
The International Newsletter for Smalltalk Programmers

October 1991 Volume 1 Number 2
A

OF

STYLE

By Ed Kiimas t? Suzanne Skuldics
I

9

6

16

19

Contents

FesiturdArUclee

Arnatterofsdye
by EdKKrnosoritiSuzonneSkubUa

~~@on hadhg In SmaUtslk
by Ekui5G&tner

Columns

GettingRed Howshouldtearns or@ze
their applicatbnd
byjmnita Ewing

GUS Gii SpplkationWhldows
dlslogbox fusscdondii in SrnaMr# PM

%’@S-dti*

hpartmnts

BookRe*hctidsmtrlkdk
reviewedbymsrllcsage

?0 So&ore ReWewTire an Inrerhce

builder for Ob@world%dtslk

rwiewed byG7honO!Ryan
t!uiil
ONSISTENCY? WHY BOTHER?

In an era where the software industry is concerned with reliability, standard

interfaces, duplication of effort, maintenance cost, feature creep and in-

creasingly shorter market windows, code reuse is proving to he a solution.

Smalltalk is a language that promotes code reuse. The industry is recognizing Smalltalk’s

potential for reducing development costs, improving reliability, improving productivity,

and improving a company’s software competitive edge.

Code reuse does not come automatically by simply using Smalltalk. Just because code
can be used does not mean it can be reused. Applying a clear and consistent programming

style will help make code easier to read, maintain, and subsequently reuse. Strictly follow-
ing a ser of style rules is not necessa~; however, a set of simple and consistent style @de-

lines should help a programmer design reusable code. A guideline is simply a recommended

practice. A set of style guidelines is important: experience shows that without a sound and

consistent coding style, dirty code gets dirtier!

In this article, we present a sample set of guidelines to help make object-oriented

source code easier to read, maintain, and reuse. The guidelines are based upon existing

good sofrware engineering practices that are used by developers of commercial software. In

many object-oriented programming language reviews, Smalltalk is used as the basis of

comparison because of its relatively complete set of features; it is a good language m use to

discuss object-oriented programming concepts. We use Smalltalk terminology and exam-
ples to present our guidelines; however, the principles of style apply to all object-oriented

languages.

REAL PROGRAMMERS CAN WRITE FORTRAN IN ANY LANGLIAGE

Many procedural programmers new to Srnalltalk tend to program with the style of their

mother tongue programming language. This usually leads to convoluted code that does not
take advantage of the features of Smalltalk that make it suitable for rapidly building high-

quality systems. Unfortunately, a set of guidelines to follow when programming in

Smalltalk has yet to be presented. We attempt to fill that void with our “Smalltalk with

Style” column. In this, our first column, we address source code presentation from is

Smalltalk perspective. Future columns will covet naming conventions, standard protocols,

frameworks, good object-oriented Smalltalk programs, quality assurance and testability,

and software metrics.

GU I13ELINES FOR EVERYONE!

The guidelines are intended for people involved in the development of software systems

written in an object-oriented language such as Smalltalk. Readers with different levels of

Smalltalk experience and different roles in a software project will use the guidelines in dif-

ferent ways. We do not necessarily recommend that you follow the guidelines strictly but,

rather, that you adapt them to suit your particular project or organization. The most im-

portant idea to keep in mind is consistency.
cmtimted on fmgc 4.. ,

2.

Mm Pugh andPaulwhite
CadetOnlJnii &ThOOt.MP6001a

*S PuEIJcATtofus

p*imT_
,

GradyBooth, RMond

-~a-
Bnsdc@bhkmd0r3 Agecorisdtmg
ChuckDufT,TIWh%ttawatwtzroup
&la4sIGoldbarg ParcPI. symam
Tom Lswe,camhnt
MI& Page.hrws, Waykmd Sptam

BUtrald tdeyar, IsE

f. MichaelSeashol&Vsmnt

Bjame~usWIp, AT&T 9dJ L&3

Dava Thmnac+ object Tedmebgy

T= SMALLTAU(REPORT
EdbiidRQard
JimAridUamcs@dk
Ada$sGd&4srg#ParcPkesy%rJm5
Read PhIlllps,rhowk+a s-, CWF.
MUrwTaylor,htdslhn
h-iti~Tdrmbwkmrntim

JLunh&@. hxdatkm
Grqi+ad3y,Krmldgasm@
EdRllma%MatFBrd6y
kaIWlr? SkUb115JOb@STdmokgy
EricslIrm WwtRdgwsy!mrruCarp.

Allwl Wsfii-w* Imhtdm3

Rabscca Wfa-Broek, Tekironiw

slGsPubktkm Group, k.

Rlcba?dP. Pswnlssls,GroupPubrldlar

❑a Varkm,Prdudon Manager
%aWiCdhgBs),CmaiifaDkecter
watklR.Jwbn,PrO&tkmEditor
csrehPobar# 03$@podklrmr

urcsdMan
mamB4vay, cku&14nMrwa3M6rmg3s
Kawteklcanning, PutmawtMam
Jdmschi#as, cwationAssktMt
MaslsdqfAdwtWng
18rM5KSkvQta6,Ah15rtising-r
13fa!eM5sanck. Am0urlt&3cutiw

AdnMstr4stien
mvld Ctmuerpaul,Acamtirrg

Jermh Rachar, ‘~tolha PublishOl

LaUra L4am#lo?,Mdnh6waAashtmt

~SIGS
PUBLICATIONS

iMd3rsadnls w~, -nlec*Fi
mkJndw4fMM—dhsnnmQw. ,T
[jmrd, wdbmaatjdMATsckt&
rai—m~ “ (x3PD&may
*:,,’: :.,’..:@

EDITORS’
CORNER

John Pugh Pad White

t seems very strange to be writing the editorial for our second issue without the

benefit of feedback from you on our premiere issue. Such are the vagaries of publica-

tion deadlines! In any event, we look forward to receiving your letters and com-

ments on the contents and format of The Snud.ltd Report.

As the lead article in this issue, “A Matter of Style,” we focus on style in

Smalltalk programming. Many organizations have successfully developed projects us-

ing Smalltalk technology, and it is important that the experience gained and lessons

learned from these projects be passed on to the organizations that are just now mi-

grating to Smalltalk. In the first of their re~larly appearing “Smalltalk with Style”

columns, Ed Klimas and Suzame Skublics offer stylistic guidelines for the presenta-

tion of Smalltalk source code. In upcoming issues, they plan to address topics such as

reusability, mming conventions, tinding application frameworks, and software met-

rics. This column will be a “must read” for both beginning and experienced

Smalltalk programmers.
An exception-handling mechanism for gracefully taking corrective action when

unusual and umnticipated conditions arise has long been a feature of languages such

as Ada. ParcPlace first introduced facilities for handling exceptions in release 2.4 of

Smalltalk-80, but no such facility has been added to DigitaUc’s Smalltalk/V. In his

article, “Exception Handling in Smalltalk,” Boris Gaztner looks at a number of po-

tential ways in which a simple mechanism could be implemented for Smalltalk/V.

He first describes a method for adding a handler for a newly defined application class

and then expands his implementation to handle exceptions generated by class meth-

ods. Finally, he proposes a more general approach.

In the continuation of their first column, Greg Hendley and Eric Smith complete

their study of how to give application windows dialog box functionality in

Smalltalk,/V PM with a discussion of window ownership in 0S/2. Also in this issue,

Juanita Ewing makes suggestions as to how Smalltalk programming teams might orga-

nize their applications.

Complementing the review of the WindowBuilder/V product from Acumen,

which appeared in our premiere issue, Cahan ORyan reviews the Tigre Program-

ming Environment for ObjectWorks \Smalltalk. Also, Dan Lesage reviews Dan

Shafer and Dean Ritz’s book entitled Practical SmaUtdk.

This is a busy time of the year for conferences of interest to !5nalltalkers. Tlw

Snudkalk Re@rt will have a presence at the first Digitalk Developers’ Conference in

Los Angeles, 00PSLA’91 in Phoenix, and the first Eastern European Conference

on Object-Oriented Programming in Bratislava, Czechoslovakia. We look forward

to seeing you there!

Enjoy the second issue!

