackpointer '

subclass:
instanceVariableNames:
classVariableNames: "
poolDictionaries: "

Storage

Stack methods

" code omitted for brevity "

Obviously, it would be nice to apply the technique just
demonstrated to ReadStreams. The possibility of providing an
exception handler for the exception “end-of-stream” avoids
checking the end-of-stream every time a value is fetched. This
could amount to considerable savings if the stream to be pro-
cessed contains many items. Regrettably, it is not possible to
redefine class Stream because there are always two instances of
the subclass FileStream.

Allocation errors are special in that
they cause an instance creation to fail.
The exception handling must
therefore be done by class methods.

HANDLING ALLOCATION ERRORS

Allocation etrors are special in that they cause an instance cre-
ation to fail. The exception handling must therefore be done
by class methods. The essential problem is to catch the error
communicated by either Behavior>>new or Behavior>>new: if the
instance creation failed.

In the following example, the class method new:atError: is
called with the handler. The handler is stored in the class vari-
able ErrorBlock, where it can be fetched from the class method
error:. The class method error: is sent by the calls Behavior>>new:
and Object>>primitiveFailed.

Object variableSubclass: #Matrix
instanceVariableNames: 'numberOfRows numberOfColumns'
classVariabhleNames: 'ErrorBlock '
poolDictionaries: "

Matrix Class Methods
new: aPoint atError: aBlock

" Creation of a matrix with aPoint x rows and aPoint y columns,
The block will be called if it is not possible to create the instance.
This is an allocation error. "

| aMatrix |

ErrorBlock := aBlock.
aMatrix := super new: aPoint x * |aPoint y|
aMatrix rows: aPoint x;
columns: aPoint y.
ErrorBlock := nil.
~aMatrix

error: aString

" This method overrides the method in class Object. It will be called
Jrom Object>>primitiveFailed if the method Behavior| new:
cannot allocate memory for a matrix of the specified size. "

| handler |

(handler := ErrorBlock) isNil
ifTrue: [super error: aString]
ifFalse: [ErrorBlock ;= nil.
handler value: self
value: #allocationErmror]

THE SMALLTALK REPORT

Matrix Methods

columns: anInteger
numberOfColumns ;= anInteger

rows: aninteger
numberOfRows := anInteger

It is an interesting exercise to reimplement the classes Stack
and Queue as variable classes and to revise the exception han-
dling in such a way that allocation failures can be handled.

Obviously, there are two problems remaining:

1.The methods described so far are not applicable to classes
like Collection or Stream because there are always instances of
some subclasses of these classes in the image.

2. It is not feasible to add an instance variable to every in-
stance of a number.

In this situation, it is sometimes feasible to store the excep-
tion handler in a class variable. This will work in very much
the same way as demonstrated in the matrix example

HANDLING ARITHMETIC EXCEPTIONS

#Float class
'ErrorHandler '

Number variableByteSubclass:
VariableNames:
poolDictionaries: '’

Float Class Methods
exceptionHandler
~ ErrorHandler
exceptionHandler: aHandler

" aHandler is expected to be a block with two arguments. The first
argument should take the sender (i.e., self); the second
argument should take the message symbol, "

ErrorHandler := aHandler

floatError

"Query the floating-point coprocessor as to the type of

exception and report it."
| status message |
status := self status.
message := 'Float undefined exception'.
(status bitAnd: 8) "= 0

ifTrue: [message := "Float overflow exception'].
(status bitAnd: 16r10) ~=0

ifTrue: [message := 'Float underflow exception’].
(status bitAnd: 4) =0

ifTrue: [message := 'Float divide by zero exception'].
(status bitAnd: 2) ~=0

ifTrue: [message := 'Float denormalized operand'].
(status bitAnd: 1) "=0

ifTrue: [message := 'Float invalid operation']-
(status bitAnd: 16r80) ~=0

ifTrue: [message :='Math coprocessor missing'].

ErrorHandler notNil
ifTrue: [*ErrorHandler value: self
value: message]
ifFalse: [* super error: message]

A MORE GENERAL APPROACH TO EXCEPTION
HANDLING
Examining the handling mechanisms used in Ada,! one ob-
serves that exception handlers are a part of the activation
record of the segment where they are defined. Administration
of exception handlers can be done with very little overhead to-
gether with the administration of the activation records.

It is convenient to review the most important features of
the exception concept used by Ada:

1. Exceptions are identified by name.

2. One or more exception handlers may be attached to a se-
quence of statements.

3. Exception handlers may be nested, and exceptions may be
propagated from an inner handler to an outer one. Propa-
gation follows the dynamic reference chain.

4. Handler nesting and exception propagation together per-
mit a kind of distributed exceprion handling, where several
handlers contribute to prepare the continuation of a pro-
gram after the occurrence of an exception.

5. An exception is served by the innermost handler declared
for that exception. The execution of the handler com-
pletes the execution of the sequence of statements it is at-
tached to.

Our concept of exception handling is illustrated by the fol-
lowing similarity:

begin ExceptionManger new
<statement sequence> exception: #<exception name>
exception handler:
when <exception name> [:sender :handler |
=> <handler actions> <handler actions>];
end; execute: [<statement sequence>]

The resulting value of the expression of the right-hand side is:

® The result of the block [<statement sequence>] if no excep-
tion was raised; or

® The result of the handler [:sender : handler | <handler ac-
tions>) if the exception #<exception name> was raised.

Earlier, we proposed handlers that contained a return state-
ment, generally the statement Aself. The jump statement aban-
dons the execution of a sequence of statements that, due to an
exception, cannat be completed. As we will see, our imple-
mentation of the Ada-like exception handling is also based on
return statements. However, these return statements are
merely implementation details of class ExceptionManager. The
programmer of an exception handler will not use any return

11.

VoL. 1, No. 2: OcTOBER 1991

B EXCEPTION HANDLING

statements; in fact, he does not even need to know that jump
instructions are part of the Smalltalk language.

Trying to utilize as much as possible from Ada and realizing
the impossibility of modifying class Process, we decided to ad-
minister exception handlers in a separate stack to be held in
synch with the stack of the current process.

The top element of this stack is referenced by the global
variable CurrentHandler; the stack itself is implemented as a list
of instances of class ExceptionManager. Each instance of class
ExceptionManager administers a dictionary of specific handlers
and, optionally, a catch-all handler.

Using a global list of handlers, this approach avoids the in-
troduction of instance variables. The error block is now
defined to take the following arguments;

<error blode> value: <sender>
value: <instance of ExceptionHandler>

The block can communicate with the instance of Exception-
Manager. The following methods are provided:
® exception — inquire about the raised exception
® restart — restart the block associated with the handler

EXAMPLES OF USE
It is assumed that the calls of method #error: are replaced by
calls of the method #exception: (described later in this paper).

" Read the contents of a stream until encountering end-of-stream. *

| x|
ExceptionManager new
exception: #endOfStream

handler: [:sender :handler | self];
execute: [x:=ReadStream on: #(4 657 8 4 2).
[Transcript show: x next printString; cr.
true)
whileTrue: []
]
* Reprompt until you receive a usable answer. "
I x|
ExceptionManager new

defaultHandler: [:sender :handler | handler restart];
execute: [x := Prompter prompt: value'
defaultExpression: '4'.
1.0/ x]

" Issue a message and abandon the current statement. "

ExceptionManager new
exception: #invalidMessage
handler: [:sender :handler |

Transcript show: handler exception printString.];
execute; | String new add: 34]

" Reenter the current statement with a value to be used in the
place of the result the statement failed to produce. " .

12.

(3 negated to: 3 by: 1) collect:
[-i | ExceptionManager new
exception: #zeroDivision
handler: [:sender :handler | 0.0];
execute: [1.0/ i)

]

" Propagation and restart used in conjunction: the outer block will
be restarted as long as i is less than 4. "

lil
i=0.
ExceptionManager new
exception: #test
handler: [:sender :handler |
Transcript show: ‘outer Handler entered ';
show: i printString; cr.
(i=i+1)<4
ifTrue:
[Transcript show: 'restart from outer block’;
show: i printString; cr.
handler restart

]
I
execute: [Transcript show: 'enter outer block'; cr.
ExceptionManager new
exception: #test
handler:
[:sender :handler |
Transcript show: 'propagate the
exception'; cr.
sender exception: handler exception
I
execute: [Transcript show: 'enter inner block'; cr.
self exception: #test

]]

The piece of code to be executed under the control of these
handlers is a block. This block shall not contain any return
statements (~<expression>). If it is necessary to leave a method
from within an exception handler, one has to write something

like this:

methodSelector
ExceptionManager new
exception: #exitMethod
handler: [:s :h | <retum value>];

execute:
[(ExceptionManager new
exception: #myException
handler: [:s :h | <actions>
self exception: #exitMethod);
execute: <aBlock>
]

The method will be left by signaling an exception to the
outermost exception manager of the method. This technique
guarantees that the necessary reduction of the stack of excep-
tion managers will be done.