John Pugh and Paul White

Editors
ThE %nakdk Scj-mrt (ISSNS 1056-7976) is puhlishd 9 times a year, every nua-rh excepr (or [he Mar/A~, J.ly/Aug, and Nn@ec c.rnhined isms. published by CCOT, Inc., B mmhr cd du SIGS Puhlicariuns

Gmp, 585 kmdway. New York, NY 10012 (21z)274-oW, @ ChWight 1991 by CCCJT, Inc. All riEh~ rewwecl P.eprcdwtion of Ais material by ckcrmic nar.nmisicm, Xeiux or any d-.cr IIWIhal will lx ucmed w
a willful vicdxion ~ die US GJPpighr hw nnd is I@ pruhibitml. Material m+ be rqmdtmd with eqres Prrnksbn hm the publish.. Mailed F,.! C&s SubacriLItim iaws 1 ytar, (9 issues) dmnc~iG $65, Fcm-

e@ and Cnnacb, $5Q, Single CTY p-iu, $6.Ml. POSTMASTER &nd address chaws and subscripri.m mdm w THE SMALLTAM REFORT, S.hscrilw Servk-, Dept. SML P.O. Scw 3033, lk.vdk, NJ 07534 Submit
arrickn r. & S&m.[91 %cmd AvenuG Ottawa, Ontario KIS 1H4, G.*, (613) 230.6S97, orb (613) Z35-BZ56.

THE SMALLTALKREPORT

Fastest PathtoPHorrn Imkpdenm
(Edifinw Tiare Demo flDD)

I

II *U,“WIN ~J y:,:y$=
Window 3.0- rum, jusl by making
compatible selections in h ediloz

~

leap ke of plathn limitations and deliver Ml-color
GUI applications in half lhe time...wiih Tigre”.

hlroduchg an incredible
00P bmakthmuglr A complete
development environment that lets
you create object~riented, multi-
user applications that run across all
major platforms and networks, And

lets you deliver them up to 80%

faster than ever before.
TigremRogramming Environment,

running with Objectworkse \
Smalltalk Rebse 4, offers a set of
tools that turns a major hassle into
a quick drag. Literally. Because it

lets you build customized, color
GUISjust by dragging and dropping.

You’ll choose from a large fibrary
of user interface components. Objects
like SCrOlliIlg text fields, check boxes,
radio buttons and more.

Drag them from the palette onto
your application screen. Move and
resize them as often as necessary.
No recompiling needed. And
virtually no code to write. Tigre’s
trtterface Designer automatically
creates the Smalltalk GUIfor you.

TIGRE OBJECT SYSTEMS, INC.

Give the interface your unique
imprint by clicking selections to

change color, font, borders, icons, etc.
And you can add your own custom
GUf-OIIS to the library for reuse.

Use Tigre’s multi-user, object-
orfented database manager, to
provide network<ompatible access
to text, images, icons, sounds - arty
type of stored data.

Phone now for a complete pckage
of information on ‘fIgre There’s never
beenafastertrackto fredom.

Call: (408) 427-4900, Fax: (408) 457-1015
3004 Mission Street, Santa Cmz, CA 95060

¤AMA~ROFSTYLE

4.
unldnwsfl’mn~ 1...

If you area novice programmer learning Smalltalk, you

will gain an advantage by following guidelines and methods

early In your programming career. This will help you develop

a clear programming style that effectively exploits whatever

Imguages you will be using.

If you are an experienced Smalltalk programmer, you prob-

ably already develop code that conforms to many of the

guidelines. The set of guidelines in this column embody a

widely accepted approach that will make your code more con-

sistent and easier to reuse.

If you area technical manager, you probably already follow

a set of corporate standards. Guidelines will help technical
managers ensure that the software produced during a project

is correct, reliable, easy to maintain, and reusable. The difW

culty lies in creating a project-wide commitment to adhere to

a set of guide linm.

SOURCE CODE PRESENTATION

In an environment such as Smalltalk, more time is spent read-

ing code than writing it. The physical layout of source code

on the page or screen strongly influences how easy it is to

read. “A program is not only a set of instructions for a com-

puter, but a set of instructions that mmt be understcmd by a

human, especially the one who reads it the most-the pro-

grammer.”’ In’the GG community, easy-to-read code relates
directly to greater code reuse it is more likely that someone

will be able to reuse code if they can at least read and under-

stand it. It is important for code to be well structured, for ex-

ample, in terms of indentat~n and naming standards. How-
ever, defining a good structure is subjective. We present a

numter of guidelines that define general principles of a good

layout but do not prescribe a particular layout style. The deci-

sions about how to apply these principles are better left to the

proj~t leader or organization.

GUIDELINE1: BECONSIWENT

The formatting of Smalltalk source code affects how the code

looks, not what it does. The most important guideline to fol-

low is to be consistent throughout the application and the

project.

GUIDEUNE 2: USEA CONSISTENTSPACINGSTRATEGY

Spacing makes source code errsicr to read became it empha-

sises the dcllm item on a source statement line. Constructs are

emier to recognize irrespective of where they occur in pro-

gram text. A consistent spacing strategy applies co many

facets of a piece ofaource code. For example, delimiters such

as binary operators and parenthesis are easier for the reader m

parsewhen separated from other programming constructs.
Examples:

3+4”36>32+(.32).
#(1 2 3), #(45 6).
!heUo’,‘there’.
#((2 3)(3 4)(4 5))
#(red)

GUIDELINB3: INDENT AND ALIGNNESTED C13WROL

~UCl_UREs AND ~NTINUATION LINES~NSISTENTLY

Source code that is consistently h-dented is easier to read be-

cause the structure and flow of a program are emier to see.

Nesting levels can be clearly identified by indentation. Cee-

caded messages, for example, are easier to follow when the re-

ceiver object is separated km che messages, each indented

on a separate line. The fact that the code is indented consis-

tently is more important than the number of spaces used. An

indentation of four spaces or a tab is typical.
Related to indentation is alignment. Alignment makes it

easier to see the position of the operators and, therefore,

places visual emphasis on what the code is doing. Statements

that include nested control structures os long expressions that

continue over more than one line are easier to read and parse

if they are aligned on separate lines. The flow of control of a

program can also be reflected by alignment. The particular

style used is not as importam as applying a consistent align-

ment. We recommend an alignment style in the examples

presented, such as matching alternative cases in an itTrue:if-

False mesage.

Examples

“Singlealternativestatementson the same line as the condition.”
(self inchdaaKay aKey)ifl’nsat [“selfJ.

“Blockswith short expressions contained on single lines.”
aBooleanEqsression

if’hne: [sShortExpression]
IfFalse: [aShortExpression].

‘Blocks with long expressionscontained on wvmal separate lines,’
aBooleanEqression

UTssssx[
aLongExpression.
abrrgExpression]

IfFalae: [
aLongExpression.
aLongExpression].

“Enumerationmeswges indented and aligned to reflect control
flow.”
self value

if?suw [
aBlotk value.
self whUaTrua:aBlock].

‘Indented cascaded messages on separate lines.’
self

npda@FaUse~
npdab!MoUssm.

“Indentedlong key word messages to avoid line wraps.”
magni6edFonrr

dlaplayOn: aDlsplay14edium
ak absolutePoint - alignmentpoint
cUppin@ox: clipRectangle
rule: rulehteger
masks aForm

“Lang,cascaded key wordmessages with a blank line between each
message.”
anOrderedCoUaction

replaceFrom: 2
to: 3
wittu#(abcde Fg)
atastlsrgAE3;

replacaFrom: 7
b: B
with: #(a bcdefg)
atartlsrgAk5.

GUIDELINE4: START EACHSTATEMENTON A NEWLIN~ NO

MORETHAN ONESIMPLESTATEMENTPERLtNE

It is easier to locate variable assignments when they are

aligned along the left margin. A single statement on each line

makes statements easier to dktinguish. Similarly, the structure
of a compound statement is clearer when its parts are on sepa-

rate lines. If the statement is longer than the remaining space
on the line, continue it on the next line or restructure the

code so chat it cars be cascaded onto separate lines.

Examples:

“FoUmVSguideline.,.”
compositionRectarrgle:=compositionRect copy.
text:= aTexL
taxtStyle:= aTextStyle.
6rstIrrdent:= textStyle Iirat.indent.
mle:= DefaultRule.
mask:= DeihultMask.

“Doesnot follow guideline...”
compositionlkctangle:= compositionRect mpy.
text:= aTesrLtex15tyie:= aTextStyle,
frrsLlndent:=textStyle fl.ratlndezk
mle:= DefaultRule. mask:= DehultMask.

GUIIXLINE5: BREAKCOMPOUNDSTATEMENTS(LONG KEY

WORDMESSAGES)OVHl MULTIPLELINES

Examples:

“FOUOWSguideUne...”
aMenu

“Answera menu with a list of misceuaneous operations.”
‘(Menu

Lsbelm‘Claar\Copy\Paste\Fonts...\ Pen size\ Bit2dit’
Withcre

Unea: #(4)
ealactose: #(clear copyGraphpasteGraphchangeFont

changeSise bitblit))
Owzlen self;
Utk ‘&Options’;
yousaatf
‘DOSSnot follow guideline ...’
altenu

“Answera menu with a list of misceDaneous operations.’
“(Menulabels: ‘Ckar\Copy\Pasta\Fonta...\Pen size\BitEdit’

wtllsti lines: #(4)

aelactozx #(clear copyGraphpasteGraphchangeFont

charrgesizebithiit))
ownsm self; Utla: ‘&Options’;youmalf

OUIDELtNE 6: USS BtANK LINESTO CONVEYSEMANTICS

Blank lines should be used to separate chunks of code that

perform different tasks, It is easier to read and understand code

that is semantically grouped. The need for blank lines is not as

great in Smallmlk because methods group logical chunks of

code. However, this guideline should not be ignored simply co

make the code fit on the screen.

CONCLUS1ONS
Object-oriented programming languages such as Smsdltalk

support many of the modem software practices that can signif-

icantly improve the productivity and quality necewary to meet

today’s shorter commercial market development windowa. We
have addressed how applying a clear and consistent program-

ming style cart promote the sofiware practice of code reuse.

We have presented a set of guidelines that will help an objecc-

oriented programmer develop code that easier to read, main-

tain, and reuse. We emphasize that the guidelines need not be

strictly followed but, rather, that the strategies of each be ap-

plied consistently. Applyingsource code presentation guide-

lines doea not guarantee that code will be reused, but it is an

imporrant step toward obtaining the full benefits of highly

reusable code development. +

REFEREN=

[1] Lcgard,H,, P. Magirrand J. Hues-as,Pascaltith Stylz: Progrmmning
Pnwedx, Hayden &ok Co., Hasbrouck Heighrs, NJ, 1979, p. 2.

EfKknuuhrn krIindvedwirhrk irn@mum- andappfidiolrof

idwrialsoJbare inindustg as wefl as nuder-no@cl-oriend progranr-
*PWM .

Commend rerrhre irlr&ubialContfofSysmru.

Suzanne .SIadrliair tk Education Manager at Object Techn&y In-

tmuztionrd. Sk has been inwbed with rk %udltdldobject-mienred

programmingcommunity /or sevend years, parlici.darlywidrCarleton

Univmi~.

Ed and Stuanrreare co-authors of Smallralk with Style, a fordrmrn-
irrgbook to be pubW by Addison-Wesky. Tk guidelinesand exam-

pksfor thiscohnnnseriesare excerptr from this book.
5.

6.
ETTING REAL

How should teams organize their
applications?

Juanita Ewing
I
N MY PREVIOUSCOLUMN, I began to address some important

issues for teams of Smallralk programmers. Teams of pro-

grammers are important because large complex applications

cannot be built by a single programmer. Continuing with is-

sues relating to teams, this column will present heuristics for

organizing applications. Organizational units can be the basis

of work assignmenfi for team members and the basis for dis-

tributing completed portions of an application. An additional

benefit is that organizational units tend to represent reusable

units.

HOW SHOULD TEAMS ORGANIZE THEIR

APPLICATIONS?

When a team of programmers implements an application, the

development work needs to be structured and distributed

among the team members. Without some kind of organization,

development would be a free-for-all, and no schedule would be

possible. The most obvious organizational technique is to parri-

tion an application along class linm. In this organizational

scheme, each member of the team would be responsible for im-

plementing and maintaining a group of classes. In Smalltalk, a

class is a unit that encapsulates the behavior and data specifi-

cations for a particular kind of obj ect. An organization based

on classes has the advantage of being built on an existing sup-

ported Smalltalk unit and is able to use many of the existing

Smalltalk tools. But, classes don’t exist in isolation.

SHOULD HIERARCHICALLY RELATED CLASSES BE

ORGANIZED TOGETHER?
Classes are usually part of a hierarchy in which superclasses

also specify data and behavior. The behavior of an object is

defined by the behavior in its own class and the behavior of

its superclasses. Since a class requires iw superclass to func-

tion, it is desirable to organize both classes together. This de-

sire is the basis of our first heuristic.

This kind of grouping usually involves several classes since

an inheritance tree is frequently larger than just two classes.

Entire trees of hierarchically related classes might be grouped

together to satisfy this heuristic, but it cannot be followed

blindly. If it were, most of the classes in an image would be

grouped together.
HOW DO YOU LIMIT THE HIERARCHICAL GROUPS?

If classes were grouped strictly by inheritance, the size of

groups would not be reasonable. Use the additional heurisric

that hierarchically related classes performing a similar func-

tion should be grouped together.
For example, suppose you are developing an application

that has a plumbing system. The plumbing system is composed

of plumbing components such as valves, spigots, and pipes.

All of the plumbing components are subclasses of an abstract

class, PlumbingComponent. PlumbingComponent is a sub.

class of Object. A group based on function would contain

PlumbingComponent and all its subclasses, but would not

contain the superclass Object because it does not hdfill the

same function as a plumbing component.

SHOULD COLLABOWTING CLASSES BE ORGANIZED

TOGETHER?

Frequently, an application contains several classes that send

messages back and forth. These classes collaborate. Collabo-

rating classes require each other to function. Because these in-
dividual classes don’t stand alone, it is desirable to organize

these classes together.

The degree of collaboration affects this organizational

heuristic. If two classes collaborate with jusr one message,

then the degree of collaboration is small. Many messages indi-

cate a large degree of collaboration and a stronger reason to

organize the classes together,

Suppose our plumbing system contains a water heater. A

water heater has a water tank, a heating element, and a ther-

mostat. The heating element must be turned on and off when

the water temperature, as sensed by the thetrnostat, reaches up-

per and lower limits. The thermostat sends messages such as

Dheating
element

YOn/o

/othermostat

Figure 1. Grouping collaborating objects,
THE SMALLTALKREPORT

7.
Dheating
element

1

/’onloa~thermostat
production owater

/

tank

tamparaturm
water

volumm

w
Figure 2. Determining which objects shouldbe included

in the water heater group.

rumOn and turnoff to the heating element. These two classes

collaborate and, therefore, should be grouped together (Fig. 1).

We haven’t addressed the issue of how to organize the wa-

ter timk class in our example. The heating element would

send messages indicating how much heat it has produced, and,

based on the volume of water, a temperature rise could be cal-

culated. Does the water tank perform the temperature rise cal-

culation? No. The water tank is responsible for knowing iu

volume of water. However, nothing about a generic water

tank suggests that it be able to calculate temperature rises.

(We will ignore volume fluctuations based on temperature

variations.)

Our system also needs to include a water heater object that

performs operations specific to a water heater, such as calcu-

lating the temperature rise. The heating element communi-

cates with the water heater object to pass on heat production,

and the water heater tells the thermostat the cutrent tempera-

ture. (See Fig. 2.)

Because of the collaboration between the water heater and

both the heating element and the thermostat, the water

heater should also be included in the organization based on

collaboration. The water tank collaborates with only one of

the other classes in this example. Because of the small degree

of collaboration and also because the information doesn’t take

an active role in the primary calculation, we leave it out of

the water heater group.

Our group contains three classes: heating element, thermos-

tat, and water heater. This organization is based solely on

collaboration (Fig. 3).

WHAT IF YOUR CLASSES ARE IN A HIERARCHY AND

COLLABORATING?

It is likely that your application contains classes that belong to

a hierarchy and also collaborate with other unrelated classes.

Both hierarchical and nonhierarchical relationships should be

taken into account. Classes in the hierarchy should be orga-

nized together, and tightly coupled classes in the application
should be organized together.

Let’s examine the water heater example. Some of the ob-

jects in this system are hierarchically related. The thermostat
VOL. 1, No. 2: OCTOBER1991
and the heating element are part of an electrical component

hierarchy, and the tank is part of the plumbing component hi.

erarchy. Yet we also want to capture the relationships based

on collaboration, as depicted in Figure 2. There is a desire to

associate the heating element with other electrical compo-

nenixi as well as with the other classes comprising the water

heater.

HOW DO YOU ORGANIZE A CLASS IN MORE THAN

ONE WAY?

We have discussed a unit that captures a single organization.

Let’s call this unit the primary organizationalunit. To represent

multiple overlapping associations, we need another type of or-

ganization. Configurations are another type of organization

that is used to represent secondaty relationships. Con&ura-

tions refer to other organizational units. As such, they are an-

other level of organization. They can be nested, so that one

configuration may refer to another configuration or simply to

a group of primary organizational units.