Class Object is augmented by the following instance method,
which is used to raise an exception.

THE SMALLTALK REPORT

Object Methods

exception: aSymbol

" Exception handling: first, a handler for the signaled exception is
searched. If no such handler exists, it will try to find a handler
Sor the exception #unhandledException. The method #error: will
be called if there is no reasonable way to handle the exception. "

| handlerToBeUsed |
CurrentHandler isNil
ifTrue: [self error; 'unhandled exception: ', aSymbol asString]
ifFalse: [(handlerToBeUsed := CurrentHandler
searchHandlerFor: aSymbol)
notNil
ifTrue; [“handlerToBeUsed from: self exception: aSymbol]
ifFalse:
[(handlerToBeUsed :=
CurrentHandler
searchHandlerFor: #unhandledException)
notHil
ifTrue:
[*handlerToBeUsed from: self
exception: #unhandledException]

ifFalse:
[CurrentHandler := nil.
self error:
‘unhandledException; ', aSymbol

asString]

1.
]

The class ExceptionManager is defined as a subclass of class
Dictionary. The inherited dictionary features are used to store
exception handlers for named exceptions. Additional instance
variables are used to store the catch-all handler, jump blocks,
and some state informations. The instance variables are used as
follows:

¢ cdr — a list of all previously created exception managers

¢ catchAllExceptions — a block that is used as a catch-all
handler

® reenterBlock — a block implementing a jump into method
fidoProtected:

¢ exceptionSignaled — a boolean value indicating whether
an exception was signaled

® exceptionName — name of the signaled exception of nil

¢ restartFlag — a boolean value indicating whether the ex-
ception handler requested the restart of the protected block

e restartBlock — a block implementing a jump into method
ftexecute:
® sender — a reference to the instance that raised the exception
The method execute: aBlock creates two additional seg-
ments. The first segment created is that of method doPro-

tected:. This segment is the reentry point for program continu-
ation after an exception is raised. Furthermore, this segment

provides a block for immediate retumn into method execute:,
where the restart facility is implemented. The second segment
created is method execStatement:. This method prepares a
block for immediate retum into the segment of method doPro-
tected: and then executes the protected statement.

Dictionary subclass: #ExceptionManager
instanceVariableNames: 'cdr

catchAllExceptions
reenterBlock
exceptionSignaled
exceptionName
restartFlag
restartBlock
sender '

classVariableNames: "

poolDictionaries: "

ExceptionManager Class Methods
accepts: aSymbol

" Ask whether the current handler administrater provides a specific
handler for the exception aSymbol or whether it is capable of
handling all exceptions. "

~ CurrentHandler isNil

ifTrue: [false]
ifFalse: [CurrentHandler accepts: aSymbol]

ExceptionManager Methods

accepts: aSymbol
" Ask whether this instance provides a specific handler for the
exception aSymbol or whether it is capable of handling all
exceptions. "

~ catchAllExceptions notNil
or: [self includesKey: aSymbol]

cdr
" List of previous exception managers."

Acdr

defaultHandler: aBlock
" Define a handling block that will handle all exceptions that
caninot be handled by specific handlers. "

catchAllExceptions := aBlock

doProtected: aBlock
" Provide the restartBlock and execute the protected block. "

| result |

restartBlock = ["self].
tesult := self execStatement: aBlock.
exceptionSignaled
ifTrue:
[CurrentHandler := cdr.
result :=
(self at: exceptionName

VoL. 1, No. 2: OCTOBER 1991

13.

B EXCEPTION HANDLING

ifAbsent: [catchAllExceptions])
value: sender
value: self.
Aresult]
ifFalse; [*result].

exception
" With this method, the handling block may ask for the name of

the exception that it should handle."
"exceptionName

exception: exception handler: aBlock
" Store a specific handle block - aBlock. The value of parameter
exception may be the name of an exception or a collection of
exception names. "

(exception isMemberOf: Symbol)
ifTrue: [self at: exception put: aBlock]
ifFalse;
[exception do: [:aSymbol | self at: aSymbol
put: aBlock]
]

execStatement: aBlock

reenterBlock := [* self].
~aBlock value

execute; aBlock
" Execute the statements of aBlock under the protection of this
handler and all handlers accessible via instance variable cd. "

| result |

cdr == CurrentHandler.

CurrentHandler := self.
[exceptionSignaled -= restartFlag:= false.
result := self doProtected: aBlock.

restartFlag]
whileTrue: [].

CurrentHandler := cdr.
Aresult

from: sendingInstance exception: aSymbol
" This method is send from Object>>exception. It handles a raised
exception. The exceptionName is stored and method
execStatement is left. The exception block itself will be called in
method doProtected. "

exceptionName := aSymbol.

exceptionSignaled = true.

sender := sendingInstance.

reenterBlock value. " return to method doProtected: "

restart

" Restart the ProtecedBlock. The restartFlag is set and the
restartBlock is evaluated. The CurrentHandler is reactivated. (It
was deactivated by method execHandlerFor:sender:.) The restart
itself occurs in method #execute. "

TestartFlag := true.
14.

CurrentHandler := self.
restartBlock value. " return to method execute: "

searchHandlerFor: aSymbol
" Search for a handle block that is capable of handling the
exception aSymbol. Search begins in this instance. It will be
continued in the instance referenced by cdr if the instance self
cannot provide an usable handler block. This method is called

from Object>>exception:. "

[ptr |

ptr :=self.
[(ptr accepts: aSymbol)
ifTrue: [*ptr]
ifFalse: [ptr := ptr cdr].
pir notNil
] whileTrue: [].

A nil " no handler "

This method can be made usable for processes. All that is
necessary is a globally declared dictionary, where suspended
processes can be stored together with their handler stacks. The
process switching has to be modified in the following way.

Process Instance Method

"This method is for Smalltalk/V 286 only."

resume

"Resume the receiver process. Store the handler list of the current
process "
SuspendedHandlers at: CurrentProcess

put: CurrentHandler.
CurrentHandler := SuspendedHandlers at: self

ifAbsent: [nil].

SuspendedHandlers removeKey: self

ifAbsent: [nil].
CurrentProcess := self.
self resume: 0

ProcessScheduler Instance Methods

"This method is for Smalltalk/V 286 only."

initialize
" Initialize the receiver by discarding all processes and then
creating a new user interface process modified to implement
exception handling. "

Process enableInterrupts: false.
readyProcesses == nil.
readyProcesses := Array new: self topPriority.
1 to: self topPriority do: [:index |
readyProcesses

at: index

put: OrderedCollection new].
CurrentProcess := Process new.

THE SMALLTALK REPORT

Take Control of Your Smalltalk/V "Applications

with AM/ST"

Bring your large, complex object-oriented applications under
control with AM/ST, the Application Manager for Smalltalk/V.
The AM/ST Application Browser helps both individuals and
development teams to create, integrate, maintain, document,

ji
ks,
o

Price List

. ADD"E.EIIIQ[I Hi§[§[§h¥
Every class has an owner.
Functional view across classes
and related methods within classes.
Applications port easily across platforms.

Automatic Documentation

Revision history for each method.
Analysis and design reports.
Customizable documentation templates.

Source Control

Integrate work of several users.

Save and browse multiple revisions easily. *
Check-in, check-out, and lock source code. **
Customize code templates.

Develop in a LAN environment.

Deliver applications without AM/ST.

Static Analysis Tools

Application consistency reports.

Graphical views of hierarchies.
Cross-reference of variable and method usage.

Site Licenses

SoftPert Systems Division
New Productivity Tools !

One Main Street

. C 5OS V - $150 Up-to-date method index.
DOS Vv/286 395 |e Dynamic Analysis Tools
I oo ers M h V/IM 2395 Locat rf hot spot
int ocate performance "hot spots."
C&L & Ly rand Og‘/:én\lc;;M % $475 Determﬁ\e test coverage. P

Call “‘With AM/ST, Smailtaik/V Is a leader in serlous multl-person development.”
David Ornsteln, InterSolv

Cambridge, MA 02142
(617) 621-3670
(617) 621-3671 Fax

Change Browser *
Source Control **

Windows 3.0 V/Windows $475
$195 . 3
$1595

“‘Gave me a real edge In Design and Analysis.’”