In most cases, a hierarchical relationship forms the basis for

the primary organizational unit. This unit can then be com-

bined with other units via configurations. This tactic reflects

the point of view that the hierarchical relationship is tighter

and more stable than collaboration-based relationships.
Another way to think about different organizations is to

imagine scenarios for reuse and maintenance. If developers are

more likely to reuse a hierarchy of classes than a group of col-

laborating classes, then the primary organization should be

based on inheritance. If a group of classes will be maintained

as a unit, this means that they are closely related and should

be grouped together.

In the plumbing example, all the plumbing components

can be organized into a primary unit. This unit contains

classes related by inheritance. The same should be done for

the electrical components. A configuration representing the

water heater would contain three primary units:

● the plumbing components unit (for the water tank)

r

F
heating
element

onlo

~L

thermostat
production

lemparalum water

Q3.9
Figure 3. The water heater group.

■ GElllNG REAL

Universal Database
OBJECT BRiDGE m

This developer’s tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIII, Lotus, and Excel.

Intelligent Systems, Inc.

[506N. State Sheet. Ann Arbor. MI4S104 (313) W6d23S(313) 996-d241 fa

8.
● the electrical components unit (for the thermostat and

heating element)

c the water heater unit consisting of only the water heater

class

With inheritance as the organizatioml basis for primary

units, collaboration-based relationships can be represented by

configurations. In our example, this organization is useful be-

cause the plumbing components can exist in different systems.

You can imagine the configurations and primary organiza-

tional units needed to represent a well and pump or a solar

hot water heater.

WI-WT ABOUT RELATED CODE IN OTHER CLMSES?

All parts of an application might be neatly contained in

classes. Frequently, though, methods will be sprinkled

throughout the class library.

Suppose a way to distinguish between other objects rmd

plumbing components is needed. It is reasonable for a devel-

oper to define a method in Object that answers whether the

receiver is a plumbing com~nent (isPlumbingComponent).

This method returns false. A similar method implemented in

PlumbingComponent returns true. All classes inheriting the

method from Object will answer false when asked if they are a

plumbing component. Subclasses are free to override the

method.

SHOULD CODE ORGANIZATION BE BASED ON

CLASSES?

In our example, a single method in an unrelated class has

functiomlity that relates to another class. How should this

method be organized? Should the method in Object be associ-

ated with the class Object or should it be part of the plumbing

component unit? Obviously, this method relates to plumbing

components and not to the generalized behavior of objects in

a Smalltalk system. It should be associated with the plumbing

component classes.

Organizing strictly along class boundaries is not flexible

enough. I advocate a flexible grouping scheme in which

classes and methods can be organized together into primaty

units. (We will refer to classes and methods as definitions.)

Use the heuristic that functionally related definitions should

be organized together without regard to class boundaries.

In the plumbing system example, the classes composing the

plumbing component hierarchy and the method Object> is-

P1umbingComponent should be bundled into one primary

unit. Both implementations of isPlumbingComponent would

be contained by the same primary unit. It is likely that many

of the definitions would be used together and maintained to-

gether. In particular, if the meaning of Object> isPlumbing-

Component is changed, then PlumbingComponent> isPhsmb-

ingComponent is alsn likely to change.

Use these heuristics to organize your application
● organize hierarchically related classes together

● use functionality to limit the size of hierarchically based

groups

● organize collaborating classes together

● put functionally related definitions together

Two types of organization are required to represent differ-

ent kinds of relationships and to retain the flexibility required

in a highly productive environment like Smalltalk. With the

primary organization units, a developer can bundle definitions

together that are closely related+ ither through inheritance

or collaboration. These definitions are maintained together

and reused together. Primary organizational units contain log-

ical groups of definitions that cannot stand alone.

Configurations are another level of organizational structure

that represent secondary relationships. The components of a

configuration stand alone and are more likely to be used in

other situations. Developers should be encouraged to mix and

match different organizational units to extend the usability of

a set of definitions. Secondary relationships, represented by

configurations, are the basis of mixing and matching.

Primary organizational units are suitable for organizing the

development of an application. Each team member should be

assigned to implement one or more primary organizational

unit, and the implemented units should be distributed to

other team members. Configurations are used to build up the
various subsystems in an application and ultimately to specify

the application itself. +

Juanita Ewhg is a senior staff member of h.wantiations,kc., a soft-

ware engineeringand consultingfirm thatspecializes in &uelOpingand

applyingobject-orientedtechnologies. She hus beena project leaderfor

commercialobject-orientedsoftwareprojectsand is an expertin tk de-

signand imjdenwntationof object-orientedapplic~ns, frameworks,

and systems. In herpreviouspositionat Tekmnix Inc., sk was re-

s-~~ fm ~ &UefoPn6mtof class librariesfor he first cOmmerCid
quality Smahd.k-SO sys~. Her professional activities includeWork-

shopand Panel Chairs for the00PSLA conference.
THE SMALLTALKREPORT

EXCEPTION

HANDLING

IN SMALLTALK

Boris G&tner
III
XCSPTIONHANDLINGis a method to be used when-

ever program crashes may not be tolerated in an im-

portant application. Most well known are the meth-

ods included in the languages Adal and CHILL.2

Recently, ParcPlace decided to incorporate exception-han-

dling facilities into its Smallwlk-80 version 2.5&d Object-

works \Smalltalk release 4 systems.3

The features of Objecrworks\Smalltalk are implemented

with newly introduced primitives. For the user of Smalltalw,

it is a challenge to implement exception handling in the lan-

guage itself. This contribution sketches two methods based

solely on elements of Smalltalk as defined in the “blue book.”4

The simpler method is suitable if exception handling should be

limited to some classes, whereas the more sophisticated

method offers as much generality as possible.

A SIMPLE METHOD
Exceptions 2NNEWLY DSFINEDCLASSES

Implementation of exception handling is simple if it can be

done ftom the very beginning. All you need to do is to provide

an instance variable where the exception handler can be stored.

A suitable hrmdler will be provided during instance creation.

A handler carr be any of the following blocks:

[<q sequenceof expressions>
%e~

[:message I *sequence of ~ressior@
‘sew

[:sender :message I -y sequenceof expression
‘selfj
VOL. 1, NO. 2: OCTOBER1991
To raise an exception, one has to write:

=ce@onHandle~ value.
=epbonHandle~ value -gurttent>
=cepiionHandl~ value: self value: ~gurnenb

The essential point is that a block is bound to the method

of its definition. Consequently, the execution of aseti will ter-

minate the execution of the method containing the block

definition. The ‘seti is nothing but a GOTO in disguise.

All three forms of exception handlers can be intermingled.

But, for uniformity as well as for clarity, it is convenient to use

only handlers with two arguments. The value of the first argu-

ment shall always be the signaling instance; the value of the

second argument shall be a symbol communicating the kind of

exception.

EXAMPLE: STACKSAND QUEUES

The class Storage implements the common protocol of its sub-

classes — Stack and Queue.The exception handling is part of

the common protocol of both classes.

Object subclass: #Storage
instanceVariableNrunes ‘fielderrceptiorrHandler’
classVariableNamS“
pooUSic!ionaries:‘

Storage Ckss Methorh

new amount atEmor: aBlock

‘super new
exceptionHandlersSlack
inik amount

Storage Methods

capacity

“ fieldsise

exception: aSymbol

exceptionfiandler notNil
itl’me [exceptionHandler value self

value sSymbol]
ifFalse:

[supererro~ ‘unhsndledexceptiom‘, asymbolasStig]

excepUonEandle~ aBloek

“aslock is expected to be a block m“thtwo argumenti. llrejirst
argument should take the sender (i.e., selfl; the semnd
argument should take the mewage symbol. “

exceptiorthndler:= aBlock

itsEm~
9.-.

■ ~CEPTION HANDLING

10
“self sise=O

‘self sise=selfcapaaty

Storage subclass: #Queue
instance%riablalhnex ‘input output count ‘
classhiabklhrnes:”
poolDiclionaies:”

Queue Methods

Ink amount
field:= Armynew amount.
input := 1.
output:= 1.
count:= O

POP
Ivarl

self issntpty
ifhue: [self exce@on: #isEmpty]
ifFalse: [var:= field at output.

count :- count -1.
output:= ou~ut \\ Iself sk I + 1.
AVar]

push: x
selfisFull

*e: [selfexception: #isFuU]
ifFals= [field at input put x.

input:= input \\ Iself size I + 1.
count:= count + 1.
%]

dsa

“count

top
selfisEmpty

WI’rue: [self Uce@om #isEmpty]
ifFalse: [%eld ah output]

Storage subclass: #Stack
instancehriabletiames: ‘Stiickpointer‘
classhiablethmes:”
poolDiclionaries:”

Stuck methods

mcwde omitkdjlx brevity”

Obviously, it would be nice to apply the technique just

demonstrated to ReadWeams, The possibility of providing an

exception handler for the exception “end-of-stream” avoids

checking the end-of-stream every time a value is fetched. Thk

could amount to considerable savings if the stream to be pro-

cesed ccmtains many items. Regrettably, it is not possible to

redefine class s~eam because there are always two instances of
the subclass FiieStieam.
.
66
Allocation errors are special in that

they cause an instance creation to fail.

The exception handling must

therefore be done by class methods.

99

HANDLING ALLOCATION SRRORS

Allocation errors are special in that they cause an instance cre-

ation to fail. The exception handling must therefore be done
by class methods. The essential problem is to catch the error

communicated by either Behaviom>newor Eehavio~>new if the

instance creation failed.

In the following example, the class method newatErroc is

called with the handler. The handler is stored in the class vari-

able EnorBlock, where it can be fetched from the class method

erro~. The class method error is sent by the calls Behavio~>new

and Object>>primitiveFailed.

Object variablesubclass: #Mati
instanceVariableNames:‘numberOfRowsnumberOfColumns’
classVariabMh.rms: ‘EnorBlock’
pooulicliomaies:“

Mutrk Class Methods

new apoint atkro~ aBlock

“fleation ofa matrh with a?bint x rows and aPoint y columns,
Ihe block wii be called ifit is not possible to create the instance.
Ihti k an albcation error. “

I sbfattix I

ErrorBlock:= aBlock.
aliatrix:= super new aPoint H* Iapoint yl
aklati rows: aPoint x;

columns: SPoint y.
ErrorBlock:= nil.
‘aMatrix

error: aStting

“l%ismethod ovem&s the method in classObject. It will be called
from Obje@~rimitiveFailed if the method Behaviorl new:
cannot allocate memory~r a matrixof the speciied sise. “

I handler I

(handler:= ErrorBlock)isNil
ifl’rue [supererro~ ashing]
ifFalse [ErrorBMr:= nil.

handlervalue: seM
value #aUocationError]
THE SMALLTALKREPORT

Matrix Methods

columns: anInteger
numberOfCohmms:= anhteget

rows: anIntager
numberOFRows:=tinteger

It is an interesting exercise to reimplement the classes Stack

and Oueueas variable classes and to revise the exception han-

dling in such a way that allocation failures can be handled.

Obviously, there are two problems remaining:

I.The methods described so far are not applicable to classes

like Collhon or Stnam because there are always instances of

some subclasses of these classes in the image.

2. It is not feasible to add an instance variable to every in-

stance of a number.

In this situation, it is sometimes feasible to store the excep-

tion handler in a class variable. This will work in very much

the same way as demonstrated in the matrix example

HANDLING ARITHMETtC EXCEPTIONS

Number variableByteSubclass: #Float class
VfibleNames: ‘ErrorHandler’
pooll)iclionaries:”

mat class Methods

ercea~oflandler

“ ErrorHandler

mrce@onEandlex aEandler

“aHandler is enpected to be a block rn”thtwo aryuments. lhejirst
argument should take the sender (i.e., se~; the second
argumentshouldtake the message symbol, m

ErrorHandler:=aHandler

floaUrror
“Querythefloahkg-point coprocwor as to the type of
exception and report it”

I status message I
status:= self status.
message:= ‘Floatundefied exce~on’.
(status bitAnd 6) ‘= O

ifhw [message:= ‘Floatoverflowexception’].
(status bitid 16r10) ‘= O

ifhue [message:= ‘Floatunderflow exception’].
(status bitkld 4) -= o

ifllue [message:= ‘Floatdivideby zeroexception’].
(status bitid 2) ‘= O

We [message:= ‘Floatdenonoalizedoperand’].
(status bitknd 1) -= o

iflhte [message:= ‘Floatinvalid operation’].
(status bittmd 16r80) ‘= O

ifl’rue [message:= ‘Mathcoprocessor missing’],
VOL. 1, lVo. 2: Ck70BER 1991
ErrorHandlernotiil
ifhue: [“ErrorHandlervalue self

value message]
ifFalse: [“ supererrm message]

A MORE GENER4L APPROACH TO EXCEPTION

HANDLING

Examining the handling mechanisms used in Ada,] one ob-

serves that exception handlem are a part of the activation

record of the segment where they are defined. Administration

of exception handlers can be done with very little overhead to-

gether with the administration of the activation records.

It is mnvenient to review the most important features of

the exception concept used by Ada:

1. Exceptions are identified by name.

2. One or more exception handlets may be attached to a se-

quence of statements.

3. Exception handlers maybe nested, and exceptions maybe

propagated from an inner handler to an outer one. Propa-

gation follows the dynamic reference chain.

4. Handler nesting and exception propagationtogether per-
mit a kind of distributedexceprion handling,where several
handlerscontribute to preparethe continuation of a pro-
gramafter the occurrence of an exception.

5. An exception is served by the innermost handler declared

for that exception. The execution of the handler com-

pletes the execution of the sequence of statements it is at-

tached to.

Our concept of exception handling is illustrated by the fol-

lowing similarity:

begin Exc@onManger new
*atement sequence>
excefion

-OX _tion name>
handle~

when <exception name> [:sender :hartdler I
=> <kdler afio~> <handler actions>];

end; mreeute[*tenrent sequence>]

The resulting value of the expression of the right-hand side is

. The result of the block [+aternent sequence>] if no excep-

tion was raised; or

. The result of the handler [:sender: handler I <handler ac-

tiom] if the exception _tion name> was raised.

Earlier, we proposed handlem that conwined a return state-

ment, generally the statement Aself. The jump statement aban-

dons the execution of a sequence of statements that, due to an

exception, cannot be completed. As we will see, our imple-

mentation of the Ada-like exception handling is also based on

return statements. However, these return statements are

merely implementation details of class Emeptio*get. The

programmer of an exception handler will not use any return

11.

■ EXCEPTION HANDLING

12.
statements; in fact, he does not even need to know that jump

instructions are part of the %rtrdltalk language.
Trying to utilize as much as possible from Ada and realizing

the impossibility of modifying class Psocess,we decided to ad-

minkter exception handlers in a separate stack to be held in

synch with the stack of the current process.

The top element of this stack is referenced by the global
variable hsrrentlhndle~ the stack itself is implemented as a list

of instances of class Ezrceptio*ger. Each instance of class

ExceptionMarrageradmtilsters a dictionary of specific handlen

and, optiomlly, a catch-all handler.

Using a global list of handlers, this approach avoids the in-

troduction of instance variables. The error block is now

defined to take the following arguments:

<emor blob V&UX<send@

value 4nsbnce of ExceptionHantReP

The block can communicate with the instance of Ezrception-

Manager.The following methods are provided:

● exception — inquire about the raised exception

s restafi — restart the block associated with the handler

EXAMFLES OF USE

lt is assumed that the calls of method #ermc are replaced by

calls of the method #exception (described later in this paper).

“Read the cantenti of a stream unti7encaun~”ng end-o}stream. “

1X1
Exce@onManagernew

eXC@iOSK #ertdOfWeam
hartdle~ ~aender :handler I selfl;
execute [x:= ReadStieam on #(465 784 2).

~anscript show x next printstzing; cr.
true]

whiieTrue: []

1

mkpmrnpt unti7yau rweive a usable answer. n

1X1

ExceptionManager new
defaultllanrlm [:sender :handler I handler restart];
execute: [x:= hompter prarnpti ‘value’

dei%ulthpressiom ‘4’.
I.O/x]

“hue a masage and abandon the current statement. “

ExceptionManager new
exception #invalidMessage

handle~ [:sender :handler I
‘hartacT@show handlw exception printWi.ng,];

execute [Wing new add: 34]

“Reentw the current statement with a value to be used in the
pface of the result the statement@kd to produce. “
(3 negated to: 3 by 1) colleck
~i IExc@onManager new

excepliom #zeroDition
handlw. [:sender handler I 0.0];

execute [1.0/i]

1

“propagation and restart used in conjunction:the outer block w771
berestarted as fongasiisfess than4. ”

Iil
i:= O.

Exce*onManager new
exception: #test

handler [:sender :handler I
Tmnacript show ‘outer Handler entered’;

show i print.string; cr.
(i:=i+l)<4

ifhue:

-ti-timhdf;
show. i printsbing; cr.

handler restart

1
1;

execute ~ar&ript show. ‘enter outer block’; cr.
ExceptionManagernew

exce~ort #test
handler

[:sender :handler I
Transcript show ‘propagate the

exception’; cr.
sender exception handler exception

1;
execute: [Transcriptshow ‘enterinnerbloelt; a.

self exception #test
1 1

The piece of code to be executed under the control of these

handlers is a block. This block shall not contain any return
statements (’%qvession>). If it is necessary to leave a method

from within an exception handler, one has to write something

like thii:

methodselector
ExceptionManager new

excepiion #exitMethod
handler [:s :h I =vetumvafue>];

execute
[(ExceptionManager new

exception #myException
handlen [:s :h I <actions>

self exception #exitMethod];
execute <aBlack>

1

The method will be left by signaling an exception to the

outermost exception manager of the method. This technique

guarantees that the necessary reduction of the stack of exceP-

tion managers will be done.