Hal Hildebrand, Anamet Labs
V is a regi of Digitalk, Inc.

AM/ST is a regisiered trademark of SoftPert Systems, Lid.

" beginning of insertion "
CurrentHandler := nil.
SuspendedHandlers := Dictionary new.
" end of insertion "

CurrentProcess makeUser]F.
Terminal initialize.

Process enableInterrupts: true.

Using this method of exception handling, one has to accept
one restriction: the exception handling mechanism cannot be

used with the restart facility of the debugger. &

REFERENCES
[1] The Programming Language, Ada ANSI/MIL-STD-1815A, 1983.
[2] CCITT. CHILL recommendation Z.200, May 1984.

[3] ParcPlace Systems. Objectworks for Smalltalk-80: Advanced User’s
Guide, ParcPlace Systems, Mountain View, CA, 1989, Chapter 3.

[4] Goldberg, A. and D. Robson. Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, Reading, MA, 1983.

Boris Gértner studied computer science, mathematics, and Bulgarian at
a university in Munich. He has studied numerical programming, lan-
guage implementation, and Al languages. Presently, he works on a de-
velopment project in the field of database access. Since 1989, Smalltalk
has become his favorite language. Boris can be reached at DATEX Al,
Sandstrasse 41, D-8000 Muenchen 2, Germany (phone: (+8) 72 31
312).

15.

VoL. 1, No. 2: OctoBer 1991

16.

Uls

Greg Hendley and Eric Smith

Giving application windows dialog box
functionality in Smalltalk/V PM, part li

ApplicationWindow, a subclass of ApplicationWindow,
with the essential behaviors unique to the class DialogBox.
We identified two behaviors, modality and ownership. We in-

vestigated the definition of modality, how it is implemented
in DialogBox, and how to implement it in DialogApplication-
Window, our own subclass of ApplicationWindow. In this is-
sue, we will investigate the concept of ownership and then tie
everything together.

|N THE LAST ISSUE, we began the process of creating Dialog-

OWNERSHIP

WHAT OWNERSHIP IS

Ownership is a window relationship supported by OS/2 Presen-
tation Manager (PM). The ownetship relationship is described
on page 62 of the Microsoft OS/2 Programmer's Reference, Vol.
2. For PM windows in general there are no predefined rules for
how the owner and owned windows are supposed to interact.
PM does, however, provide a set of ownership properties that
are specified for a frame window that is an owner of another
window. All Smalltalk/V PM application windows have a PM
frame window. The properties of frame window ownership are
the remaining behaviors of DialogBox that we will add to our
DialogApplicationWindow class. They are:

® The owned window always appears in front of the owner.
® The owned window closes when the owner closes.
¢ The owned window hides when the owner is minimized.

® The owned window shows when the owner is subsequently
restored.

¢ The owned window normally moves when the owner
moves. A constant relative position is mainrained between
the owned and owner windows.

¢ When either the owner or owned window is brought to
front, both come to front.

At first glance, this behavior looks much like the parent-
child window relationship. The difference is that child win-
dows are always clipped by their parent. Owned windows may
be completely separate, unless of course its owner also happens
to be its parent.

HOW DIALOGBOX DOES IT

DialogBox supports frame window ownership by having OS/2
do the work. Part of opening a dialog is specifying the dialog’s
owner. The method used for opening dialogs in Smalltalk/V
PM is the following:

fromModule: aModuleHandle id: anInteger
“Open the dialog box whose id is anInteger
contained in the module identified by aModuleHandle.”
owner isNil ifTrue: [
owner ;= Notifier activeMainWindow.
owner notNil ifTrue: [owner := owner frameWindow]].
owner isNil ifTrue: [owner := WindowHandle queryActive].
self handle: (WindowHandle fromBytes: (PMWindowLibrary
loadDlg: HwndDesktop
owner: owrer asParameter
digProc: PM dlgProc
hmod: aModuleHandle
idDlg: anInteger
createParams: nil)).
handle = NullHandle ifTrue: [self class tooManyWindows].
Notifier add: self.

The owner is set in two places: (1) in the first several lines
and (2) in the message owner:dlgProc:hmod:idDlg:create-
Params: sent to HwndDesktop. You may recognize the first
several lines as the same code we copied for use in the method
find AndSetOwner for DialogApplicationWindow. These
lines establish the owner in Smalltalk, but have nothing to do
with PM ownership. PM ownership is established in the
method sent to HwndDesktop. Here the PM owner is estab-
lished as part of the PM call that creates the PM dialog.

ADDING PM OWNERSHIP TO APPLICATIONWINDOWS
SETTING THE PM OWNER

The first step in adding PM ownership functionality to Appli-
cationWindows is setting the PM owner of an application
window. We can’t just copy this code from DialogBox, so we
need to do some searching. (The method in DialogBox that
sets the PM owner won’t work for application windows since
it also creates the PM dialog, not a frame window.)

Page 356 of the Microsoft OS/2 Programmer’s Reference,
Vol. 1 describes the PM function WinSetOwner, which tells
one PM window to own another. The Smalltalk/V PM class
PMWindowLibraryDLL provides the protocol for calling such
PM window dynamic link library functions. In it, we find the
method setOwner:owner:, which calls WinSetOwner.

THE SMALLTALK REPORT

Now we need a method in DialogApplicationWindow to
make the owner be the PM owner. Setting a window’s owner
in Smalltalk/V PM has no effect on who the window's PM
owner is. So, we need a method in the class DialogApplica-
tionWindow for setting a window’s PM owner to its Smalltalk
owner. Note the check for an application window owning it-
self. If the application window owns itself, there is no need to
set the PM owner. More importantly, the system will hang if
you set a window’s PM owner to itself,

makeQwnerPMOwner

“Set my owner to be my PM owner so

I can follow my owner around and stay above

it just like a dialog would.

Note: PM does not like my owning myself.

GLH 5 July 1991.”

(self handle parentHandle == self owner handle)

ifFalse: [PMWindowLibrary

setOwner: self handle parentHandle
owner: self owner handle].

THE OPENING METHODS

From the last issue, we have the method openModal. Now we
will add two more methods: openOwned and openAsDialog.
The first method is simply the code we used to test ownership:

openOwned
“Open with the application window that
opened me as my owner and PM owner.”
self
findAndSetOwner;
open;
makeOwnerPMOwner.

Test the method by opening a workspace; this will be the
application window for the dialog. From the workspace do:

DialogApplicationWindow new openOwned

Notice that the dialog remains above and follows the
workspace. Go ahead and try minimizing, restoring, and clos-
ing the workspace.

The second method opens the DialogApplicationWindow
as owned and modal to its owner:

openAsDialog

“Open like a normal dialog. Open modal to
the application window that opened me and
be modal to my owner. GLH 5 July 1991."
self

findAndSetOwner;

open;

makeOwnerPMOwner;

PprocessInput.

The message order mattess in these methods: find AndSet-
Owner must be sent before the message open. This is because
findAndSetOwner makes the currently active window the
owner. If the dialog has just opened, the dialog will be the

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management with update transaction
control directly in the Smalltalk language.

® Transparent access to Smalltalk objects on disk
® Transaction commit/rollback

® Access to individual elements of virtual
collections and dictionaries

® Multi-key and multi-value virtual dictionaries
with query by key range and set intersection

® Class restructure editor for renaming classes
and adding or removing instance variables
allows incremental application development

® Shared access to named virtual object spaces

® Source code supplied

[0 l C Available now for Smalltalk /V286 §149 + §15 shipping
g_ Please statedisk size required. Visa, MasterCard and EuroCard accepted.
K_R T S Logic Arts Ltd. 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: +44 223 212392 FAX: +44 223 245171

currently active window. So, sending the find AndSetOwner
after open would make the dialog be owned by itself instead of
by the window that opened it.

The message makeOwnerPMOwner needs to be sent some-
time after find AndSetOwner. Setting the PM owner to the
Smallealk owner makes sense only after the Smalltalk owner
has been set. The method makeOvwnerPMOwner also needs to
be sent after the message open. The method makeOwnerPM-
Owner relies on both the dialog and the owner window hav-
ing valid window handles. These are not valid until both the
owner window and the dialog are open.