Class Object is augmented by the following instance method,

which is used to raise an exception.
THE SWTALK REPORT

Object Methods

excepUon: aSymbol

“Meption hanrlling:fim a handkrfor the signaled meption is
searched. If no such handler d, it w“Utrytoflnd a handler
fir the exception #unhandled&ception. The method #error: rn71
be caUed if there is no reswonable way to handle the exception. “

I handlefloBeUsed I
CurrentHandler isllil

Wltua [self erroc ‘unhandled exception’, aSymbol asSb-ing]
ifFalsw [(handlefloBeUsed:= CurrentHmdler

searchHandlerFo~ Aymbol)
no~il

Wrue: [AhandlefloBeUsed from self exce~om asymbol]
ifFalse:

[(handlefloBeUsed:=. .

1.
1

CurrentHandler
searchHandlerFor #unha.ndledException)

notNil
ifliue:

[“handlerToBeUsed horn: self
exceptiom #unhmdledException]

ifFalse
[CurrentHandler:= NL
self error

‘unhandledhceptiom’, a$rnbol
asshing]

The class Exceptionhhsnager is defined as a subclass of class

Dictionary. The inherited dictionary features are used to store

exception handlers for named exceptions. Additional instance

variables are used to store the catch-all handler, jump blocks,

and some state informations. The instance variables are used as

follows:

● cdr — a list of all previously created exception managers

● catchAllExceptions — a block that is used as a catch-all
handler

● reenterBlock — a block implementing a jump into method

#doProtected:

● exceptionSignaled — a boolean value indicating whether
an exception was signaled

● exceptionName — name of the signaled exception of nil

. restartFlag — a boolean value indicating whether the ex-

ception handler requested the restart of the protected block

. restartBlock — a block implementing a jump into method

#execute:

c sender — a reference to the instance that raised the exception

The method execute: aBlock creates two additional seg-

ments. The first segment created is that of method doPro-

tected:. This segment is the reentry point for program continu-

ation after an exception is raised. Furthermore, this segment
VOL. 1, No. 2: OCTOBER f99]
provides a block for immediate return into method execute:,

where the restart facility is implemented. The second segment

created is method execstatement:. This method prepares a

block for immediate return into the segment of method doPro-

tected and then executes the protected statement.

Dictionary subclass: #ExceptionManager
instanceVariabkNames: ‘cdr

catchAUEsrceptions
reenterBlock
exce~orssignaled
exce~onlkme
restwtllag
restartBlock
sender’

classVariableNames:”
poolDiclionmies:”

lZme@nMmuzger CLms Methods

accepts: asymbol
“Ask whether the currenthandler administraterpmvides a spetijlc

handlerjirr the exception a$nrbol or whether it ti capable of
handling all estceptions. n

ACurrentHandler iaNil
ifl’me [Mse]
ifFalse: [CurrentHandler accepts: asyrobol]

&ceptbWUrWger Methods

accepts: aSymbol
‘Ask whether this instance provides a spmjlc hand[erfir the
exception a$mrbol or whether it is capable of handling all
exceptions. “

AcatchAUxceptions no~il
oc [self includesKey asyrnbol]

cdr
“Listof prm”ous exception managers.”

‘Cdr

defauhltandler:aBlock
‘ Dq%e a handling block that willhandle aUexceptions that

cannot be handled by specjlc handlem. “

catchNExceptions:= aBlock

doPmtected *~OCk

“Provide the restartlllock and exerute theprotwted block. “

restastBlock:= [“s~.
result:= self execStatemenk aBlock.
exce~onsignaled

WI’rue
[CunentHandler:= cdr.
result:=

(self at: exce~onhrne
13.

■ EXCEPTION HANDLING

14.
ifAbsenk [catctuWxceptions])
value sender
value self.

“result]
ifFalse: [%esuk].

exception
“Withthis method, the handling block mayaskfor the name of
the exception that it should handle. n

“exceptionName

eme@om exception handle~ aBlock
“Storea specijic handle block- aBlock. The value ofparameter
axception maybe the name of an exception or a mlleciion of
exception namu. “

(exce@on isMemberOfiSymbol)
ifTrue [self ak exception pub aBlmk]
iFFalse:

[exception do: [:asymbol I self ak asymbol
put rlsbck]

1

esredtatement: aBlock

reentgBlock:= [“ selfj.
‘aBlock value

execute: aBlock
“Executethe statement of tilock under the protection of this

handler and all handlem accessible via instance variable cd. “

I result I

cdr:= CurrentHandler.
CurrentHandler:= self.

[exceptionsigmled:= restartl%g:= false.
result:= self doRotected aBlock.

restartllag]
Whildl’rile [].

CurrentHandler:= cdr.
‘result

from: sendingInstance exceptiosu aSymbol
“17sismethod is wrrdfrom Obje*-tion. It handks a raised

exception.l%e esceptiotiame is stored and method
execstatement is I!@. The exmpti”onbbck i6elfws71be called in
method doProtected. n

exce~onkme:= asymbol.
exceptionsigmled:= hue.
sender:= sendinghstance.
reenterBlock value, “ return to method doprotected:”

restart

“R@art the l?otecedlllock. lhe restartFZagis set and the
restartlllock is waluated. lhe CurrentHandleris rerxh+ated. (It
was deactivated by method execHmrdlerFor:sender:.) The restart
itseIfoccurs in method #execute. “

restarWaa := hue..
CurrentHandler:= self.
restartBlock value. “ return to method execute:”

searchEandlerFo~ aSymbol
“Searchfor a handle bbck that is capable of handling the
esception aSymboL Search begins in this instance.ItW171be
continued in the instance referenmd by cdr if the instance self
cannot prowde an usable handler block, Thismethod is called
from Object>%o@ion:. “

Iptil

pti:= self.

[(m::y;Ymbol)

ifFals;: [ptr:= ptr cdr],
pti notliil
] whilellue [].

Anii” no handler”

This method can be made usable for processes. All that is

necessary is a globally declared dictionary, where suspended

processes can be stored together with their handler stacks. The

process switching has to be modified in the following way.

Process Instance Method

“llris method is for Smallta~286 only.”

resume
‘Resume the receiverprocess. Store the handler list of the current
process “

SuspendedHandlers at CurrentProcess
put CurrentHa.ndler.

CurrentHandler:= SuspendedHandlers ak sell
Wsenk [nil].

SuspendedHandlers removeKey self
ifAbsenk [nil].

CurrentProcess:= self.
self resume: O

ProcessSckduler Instance Methods

“Thismethod is for SmallMk/V 286 only.”

initialise
“Initialisethe receiver by discarding allprocesses and then

creatinga new user intefice processmodified to implement
exception handling. “

Process embleInterru@ false.
readyRocesses:= nii.
readyRocesses:= Array new self toppriority,
1 to: self topRiority do: [:index I

readyRocesses
at: index
put OrderedCoU~on new].

CurrentProcess := Recess new.
THE SMALLTALKREPORT

Bring your large, complex objectaiented applications under

control with AM/ST, the Application Manager for Smalltalk/V.

The AM/ST Application Browser helps both individuals and
development teams to create, integrate, maintain, document,
and manage SmalltalkN application projects.

,-
5LR ‘“H?#&&jj~”” “’~:~&,,_ “~i,k.11..1...,,ych.d. ~.fl.ble. 1==!

; ;:ym(:,vl ,.,,,., ~ ,;,,. ” , *O.

: S.I. :.., ,,, . .,, *
: ,,!,..,:... 0>..0. :

m=.
, ,,, *,0.,”,., , ,,,. 1

xx .)

❑✌:y$;:d gscnac---g
SoftPert S stems Division

Site Licenses

1

Call

One Main treet ~w Productivity Tools ~__

Cambridge, MA 02142
—.—..—

Windows 3.0 V#indows $475
(61 7) 621-3670 Change Browser ● $195
(61 7) 621-3671 Fax Source Control ●* $1595

lass has an owner.
Functional view across classes
and related methods within classes.
Applications port easily across platforms.

c Documental oni
Revision history for each method.
Analysis and design reports.
Customizable documentation templates.