The message processInput has to be sent last since it blocks
the method until the dialog is closed. An exception is when
you want the dialog to return a value when it closes, as
Prompter and MessageBox do.

AN EXAMPLE
The following is the code for a dialog built entirely within
Smalltalk/V PM. The dialog contains the same controls used
in a PM dialog. The dialog asks the user to choose between
three buttons. The dialog returns the label of the button. This
example shows ways to handle the problems in implementing
a dialog.

First, define the class MyTestDialog. Give it an instance
variable so it can remember the user selection for its answer:

VoL. 1, No. 2: OcToBeR 1991

17.

m GUIs

DialogApplicationWindow subclass: #MyTestDialog
instanceVariableNames: ‘answer *
classVariableNames:
poolDictionaries: ‘PMConstants *

The basic opening method is

openWithFirst: string1 second: string2 third: string3

“Open and ask the user to choose
between three labeled buttons.
Answer the user’s choice.”

self addSubpane: (Button new
contents: string1;
owner: self;
when: #clicked perform: #getAnswerFromButton:;
framingRatio: (0.1@0.1 comer: 0.3@0.4);
yourself).

self addSubpane: (Button new
contents: string2;
owner: self;
when: #clicked perform: #getAnswerFromButton:;
framingRatio: (0.4@0.1 corner: 0.6@0.4);
yourself).

self addSubpane: (Button new
contents: string3;
owner: self;
when: #clicked perform: #getAnswerFromButton:;
framingRatio: (0.7@0.1 corner: 0.9@0.4);
yourself).

self addSubpane: (StaticText centered
contents: ‘Pick a number’;
framingRatio:(0.1@0.5 comer: 0.9@0.9);
yourself).

self addSubpane: StaticBox new.

self openAsDialog.

~answer.

The method getAnswerFromButton: is referenced in open-
WithFirst:second:third:, so we define it here:

getAnswerFromButton: aButton
“The user has made a choice. Set the
answer based on the label of the button
and close.”
answer := aButton contents.
self close.

Now the class is ready to be tried out; try it out by “show-
ing:"
MyTestDialog new
«=y openWithFirst: ‘one’

second: ‘two’
third: ‘three’.

There are several methods you may want to add to make
instances of MyTestDialog look more like a normal dialog. To
give the dialog a dialog border and get rid of unnecessary clut-
ter, ovettide the method defaultFrameStyle to answer only

FcfDlgborder:

defaultFrameStyle
“Private - Answer the default PM frame style for the receiver.
~FcfDigborder

Override buildMenuBar to do nothing:
buildMenuBar
“Don’t build a menu bar for this dialog.”

Override initSize to answer the size and location you want
the dialog to open in:

initSize
“Private - Answer default initial window extent.”

You now know how to make
application windows modal to one

b

another.

~100@100 extent: 200@150!

You now have the basic functionality of dialog windows in
a subclass of ApplicationWindow. You know what modality
is. You now know how to make application windows modal to
one another. You also know what PM ownership means and
how to use it to make one window always appear above an-
other. With these tools, you can make floating tool pallets.
You can also group application windows so that, when you ac-
tivate any one window, all windows in the group come to
front. Most importantly, you can create custom dialogs with-
out going outside of Smalltalk/V PM. <=

Greg Hendley is a2 member of the technical staff at Knowledge Systems
Corporation. His OOP experience is in Smalltalk/V DOS, Smalltalk-
80 2.5, Objectworks\Smalltalk Release 4, and Smalltalk/V PM.

Eric Smith is a member of the technical staff at Knowledge Systemns
Corporation. His specialty is custom graphical user interfaces using
Smalltalk (various dialects) and C.

They may be contacted at Knowledge Systems Corporation, 114
MacKenan Drive, Cary, NC 27511, or by phone at (919) 481-4000.

THE SMALLTALK REPORT

OOK REVIEW

PRACTICAL SMALLTALK

by Dan Shafer and Dean A. Ritz
Springer-Verlag, New York, 1991

of Practical Smalltall by Shafer and Ritz. This book contains

useful technical informarion for novice Smalltalk/V 286 pro-
grammets. However, the practicality of the text is limited to
single programmer development of applications and compo-
nents within the V 286 environment. To more correctly reflect
the book’s contents, the title might have been something like
“Writing Components and Applications in Smalltalk/V 286" or
“How to Use the Model-Pane-Dispatcher Paradigm.” Bookstore
browsers might misinterpret the existing title and back cover
notes as addressing practical design issues for large-scale applica-
tions running on a variety of Smalltalk implementations.

The authors state that the purpose of the text is to instruct
the reader in using Smalltalk for real-world application devel-
opment. This is done by leading the reader through a series of
five small applications of increasing complexity, focusing on
those aspects of the system that are deemed to be the important
ones for application development.

The first two chapters of the book act as supplemental and
review material to the Digitalk Smalltalk/V manuals, The sup-
plemental material is of two types. The fitst type consists of
“tricks” to get around problems that new Smalltalk users might
have when interacting with the system. Most of the first chap-
ter is devoted to the use of the debugger. The second type of
supplemental material consists of class definitions that could be
used as the V 286 class comments. These definitions consist of
behavioral descriptions and indications of other classes that co-
operate with the defined class. Chapter 2 can also be used as a
secondary index for the text since each class description indi-
cates the chapter in which the class is used in one of the exam-
ple applications.

The next nine chapters serve to describe the five example
applications. Each subsequent pair of chapters consists of a
chapter that introduces the appropriate classes and methods to
design the application and then a chapter that desctibes the ap-
plication design in detail. The five applications consist of a
browser that prompts the user to prioritize text entries, a
counter widget, a multiselection list pane, a bar graph
editor/displayer, and a fill-in-the-blank form widget. Each appli-
cation highlights some aspect of Smallcalk/V 286. The first
three applications focus on the model-pane-dispatcher (MPD)
paradigm. The bar graph editor highlights the graphics capabili-
ties. The form widget highlights the use of the text manipula-
tion classes.

You CAN'T JUDGE A BOCK by its cover. This is certainly true

reviewed by Dan Lesage

The code presented in the book is well written, and the
text associated with the method selectors in the studied
classes does provide greater insight than the Digitalk com-
ments. The authors are careful to document the stumbling
blocks that they ran into when learning Smalltalk, allowing
readers to avoid some of the subtle pitfalls. The text is easy to
read and is written in a down-to-earth manner. The code for
the applications represents good Smalltalk style.

The text also contains a few shortcomings. The authors in-
dicate that the described techniques can easily be used in
Smalltalk dialects other than V 286. Unfortunately, V PM
and Objectworks \Smalltalk have different paradigms for
building applications. Much of the text is concemed with ex-
tending and overriding the appropriate methods pertaining to
MPD realization of an application. This is great for V 286 pro-
grammers; however, it is not clear exactly which of the de-
scribed techniques are portable to the other Smalltalk imple-
mentations.

Second, although I realize that it is very difficult to choose
simple examples to demonstrate the system components from
an application programmer’s point of view, only the first and
fourth application projects address issues that an application
programmer might consider. The other three “applications”
are really application components in the form of interaction
widgets. Application programming in any language consists of
coupling existing code while attempting to reuse as many ex-
isting components or functions as possible. The design of
reusable components is quite different; the priorities are differ-
ent. Typically, a component programmer is focused on the
creation of good reusable components, while the application
programmer is focused on solving the problem at hand given
the tools available. The examples in the text present an op-
portunity to highlight the distinction between these two disci-
plines.

A third concern is the notion that practical applications
are still created by a single programmer developing code in
isolation. The book does not address the problems associated
with sharing or distributing code. Once the sample applica-
tions are complete, how do I share them with my colleagues?

Practical Smalltalk could have increased its appeal to novice
programmers by providing references and a bibliography. For
example, Chapter 4 defines the term object responsibility. It

continued on page 23...

19.

VoL. I, No. 2: OcToBER 1991

20.

OFTWARE REVIEW

reviewed by Cahan O’'Ryan

Tigre: an interface builder for
Objectworks\Smalltalk

face-building kit (Tigre Interface Designer) bundled with a

petsistent object storage mechanism (Tigris Database) that
runs on top of ParcPlace’s Objectworks\ Smalltalk and, there-
fore, supports the “instant” portability of programs to a large
list of hardware platforms without any changes in code. The
purpose of this software system is to provide Objectworks\
Smalltalk developers with the capability to quickly create and
test the graphical user interface component of their Smalltalk
applications. The Tigris database is tightly integrated with
and inseparable from the interface designer since the interface
designer uses the database to store the screen descriptions.

The intended audience for this software product is devel-
opers who may or may not already be using Objectworks\
Smalltalk and are interested in speeding up their development
cycle by using a tool that allows them to quickly create their
interface screens visually. Developers, using the rich library of
icons and color pattemns that are provided in the Tigre system,
also gain the advantage of being able to easily create screens
that are visually stunning. Developers who are not currently
using Objectworks \ Smalltalk and have decided against it be-
cause of the lack of tools for visually building graphical inter-
faces should reconsider using Objectworks in conjunction
with the Tigre Programming Environment. This product also
allows novice Smalltalk programmers to create sophisticated
graphical user interfaces much more quickly than if they had
to learn all the ins and outs of the Smalltalk class library. Ti-
gre makes it easier to reuse the code of more advanced Small-
talk programmers who create the plug-and-play interface ele-
ments known as widgets.

An interesting aspect of the Tigre system is that all the
screens in the system used for the various utilities available
were built with the Tigre system itself, ptoviding a level of
uniformity throughout the system. This means that any screen
in the Tigre system can be easily modified or extended by the
customer in the same way that the customer's own screens can
be modified and extended.

The package comes with several utilities that help you or-
ganize and browse through your Tigre applications. There are
also several sample applications and a tutorial to help you get
up to speed in developing Smalltalk applications with Tigre.

-|-HE TIGRE PROGRAMMING ENVIRONMENT is a graphical inter-

TUTORIAL

The tutorial that comes with Tigre is an excellent example of
how easy it is to put together a simple and colorful graphical
interface. The tutorial, called Tidepool, is a browser for a
database of tidepool creatures. The database conrains a full-
color picture as well as a textual description for each creature.
The tutorial takes you step by step through creating your own
tidepool application. The complete application only requires
about fifteen minutes to create, although this does not count
the time it took to put together the Tigris database of graphics
and text.

The process starts by creating and opening a new screen us-
ing the Program Editor by selecting commands found in pop-
up menus. When a new screen is created, you will usually cre-
ate a new Smalltalk class to go with it, a subclass of
ScreenAgent. An instance of ScreenAgent acts as the inter-
face model for the Tigre screen, and all commands that take
place in the Tigre screen are dispatched through the Screen-
Agent. The user is prompted for the name of the ScreenAgent
subclass, and then a blank window opens. By using a pop-up
menu from this blank window, you put the screen in edit
mode, clearly indicated by a change in the window label. Once
you are in edit mode, you can then add widgets to the screen.

The Tidepool screen shown in Figure 1 contains a total of
five widgets: an image, a selection list, two text widgets, and a
button. Each widget is created via a pop-up menu command
and then positioned by dragging and resizing with the mouse.
Widgets are chosen from a list of types that are currently in the
system. If a standard widget does not fit your needs, a Smallcalk
developer can create custom widgets (see the discussion on
custom widgets below). The widget attributes are then edited
by opening a dialog, again from a pop-up menu command. The
attributes include any text that is displayed, the font and style
it should be displayed in, the foreground and background col-
ors or patterns, the border style (embossed, raised, two-dimen-
sional, or none), and/or the icon that is displayed.

More important are the method selectors assigned to a wid-
get that determine exactly how that widget will interact with
a ScreenAgent. For example, a selection list requires one se-
lector that will be used to get the list of items to display and
another selector that will be used to inform the ScreenAgent
of a selection change caused by the user. It is up to the devel-
oper, then, to implement the Smalltalk methods that get in-
volked by these selectors. There are a handful of methods in-

THE SMALLTALK REPORT

Figure 1. Tidepool.

herited from ScreenAgent that can be used without writing
any additional Smalltalk code. For example, the method ac-
cept will close the window. Because the widgets interact with
the ScreenAgent through method selectors rather than de-
ferred evaluation code blocks, the widgets are better able to be
reused later for other ScreenAgents that undetstand the same
selectors.

Very conveniently, there is a pop-up menu item in all Tigre
screens that allows you to open a code browser on the
ScreenAgent for the window. This allows you to go back and
forth quickly between working graphically with the screen and
editing Smalltalk code, giving the developer a very tight devel-
opment cycle. There is also a pop-up menu command that
opens an inspector on the ScreenAgent or on any widget in
the screen, providing quick access to debugging information.

Once the widgets are in place and their attributes set, it is
a simple matter of changing the screen into user mode
through another pop-up menu command to test the screen.

TIGRE LAUNCHER

The Tigre Launcher is a screen containing icons linked to the
standard utilities that come with the package. There are also
icons linked to the sample applications provided and space to
add your own icons for other applications. Figure 2 shows the

Figure 2. Tigre Launcher.

Tigre Launcher with some of the icons added that are in-
cluded with the system.

PROGRAM EDITOR

The Program Editor is a launcher and browser for all the Tigre
screens that exist in the system, organized by application and
displayed in list format. The Program Editor is the tool used
for creating, opening, and editing Tigre screens.

PALETTE

The Tigre system comes with a sample palette, shown in Figure
3, that has many sample widgets of various types. The stan-
dard widgets that come with Tigre include buttons, calendars
(for viewing and setting dates), checkboxes, group boxes,
lines, images, labels, pop-up lists, selection lists, switches, and
text. Widgets can be “cloned” from this palette and placed
into another screen. This supports easy reuse of widgets, and
the developer can easily create his or her own palettes of of-
ten-used widgets. When copying a widget from one screen to
another, the destination ScreenAgent may or may not under-
stand the same method selectors that the original widget used.
If it does, then the clones can be used instantly without any
new code being written. If not, then the methods for the se-
lectors must be implemented in the destination ScreenAgent.

TIGRIS DATABASE .

The Tigris database system is a persistent object storage sys-
tem for Objectworks \Smalltalk that is an enhancement of bi-
nary object streaming service (BOSS) technology provided by
ParcPlace in their Objectkit for Smalltalk. The difference be-
tween standard BOSS and Tigris is that Tigtis stores the ob-
jects by keys, allowing objects in a data file to be accessed like
a Smalltalk dictionary using messages such as at:, at:put:, and
removeKey:. This is much more convenient than a standard
BOSS file, which stores the objects linearly. Tigris also in-
cludes a simple file-locking system that makes Tigris multiuser
compatible with the help of networking systems such as NFS
or AppleShare. The result is not a full-fledged object database
management system (ODBMS) since the Tigris multiuser sys-

Figure 3. Tigre widget palette.

VoL. 1, No. 2: OcToBER 1991

21.

22.

B SOFTWARE REVIEW

tem does not include the ability to send messages directly to
persistent objects stored on a server. The objects must first be
loaded into the Smalltalk system before a message can be sent
to them. Tigre does have plans to release a Tigris server in the
future.

A fundamental difference between the Tigre Programming
Environment and other interface designers is that Tigre is not
a code generator. The screens that Tigre creates are not trans-
lated into Smalltalk code that is later compiled and executed
to open the screens. Rather, the screen descriptions are stored
as binary objects in Tigris datrabases. This approach implies
that the screens do not have to be algorithmically generated
every time they are opened — they are simply loaded from the
datahase. The quantity of source code in the final application
is thereby drastically reduced, making the final application
simpler to maintain. This design is similar to the way tradi-
tional Macintosh applications are built. On the Macintosh,
the screen descriptions are stored in resources that are created
graphically with a resource editing tool, and the resource
managet is invoked to load the data at runtime. Tigre works
in a very similar way, with the Tigris database system playing
the role of the resource manager.

The Tigris database, however, has much more general use
than the Macintosh resource manager. Tigris allows the stor-
age of arbitrary objects keyed by strings. It also supports the
storage of data in frame format, with multiple levels of keys.
The first level is the primary key, one per frame. Each frame
can have multiple slots, each keyed by a unique string. Each
slot can be further keyed by multiple facets. A facet is one of
potentially multiple values of a single slot. This framework al-
lows the Tigris database a great deal of flexibility. One use of
frames is to simulate a relational database, if desired.

Tigre also includes a frame browser and a frame mover.
The Frame Browser allows the user to browse through the ob-
jects in Tigris databases. The Tigris Mover allows the user to
move objects from one Tigris database to another. This tool
can be used to share Tigre screens between applications and
developets.