Source Control
Integrate work of several users.
Save and browse multiple revisions easil ●

J’Check-in, check-out, and lock source co e. ●*
Customize code templates.
Develop in a LAN environment.
Deliver applications without AM/ST.

Static NMysIs TOOIS
Application consistency re orts.

1“Graphical views of hierarc Ies.
Cross-reference of variable and method usage.
Up-to-date method index.

Dynamic Ar’@@s TOOIS
Locate performance “hot spots.”
Determine test coverage.

‘WlrbAM~, .9rrallfalkfv IS ● IaaderInmdaummult-paraorrdwalopfrrent”
David Ornahln, IntarSot#

‘Gain ma a mal a@a InDadsnandAnalyal.t’”
Hal Hlldebrand, Anamal Laba

SmalitalkW isa ragislaradhadarnarko!Digitalk, Inc.
AWST k a ragislerad Iradarnarho!SoHParlSyatarna,Lid,
“beginning of inseti”on ‘
CurrentHandler:= NL
SuspendedHandlers:= Dictionary new.
‘end of imeti”on ‘

CurrentProcessmalreUserIF.
Termfnal initilize.

Process enableIntenupts: hue.

Using this method of exception handling, one has to accept

one restriction: the exception handling mechanism cannot be

used with the restart facility of the debugger. ~

REFERENCES

[1] Ths Programminglmguage, Ada ANS1/MIL.STD-1815A, 1983.

[2] CCITT. CHILL. w.mrnrnerdsdon 2.200, May 1984.

[3] ParcPlace Systems. Objectworksfor SmAalk-190: AdWmcsdUse#s
Guide,ParcP1ace Systems, Mountain View, CA, 1989, Chapter 3.
VOL. f, No. 2: OCTOBER 1991
[4] Goldberg,A. andD. Robson. Snudkalk-80:The lmguage and Ifi
lmpkrnentation,Addison-Wesley,Reading,MA, 1983.

Boris Giirtner studiedcomputerscience, mathematics,and Bulgalianat

a university in Munich. He kzs studiednumer-ial programming, lurr-

guage implmnentation, and Al Ianguages. Presently, he works on a de-

d.@nentprojectin the jield ofdatabrlse access. Since 1989, %udMk

has become hisfavoritelanguage.Boris can be reackd at DATEX Al,

Sandstrasse41, D-8000 Muenchen2, Germany @one: (+8) 7231

312).
15.

16,
u Is Greg Hen&y and Eric Smith

Giving application windows dialog box
functionality in Smalltalk/V PM, part II
I
N THE LAST ISSUE, we began the process of creating Dialog-

ApplicationWindow, a subclass of ApplicationWindow,

with the essential behaviors unique to the class DialogBox.

We identified two behaviots, modality and ownership. We in-

vestigated the definition of modality, how it is implemented

in DialogBox, and how to implement it in DialogApplication-
Window, our own subclass of ApplicationWindow. In this is-

sue, we will investigate the concept of ownership and then tie

everything together,

OWNERSHIP

WHAT OWNERSHIP 1S

Ownership is a window relationship supported by 0S/2 Presen-

tation Manager (PM). The ownership relationship is described

on page 62 of the Microsoft 0S/2 Programmer’s Reference, Vol.
2. For PM windows in general there are no predeflned roles for

how the owner and owned windows ate supposed to interact.

PM does, however, provide a set of ownership properties that

are specified for a frame window that is an owner of another

window. All Smalltalk/V PM application windows have a PM

frame window. The properties of frame window ownership are

the remaining behaviors of DialogBox that we will add to our

DialogApplicationWindow class. They are:

s The owned window always appears in front of the owner.

● The owned window closes when the owner closes,

● The owned window hides when the owner is minimized.

● The owned window shows when the owner is subsequently

restored.

● The owned window normally moves when the owner

moves. A constant relative position is maintained between

the owned and owner windows.

c When either the owner or owned window is brought to

ftont, both come to front.

At first glance, this behavior looks much like the parent-

child window relationship. The difference is that child win-

dows are always clipped by their parent. Owned windows may

be completely separate, unless of course its owner also happens

to be its parent.
HOW DIALOGBOX DOES IT

DialogBox supports frame window ownership by having 0S/2

do the work. Part of opening a dialog is specifying the dialog’s

owner. The method used for opening dialogs in Smalltal~

PM is the following

fromModule: aModuleHandle id: anInteger
“Open the dialog box whose id is anhteger
contained in the module identified by aModuleHandle.”

owner isNiI ifl’rw [
owner:= Notifier ativeMahWindow.
owner notNil ifl’rue [owner:= owner franreWindow]].

ownerisNilifl’nux [owner:= WindowHandlequeryAfive].
self handle: (WindowHandle frornBytes: (PMWindowlibrq

loadDlg: HwndDeslrtop
owner owner asPamsneter
dlgRoc PMdlgRoc
hod: aModuleHandle
idDlg: anInteger
createParams: ml)).

handle = NullHandle ifl’rue: [self class tooManyWzzdows].
Notier add: self.

The owner is set in two places: (1) in the first several lines

and (2) in the message owner: dlgProc:hmod: idDlg:create-

Params: sent to HwndDesktop. You may recognize the first

sevetal lines as the same code we copied for use in the method

finclAndSetOwner for DialogApplicationWindow. These

lines establish the owner in Smalltalk, but have nothing to do
with PM ownership, PM ownership is established in the

method sent to HwndDesktop. Here the PM owner is estab-

lished as part of the PM call that creates the PM dialog.

ADDING PM OWNERSHIP TO APPLICATIONWINDOWS

SE~NG THE PM OWNER

The first step in adding PM ownership functionality to Appli-

cationWindows is setting the PM owner of an application

window. We can’t just copy this code from DialogBox, so we

need to do some searching. (The method in DialogBox that

seu the PM owner won’t work for application windows since

it also creates the PM dialog, not a frame window.)
Page 356 of the Microsoft 0S/2 Programmer’s Reference,

Vo[. 1 describes the PM function WinSetOwner, which tells

one PM window to own another. T’he Smalltalk/V PM class

PMWindowLibratyDLL provides the protocol for calling such

PM window dynamic link library functions. In it, we find the

method setowner:owne~, which calls W inSetOwner.
THE SMALLTALKREPORT

Voss
Virtual Object Storage System for

SmalltalklV

Seamless persistent object management with update transaction
control directly in the Smalltalk language.

● Transparent access to Smalltalk objects on disk

. Transaction commit/rollback

. Access to individual elements of virtual
collections and dictionaries

. Multi-key and multi-value virtual dictionaries
with query by key range and set intersection

● Class restructure editor for renaming classes
and adding or removing instance variables
allows incremental application development

. Shared access to named virtual object spaces

● Source code supplied

loflic **kd&stiq.id.Vk,Mas*dandE.&ad~~d.
Available mw for Smalltalk/V2M $149 + $15 shipping

——
A R T s logic Arb Ltd. 7S Hemingford Road, Cambridge, England, CBI 3BY

TEL +44 223212392 FA% +442Z32451?f

17.
Now we need a method in DialogApplicationWindow to

make the owner be the PM owner. Setting a window’s owner
in Smalltalk/V PM has no effect on who the window’s PM

owner is. So, we need a method in the class DialogApplica-

tionWindow for setting a window’s PM owner to its Smalltalk

owner. Note the check for an application window owning it-

self. If the application window owns itself, there is no need to

set the PM owner. More importantly, the system will hang if

you set a window’s PM owner to itself.

makeOwnerPMOwner
“Set myownerto be myPMowner so
I can follow my owner around and stay above
it just like a dialog would,
Note PMdoes not like my o-g myself.
GLN5 JU[Y 1991.”
(self handle parentHandle == self owner handle)

ifPalse [PMWindowIibrary
setownec self handle parentllandle
owne~ self owner handle].

THE OPENING METHODS

From the last i~ue, we have the method openModal. Now we

will add two more methods: openOwned and openAsDialog.

The first method is simply the code we used to test ownership:

openOwned
“Openwith the application window that
opened me as my owner and PMowner.”
self

findAndSetOwneq
open;
makeOwnerPMOwner.

Test the method by opening a workspace; this will be the

application window for the dialog. From the workspace do.

DialogApplicationWindownewopenOwned

Notice that the dialog remains above and follows the
workspace. Go ahead and try minimizing, restoring, and clos-

ing the workspace.

The second method opens the DialogApplicationWindow

as owned and modal to its owne~

opetiDialog
“OpenMea normal dialog, Open modal to
the application window that opened me and
be modal to my owner. GLN5 July 1991.”
self

findAndSetOwneq
ope~
makeOwnerPMOvmec
processInput.