TIGRE AND MVC
The Tigre ScreenAgent is similar to a Smalltalk model in the
model-view-controller (MVC) paradigm, except that a
ScreenAgent has direct access to the user interface. In a typi-
cal Smalltalk application, one or more pure (noninterface)
Smalltalk models could be connected to a Tigre screen by us-
ing the ScreenAgent as an access path between the models
and the screen that interacts with the user. The ScreenAgent
serves as a bottleneck for all message sending to and from a
Tigre screen. This helps in the maintenance and analysis of
the application code since there is only one place to look to
find the code that gets executed when users interact with a
screen.

The Tigre widgets, on the other hand, correspond to MVC
view-controller pairs. The widget encapsulates both a view

and a controller — the widget both displays itself to the user
and interacts with the user through an input device.

SOFTWARE REUSABILITY

Tigre makes simple interfaces extremely easy to generate
through the use and reuse of the standard widgets, which are
easily cloned and adapted for applications that differ widely.
Tigre also promotes reusability of new code that must written
by allowing new interface devices to be implemented as cus-
tom widgets that can be used in a plug-and-play fashion. This
will allow other users to easily take advantage of the effort of
others in the area of user interface development.

CUSTOM WIDGETS

Since any set of standard widgets will never be able to handle
all the needs for all projects, no interface designer would be
complete without support for allowing developers to create
their own custom widgets. The implementation of a Tigre wid-
get is based closely enough on Smalltall’s MVC paradigm that
existing Smalltalk interface code can be used as a foundation
for a custom Tigre widget. Some additional code and modifica-
tions, however, will be required to fit the classes into the Tigre
framework. An experienced Smalltalk programmer should
have no trouble creating custom widgets and, by doing so, will
make his or her interface elements much easier for others, pet-
haps less experienced Smalltalk programmers, to reuse.

OTHER FEATURES

Tigre also supports modal and child screens. A modal screen is
one that takes control until the user accepts or cancels the
screen. A child screen is one that is opened by the parent
screen. If the parent screen is closed while the child screen is
still open, then the child will be closed automatically.

Tigre also has support for a number of utility dialogs that
are quite useful, including a File Chooser, a File Saver, various
notifiers, a selector dialog, a prompter, and a confirmer. Some
of these dialogs already have similar implementations in the
standard Smalltalk system, but Tigre either extends their
functionality or makes them easier to use. The File Saver and
File Chooser, however, are not provided by Smalltalk and pro-
vide a user-friendly way of choosing and saving files in the un-
derlying file system. These dialogs were much needed and are
much appreciated.

SHORTCOMINGS
One disappointment in the Tigre system is that the ability to
align widgets with one another on the screen is fairly cumber-
some. Tigre provides pop-up menu commands for aligning one
widget with another, matching two widget's edges, heights,
and/or widths. There is no support for centering or aligning
the centers of two widgets, aligning several widgets at once, or
moving widgets in groups.

An issue addressed by other interface-building tools is how
the widgets are affected when the window that contains them

THE SMALLTALK REPORT

is resized. Currently, Tigre widgets will always resize and posi-
tion themselves proportional to the amount the window is re-
sized. What is needed is the ability to specify whether the wid-
get should resize with the window, have a fixed size and
position, or some combination of the two. Tigre plans to in-
corporate more flexibility in this area in a future release.

Another potential problem for some developers is that not
all the source code is provided with the software automatically
— only most of it. There are five core classes in the system
that the source code is not provided for unless a special source
code license agreement is signed. The Tigre system can be
used with the standard widgets provided without the source
code license, but custom widgets cannot be created without it.
This is only a minor inconvenience if you are willing to sign
the extra license agreement.

PERFORMANCE

I have found the performance of the Tigre system to be quite
good, provided I give it enough memory to work with. Eight
megabytes of RAM are recommended for the system. One
time [tried running a Smalltalk image with Tigre installed in
“only” a 6,000-K memory partition on a Macintosh, and the
system performed rather poorly. By increasing the partition
size to 6,500 K, however, the speed-up was dramatic and the
system performed reasonably well. One reason for the large
memory requirement is the large number of 8-bit deep color
images that are loaded into memory at one time.

RUNTIME LICENSE

A runtime license for the Tigre system requires that the loca-
tion and size of widgets in a Tigre screen not be modifiable by
the end user. The cost of such a license is negotiable with Tigre.

CONCLUSION)

In my opinion, the Tigre Programming Environment is the
one thing that Objectworks \Smalltalk most needed to com-
pete with other interface development tools that are now on
the market such as Smalltalk/V in conjunction with Acu-
men's WindowBuilder/V, Apple’s MacApp with ViewEdit, or
Neuron Data's Open Interface with OpenEdit. The capability
of visually creating a graphical interface was an obvious miss-
ing feature in Objectworks until now. Objectworks\Smalltalk
in conjunction with Tigre is easily the most interactive, rich-
est, and portable development environment cutrently avail-
able that I’ve encountered. %

PRODUCT INFORMATION

TIGRE PROGRAMMING ENVIRONMENT

RETAIL PrICE: $2,900

SYSTEM REQUIREMENTS: OBJECTWORKS \ SMALLTALK RELEASE 4.0,
ANY PLATFORM THAT OBJECTWORKS RUNS ON, LE., MACINTOSH,
MS/WiNpows, AND UNIX wiTH THE X WINDOW SYSTEM

8 Ms RAM

TiGRE OBJECT SYSTEMS

3004 MissION ST.

SANTA Cruz, CA 95060

(408) 427-4900
TIGRE!'SUPPORT@UCSCC,UCSC.EDU

Cahan O'Ryan is the author of Arbor's two Object Bridge products.
He's dlso a part-time graduate student at the University of Michigan,
where he's working on projects involving GemStone. Cahan is a senior
software engineer at Arbor Intelligent Systems, Inc. He can be reached
there at 506 North State St., Ann Arbor, MI 48104, (313) 996-
4238, or at oryan@eecs. umich.edu.

continued from page 19...

would have been natural for the authors to reference Designing
Object-Oriented Software! by Witfs-Brock and Wilkerson at
this point to ease the reader into the realm of object-oriented
design methods. Many of the problems with newcomers to
Smalltalk (and OOP in general) consist of where to obtain re-
liable technical information. The book exemplifies techniques
for good coding style issues in several places. Unfortunately,
these are located in various parts in the text, rather than being
consolidated for easy reference. The text also lacks a summary
section in the last chapter.

Despite some of the above shortcomings, | recommend the
book as an application sampler for novice Smalltalk/V 286
users who wish to become familiar with MPD. Since there
now exist several paradigms for application development
within various Smalltalk implementations, novice program-
mers should first understand one and then tackle the others.
Although MPD is not the most elegant of these paradigms, it
is the most natural for programmers who are already familiar

with the basics of Smalltalk/V 286. In this regard, Practical
Smalltalk can be used as the first step for leading new Small-
talk programmers into the realm of “real-world” application
development. %

REFERENCE

[1] Witfs-Brock, B. and B. Wilkerson. Designing Object-Oriented Soft-
ware, Prentice Hall, Englewood Cliffs, NJ, 1990.

Dan Lesage has been involved with object-oriented programming since
1986 and Smalltalk since 1988. Currently, he is the Project Manager,
Twrnkey Systems at Object Technology Intemational in Ottawa,
Canada. His current interests include distributed computing, data com-
munications, and object-oriented analysis/design. He can be reached at
Object Technology International, (613) 228-3535, or dan@oti.on.ca.

VoL. 1, No. 2: OCTOBER 1991

24.

WHAT THEY'RE SAYING

ABOUT SMALLTALK

Excerpts from industry publications

... We hope that in 2001, objects will be boring. In comparison,
radical ideas of past decades — that system software should be
written in higher-level languages or in languages with strong
type systems, and that computers can and should be seam-
lessly networked — are thoroughly accepted today. Whether
to implement them is almost never an issue now, even though
there is still plenty of discussion about how to implement them
well. In the same vein, we expect that 10 years from now, the
object-oriented approach to software design and implementa-
tion will be an accepted, standard technique used in every lan-
guage, library, database system, and operating system and will
be taught in undergraduate computer science courses at every
university. This is an issue of moving the technology further out
into the world, and no major new thinking will be needed to ac-
complish it. One significant technological advance will be that
we will free ourselves even further from equating objects with
the nouns in the problem domain. Some of the most remark-
able advances in the usability of computer systems have come
from recognizing that processes, as well as things, can and
should be described, modeled, and manipulated. Therefore,
we will see software objects being used to model time, places,
actions, and events. We believe that this will lead to usability
advances almost as dramatic as those resulting from the now-
established window/icon/mouse/pull-down interfaces that were
to a large extent inspired by the original Smalltalk work of the
1970s and 1980s.

Smalltalk: Yesterday, Today, and Tomorrow,
L Peter Deutsch and Adele Goldberg, BYTE, 8/91

... "Smalltalk lets me concentrate on solving higher-level
problems; | don't have to fight the language,” [Abdul Nabi of
Knowledge Systems Corp.] says. "At the end of the day I've
made progress toward building the client’s application instead
of just tracking down pointer errors.” As a result, Nabi says,
he’s more productive than other consultants. “l can charge two
to three times what other consultants charge ... because on an
average day I'm five times more productive”...

... The availability of Smalltalk implementations on a variety
of platforms is a key benefit for clients, Nabi says: “Cross-plat-
form development has become a big issue for our clients. They
give developers high-power workstations, but the applications
they write have to run on inexpensive PCs. Because Smalltalk is
highly portable — much more portable than C — this arrange-
ment is feasible.” More portable that C? Sure. Any nontrivial C
applicationis based on assumptions about the environment
where the code will run. Memory addresses, device naming
conventions, and other details vary from platform to platform.
At the very least, C applications must be recompiled when
ported from one platform to another. In Smalltalk, hardware
and operating-system dependencies are dealt with by the run-
time system. Platform dependencies are encapsulated, hidden
from programmers and applications. Programs run in a “virtual
Smalltalk machine,” and can therefaore be ported from one op-
erating system to another without recompilation ...

... There's a downside, too: Customers can be so pleased
with working prototypes that they're sometimes reluctant to
pay for further development. “Software isn't automatically

good just because it’s written in Smalltalk,” Nabi admits.
“Thrown-together prototypes often contain really terrible
code, tossed in for demonstration purposes. It’s important to
write the production version of the software using stricter
rules”...

A Compelitive Edge, J.D. Hildebrand, UNIX Review, 7/91

... Most of the C developers we've talked to ... admit they're
looking at both C++ and Smalltalk, but are waiting for more
standardization of object classes. Some shops, because of ex-
isting code and skill sets, find it advantageous to use precom-
pilers for COBOL, Pascal, and Fortran ...
Front-end Application Development Tools Come of Age,
Karen Watterson, Data Based Advisor, 8/91

... Arguably, the first major OOP language was Smalltalk, in-
vented by Xerox at their Palo Alto Research Center (PARC) dur-
ing the development of the workstation Dynabook, technology
later drawn on by Steve Jobs for the Lisa and Macintosh. Based
on the language Flex, it is similar in appearance to C and Pas-
cal, but was created fresh by PARC. In it, everything is an ob-
ject, unlike virtually all other OOP languages ...

Notes from Swan Lake: Software That Uses Object-Oriented

Programming, Jason Goertz, The HP Chronicle, 8/91

..- A handful of companies are now selling object-oriented lan-
guages that include much of the technology pioneered by the
Smalltalk language originally developed at Xerox Corp.’s Palo
Alto Research Center. Updated or written specifically for Win-
dows, these languages are considered by some as the forerun-
ners of tools to come for graphical user interface environments,
For now, most of these tools present developers with a rela-
tively steep learning curve, often requiring retraining and sew
eral months’ work beforedevelopers can become productive ...
Choosing the Right Windows Toal,
Paul Pinella, Datamation, 8/1/91

... In many respects, Smalltalk is almost the opposite of C++: It
is a pure OO environment. Even performing arithmetic is the
manipulation of objects ... Smalltalk in its purest form is a self-
contained environment, where the environment itself is con-
structed from objects that can be modified. In fact, Smalltalk be-
longs to a class of products known as OOPS (Object Oriented
Programming Systems), along with others such as Actor ...
Mission Critical View: Object Orientation,
Martin Butler and Robin’ Bloor, DBMS, 7/91

... The Tigre Interface Designer is a valuable extension to
Smalltalk in and of itself. When combined with the second com-
ponent, Tigris, the Tigre Programming Environment empowers
the developer with the capabilities to create multi-user object-
oriented database applications. Tigris implements a shared,
distributed, persistent object store ... The Tigre Interface De-
signer provides a convenient means of defining connections
between interface elements and Tigris persistent database ele-
ments. In brief, the Tigre Programming environment blows the

THE SMALLTALK REPORT

doors off the Hypercard/Oracle combo for multi-user database
application development ...
Object-Oriented Programming: OOPSLA/ECOOP Reflections and
New Products, Jim Salmons and Tim Lynn Babitsky,
MacTech Journal, Spring 1991

... The Look and Feel Kit, with its so called wires, externalizes
language-level objects. By grabbing a component, you immedi-
ately see its graphical elements. You also “see” its message ca-
pabilities — what are usually the conceptual, nongraphical as-
pects of an object. In a programming world where code is
invoked through the passing of messages, the wires provide a
literal, visual representation of the OOP procedural model. By
drawing connections, you can create complex applications with
a minimum of coding ... After the current Windows release of
the Look and Feel Kit, Digitalk plans to ship an OS/2 version in
October or November. This powerful, interesting development
tool should add momentum to the OOP movement. And it may
win some converts to the Smalltalk cause.

OOP Made Visual: Digitak’s Look and Feel Kit,

Ellen Ullman, BYTE, 8/91

... Both Windows versions of Smalltalk maintain a text log of
changes to the Smalltalk "image” (i.e., the Smalltalk gestalt of
any moment). You can view the Smalltalk/V version of the log
with the File utilities. With Objectworks/Smalltalk, you can view
the change log as an object with a hierarchy that has separate
instances for changes to classes, to methods, and to the sys-
tem. Both products provide a method for applying the changes
of one project to another, a necessary operation if the system is
to follow the objective of reusability. Both products also have
an excellent debugger, as well as tools for file management,
view management, and text management. As with all things,
their styles differ: Objectworks maintains its own style, and Dig-
italk adopts the style of Windows.

Smalltalk About Windows, Ben Smith, BYTE, 8/91

Servio Corp., developer of the GemStone object database system,
has just announced object database access for Macintosh C appli-
cations with support of Symantec Corp_'s THINK C software devel-
opment environment. Servio says new and existing Mac client ap-
plications written in Symantec’s THINK C can now access objects
stored in the GemStone object server. Think C is Symantec’s C pro-
gramming language for the Mac, implemented with object-ori-
ented extensions. GemStone is a client/server object database
management system with interfaces to support Smalltalk, C and
C++ applications. Access to GemStone objects facilitates the de-
velopment of more advanced applications, including multimedia,
complex modeling, and arrays ...

Software Industry Report, 6/17/91

Sybase Inc. is moving on several fronts to strengthen its technology
base as the company continues a two-year metamorphosis from
database vendor to broad-based tools and services provider. The
company has been workng with a London-based tools vendor to
improve support for graphical environments from within Sybase’s
APT Workbench development software, a key feature demanded
by the user community. Also, Sybase is locking into supporting the
Smalltalk object-oriented language as part of a forth-coming repos-
itory-based development environment, code-named Comet ... The
moves, which follow the acquisition this spring of computer-aided
software engineering tools developer Deft Inc., come as Sybase is
preparing for an initial public offering to begin as early as August,
according to sources in the financial community ...

Sybase Adds Database Tools, Joshua Greenbaum,

Computer Systems News, 6/17/91

P

“announcing...

CodelMAGER"
for VPM & VWindows

The premier Smalttalk/V
application manager is now available
for Windows and Presentation Manager.

File_Edit_Applications Im

Goodles
Imager <TmePln Flle Edil Smalltalk Classes Varlables Methods
(PMGlug 8 @ 1nc1.PNNTARREN

e Put related classes and methods
into a single task-orlented object ,
called an application. -

» Browse what the application sees
yet easily move code between it
and the external environment.

e Automatically document code via
modifiable, executable, templates.

¢ Keep a history of previous versions;
restore them with a few keystrokes. d

Add| o View class hierarchy as graph or list.

e Print an application in a formatted
repont, paginated and commented.

e Flle code into applications and

| merge applications together.

M] . lications are unaffected by
clas change log compression.
and many other features |

* Smoltdi/V & CodeIMAGER are reg. marka of Digital, Inc & Zuniq Data Corp

Send me [copies of CodeIMAGER™
form V286 m VMac m VPM m VWindows.
CodoIMAGER V286, VMac §129.95. VPM, VWIndows $229.95.

Shipping & handling:] $13 mall,[C] $20 UPS per copy. 48 hr
order turnaround. Fax or phone for qulckest handling.

STATE TP7PORT
() C)
TELEPHONE Fau
Ochg OvisA [JAmEx [IMasterCard
Diskette: (132 (J5Va #

pummgy ExplryDate: __/___/__

(=8
1 GRARH

SixGraph Compullnx Lud.
Formely ZUNIQ DATA Corp.
2035 Céte de Liesse, suite 201
Montreal, Que., Canada H4N 2M5
Tel: (514) 332-1331 Fax: (514) 956-1032

VoL. 1, No. 2: OcToser 1991

25.

26.

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors
interested in being included in this fearre should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario KIS 2H4, Canada.

Servio announces the first commercially available
Kaniji object database

Servio Corporation has announced the shipment of a Kanji
object database management system (ODBMS). Servio’s
GemStone now supports manipulation of extended UNIX
code (EUC) standard Japanese character strings. Kanji sup-
port is immediately available in Japan and will be made
available worldwide this fall. The initial Kanji release sup-
ports the Japanese Industrial Standards (JIS) character set,
using the EUC representation. GemStone's Kanji capabili-
ties provide support for storage, retrieval, indexing, con-
catenation, and all other functions normally associated with
ASCIl string manipulation. By supporting full indexing of
Kanji character strings, GemStone assures high perfor-
mance for applications handling complex multimedia data
including Kanji text. In addition to Kanji capabilities, Servio
will Japanize GemStone documentation, the developer in-
terface, and other product features.

For more information, contact Servio Corporation, 1420
Harbor Bay Pkwy, Alameda, CA 94501, (415) 748-6200, or
fax (415) 748-6227.

Digitalk named member of the IBM International
Alliance for AD/Cycle

IBM announced that Digitalk, Inc., has become a member
of the IBM International Alliance for AD/Cycle. The move
underscored IBM's commitment to Smalltalk/V with AD/Cy-
cle and is seen as providing key tools for delivering Com-
mon User Access (CUA '91) compliant applications within
AD/Cycle. The Smalltalk/V products are used to comple-
ment host applications by producing System Application
Architecture (SAA) and CUA compliant graphical interfaces
for cooperative applications.

For more information, contact Digitalk, Inc., 9841 Airport
Blvd., Los Angeles, CA 90045, (213) 645-1082, or fax (213)
645-1306.

Digitalk announces Smalltalk/V PM release 1.3 and
the Database Interface for Smalltalk/V PM

Digitalk’s Smalltalk/V PM release 1.3 fully supports the new
Common User Access architecture, known as CUA ‘91,
which includes the new advanced controls IBM intends to
ship with 0S/2 2.0. The Database Interface provides simpli-
fied access to IBM's OS5/2 Extended Edition Database Man-
ager and the Microsoft SQL Server.

For more information, contact Digitalk, Inc., 9841 Airport
Blvd., Los Angeles, CA 90045, {213) 645-1082, or fax (213)
645-1306.

Digitalk and IBM sign letter of intent to market
Smalltalk/V products worldwide

IBM and Digitalk have worked closely together to focus
Digitalk’s enhancement of Smalltalk/’V PM. Once the pro-
posed marketing agreement is signed, Digitalk products
will reach a broader audience of corporate developers who
need high-leverage tools to develop applications under
05/2 and Windows. Under the proposed agreement, IBM
can market Smalltalk/V PM, Smalltalk/V Windows,
Smalltalk/V DOS, and Smalltalk/V 286.

For more information, contact Digitalk, Inc., 841 Airport
Blvd., Los Angeles, CA 90045, (213) 645-1082, or fax (213)
645-1306

ParcPlace Systems’ Objectworks\Smalltalk will sup-
port Information Builders’ new Enterprise Data Ac-
cess/SQL product family

ParcPlace Systems announced that it will support informa-
tion Builders' (IBl) Enterprise Data Access/SQL product fam-
ily. EDA/SQL provides direct access to information in corpo-
rate databases, including IBM's DB2 and IMS, Sybase,
Oracle, Informix, and IBI.

ParcPlace Systems intends to extend its suite of Object-
works\Smalltalk Portable Objects (object-oriented class li-
braries) to provide a common interface for applications that
use IBI's EDA/SQL product. By using IBI's EDA/SQL product
to support the common interface, Smalltalk developers will
gain easy access to numerous corporate databases from
within the Smalltalk environment. In addition, ParcPlace is
working with its partners in the Smalltalk community to pro-
vide support for additional products and tools using this in-
terface.

ParcPlace also announced that they have signed a strategic
marketing partner agreement with IBl. ParcPlace will use
EDA/SQL as its primary database connectivity solution,
while IBI has agreed to support Objectworks\Smalltalk in its
‘marketing efforts.

For more information, contact ParcPlace Systems, 1550 Ply-
mouth St., Mountain View, CA 94043, (415) 691-6700, or
fax (415) 691-6715.

THE SMALLTALK REPORT

SHOOT-OUT

wCE

WINDOWS AND 08/2
PROTOTYPE T0 DELIVERY.
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V] you don't.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test themn, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, youlll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just

$499.95.

So take a look at
Smalltalk/V today. It's time to make

that prototyping time productive.

Smalltalk/'V

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are tradernarks or registered
trademarks of their respective holders.
Digitalk, Inc_, 9841 Airport Blvd., Los Angeles, CA 90045
(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO'S TALKING

HEWLETT-PACKARD
HP bas developed a network trouble-
shooting tool called the Network Advisor.
The Network Advisor offers a compreben-
sive set of tools including an expert system,
statistics, and protocol decodes to speed
problem isolation. The NA user interface is

)

built on a wind

simullaneously.

ing system

maultiple applications to be executed

allows

NCR
NCR bhas an integrated test program develop-
ment environment for digital, analog and
mixed mode printed circuit board testing.

MIDLAND BANK
Midland Bank built a Windowed Technical
Trading Environment for currency, futures
and stock traders using Smalltalk V.

KEY FEATURES

B World’s leading, award-winning object-
oriented programming system

Wl Complete prototype-to-delivery system

M Zero-cost runtime

M Simplified application delivery for
creating standalone executable ((EXE)
applications

B Code portability between Smalltalk/V
Windows and Smalltalk/V PM

B Wrappers for all Windows and QS/2
controls

I Support for new CUA "91 controls for
~08/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

B Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

M Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

B Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This Smallralk/V Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications—and they're portable to
Smalltalk/V Windows.

Putting Smalitalk To Work!

1980 Smalltalk Leaves The Lab. We were there.

1984 First Commercial Version Of Smalltalk. We were there.
1985 First Industrial Quality Smalitalk Training Course. We were there.
1987 First Fully Integrated Color Smalltalk System. We were there.
1988 Responsibility-Driven Design Approach Developed. We were there.
1991 Smalitalk Mainstreamed in Fortune 100 Applications. WE ARE THERE.

Smalitalk Technology Adoption Services

Technology Fit Assessment

Expert Technical Consulting
Object-Oriented System Design/Review
Proof-of-Concept Prototypes

Custom Engineering Services & Support

Smalitalk Training & Team Building

Smalltalk Programming Classes:
Objectworks Smalitalk Release 4
Smalltalk V/Windows V/PM V/Mac
Building Applications Using Smalitalk

Object-Oriented Design Classes:
Designing Object-Oriented Software: An Introduction

Designing Object-Oriented Systems Using Smalitalk

Mentoring:
Project-focused team and individual learning experiences.

Smalltalk Development Tools

Application Organizer Plus™ Code Modularity & Version Management Tools

See our new Multi-User/Shared Repository Team Tools At OOPSLA 91!

Smalitalk! Nobody Does It Better.

Instantiations, INc.
1.800.888.6892

	By Article Title
	A Matter of Style
	Exception handling in Smalltalk
	Giving application windows dialog box funtionality in Smalltalk/V PM
	How should teams organize their applications?
	Pratical Smalltalk
	Tigre: an interface builder for Objectworks\Smalltalk

	By Author Name
	Ewing, Juanita
	Gartner, Boris
	Hendley, Greg
	Klimas, Ed
	Lesage, Dan
	O'Ryan, Cohan
	Skublics, Suzanne
	Smith, Eric

	By Topic
	Book Review
	Getting Real
	GUIs
	Software Review