The message order matters in these methods: findAndSet-

Owner must be sent before the message open. This is because
findAndSetOwner makes the currently active window the

owner. If the dialog has just opened, the dialog will be the
VOL. 1, NO. 2: OCTOBER 1991
currently active window. So, sending the findAndSetOwner

after open would make the dialog be owned by itself instead of

by the window that opened it.

The message makeOwnerPMOwner needs to be sent some-

time after findAndSetOwner. Setting the PM owner to the
Smalltalk owner makes sense only after the Smalltalk owner

has been set. The method makeOwnerPMOwner also needs to

be sent after the message open. The method makeOwnerPM-

Owner relies on both the dialog and the owner window hav-

ing valid window handles. These are not valid until both the

owner window and the dialog are open.

The message processInput has to be sent last since it blocks

the method until the dialog is closed. An exception is when

you want the dialog to return a value when it closes, as

Prompter and MessageBox do.

AN EXAMPLE
The following is the code for a dialog built entirely within

Smalltalk/V PM. The dialog contains the same controls used

in a PM dialog. The dialog asks the user to choose between

three buttons. The dialog returns the label of the button. This

example shows ways to handle the problems in implementing

a dialog.

First, define the class MyTestDialog. Give it an instance
variable so it can remember the user selection for its answec

■ GUIS

18.
DialogApplicationlWndowsubclass: #M~estDialog
instanceVariableNames: ‘answer’
classVariableNames:”
poolDictionaies: ‘PMConstants’

The basic opening method is

openWith.First:Sttingl second: strisrg2third stringg
“Openand ask the user to choose
between three labeled buttons.
Answer the user’s choice.”

self addSubpane (Button new
contents: stringl;
owne~ se~
when #clicked perform #gethswerFromButtom;
ikaningllatio: (0.1@O.1 comer: 0.3@0.4);
yourself).

self addsubpane: (Button new
contents: string2;
owner se~
where #clicked perform: #getAnswerFromButton:;
framingRatio: (0,4@ 0.1 comer 0.6@0.4);
yourself).

self addSubpane: (Button new
contentx .shing3;
owner self;
when: #clicked perform #getAnswerFromButtom;
framfngRatio: (0.7@0.l comer 0.9@0.4);
yourself).

self addSubpane (StaticText centered
contents: ‘Pick a nunrbef;
frarningRatio:(O.l @Om5comer: 0.9@0.9);
yourself).

self addsubpane: StatiBox new.
self openldialog.
“answer.

The method getAnswerFromButron: is referenced in open-

WithFirstxecond: third:, so we define it here

getAnswerFromButtom aButton
7he userhas madea choice. Set the
answerbased on the label of the button
and close.”

answer:= aButtoncontents.
self close.

Now the class is ready to be tried out; try it out by “show-

ing”

MyTestDialognew
~ openWithFirsL ‘one’

second: ‘two’
third: ‘three’.

There are several methods you may want to add to make

instances of MyTestDialog look more like a normal dialog. To

give the dialog a dialog border and get rid of unnecessary clut-

ter, override the method defaultFrameStyle to answer only

Fcflllgbordec
defaukFrssneStyle
Trivate - Answerthe defiult PMframe style for the receiver.

‘FcfDlgborder

Override buildMenuBar to do nothing:

buildMenuBar
“Don’t build a menubar for this dialog.”

Override initSize to answer the size and location you want

the dialog to open in:

initsize
Trivate - Answerdehult irdiialwindowextent.”

46
You now know how to make

application windows modal to one

another. 99

‘100@1OO extent 200@150!

You now have the basic functionality of dialog windows in

a subclass of ApplicationWindow. You know what modality

is. You now know how to make application windows modal to

one another. You also know what PM ownership means and

how to use it to make one window always appear above an-

other. With these tools, you can make floating tool pallets.

You can also group application windows so that, when you ac-

tivate any one window, all windows in the group come to

ftont. Most importantly, you can create custom dialogs with-
out going outside of Smalltalk/V PM. ~

Greg Hendlq is a member of the techniudstaff at KnowledgeSys~

Corporation. His 00P exlwience is in Srna.UML/VDOS, SmafltA-

802.5, Objectworks\Smalhdk Refeuse4, and Smalld~ PM.

Eric Smith is a memberof the technicalstafiat KnowledgeSyskms

Co@oration. His specialtyis customgraphicaluser interfacesusing

.%ralhrik (variousdialects)and C.

Tky maybe contactedat KnowledgeSystims Corporation, 114

MacKenan Driue, Cary, NC27511, or byphoneat (919) 481.4C00.
THE SMALLTALKREPORT

reviewed by Dart LesugeJ: OOK REVIEW

PRACTICALSMALLTALK
by Dan Shafsr and Dean A. Ritz
Spinger-Verkrg, New York, 1991
continued on page 23...

19.
Y
ou CAN’T JUDGE A BOOKby its cover. This is certainly true

of Pructicd .%sahlk by Shafer and Ritz. This book contains

useful technical information for novice Smalltak/V 286 prcP

grammers. However, the practicality of the text is limited to

single programmer development of applications and compo-

nents within the V 286 environment. To more correctly reflect

the book’s contents, the title might have been something like

“Writing Components and Applications in Srnalltalk/V 286” or
“How to Use the Model-Pane-Dispatcher Paradigm.” Bookstore

browsers might misinterpret the existing title and back cover

notes as addressing practical design issues for large-scale applica-

tions running on a variety of Smalltalk implementations.

The authors state that the purpose of the text is to instruct

the reader in using Smallmlk for real-world application devel-

opment. This is done by leading the reader through a series of

five small applications of increasing complexity, focusing on

those aspects of the system that are deemed to be the important
ones for application development.

The first two chapters of the book act as supplemental and

review material to the Digitalk Smalltalk/V manuals, The sup

plemental material is of two types The first type consists of

“tricks” to get around problems that new Smalkalk users might

have when interacting with the system. Most of the first chap-
ter is devoted to the use of the debugger. The second type of

supplemental material consists of class definitions that could be

used as the V 286 class commen~. These definitions consist of

behavioral descriptions and indications of other classes that co-

operate with the defined class. Chapter 2 can also be used as a

secondary index for the text since each class description indi-

cates the chapter in which the cl= is used in one of the exam-

ple applications.

The next nine chapters serve to describe the five example

applications. Each subsequent pair of chapters consists of a

chapter that introduces the appropriate classes and methods to

design the application and then a chapter that describes the ap-

plication design in detail, The five applications consist of a

browser that prompts the user to prioritize text entries, a

counter widget, a multisdection list pane, a bar graph
editor/displayer, and a fill-in.the-blrmk form widget. Each appli-

cation highlights some aspect of Smalltalw 286. The fitst

three applications focus on the model-pane-dispatcher (MPD)

paradigm. The bar graph editor highlights the graphics capabili-
ties. The form widget highlights the use of the text manipula-

tion classes
VOL. 1, NO. 2: OCTOBER 1991
The code presented in the book is well written, and the

text associated with the method selectors in the studied

classes does provide greater insight than the Digitalk com-

ments. The authots are careful to document the stumbling

blocks that they ran into when learning Smalltalk, allowing

readers to avoid some of the subtle pitfalls. The text is easy to

read and is written in a down-to-earth manner. The code for

the applications represents good Smalltalk style.
The text also contains a few shortcomings. The authors in-

dicate that the described techniques can easily be used in

Smalltalk dialects other than V 286. Unfortunately, V PM

and Objecrworks \Smalkalk have different paradigms for

building applications. Much of the text is concerned with ex-

tending and overriding the appropriate methods pertaining to

MPD realization of an application. This is great for V 286 pro-

grammers; however, it is not clear exactly which of the de-

scribed techniques are portable to the other Smalltalk imple-

mentations.

Second, although I realize that it is very difficult to choose

simple examples to demonstrate the sysrem components from

an application programmer’s point of view, only the first and

fourth application projects address issues that an application

programmer might consider. The other three “applications”

are really application components in the form of interaction
widgets. Application programming in any language consists of

coupling existing code while attempting to reuse as many ex-

isting components or functions as possible. The design of
reusable components is quite differen~ the priorities are differ-

ent. Typically, a component programmer is focused on the

creation of good reusable componen~, while the application

programmer is focused on solving the problem at hand given

the tools available. The examples in the text present an op-

portunity to highlight the distinction between these two disci-

plines.

A third concern is the notion that practical applications

are still created by a single programmer developing code in

isolation. The book does not address the problems associated

with sharing or distributing code. Once the sample applica-

tions are complete, how do I share them with my colleagues?
Pructicd .%na!Mk could have increased its appeal to novice

programmers by providing references and a bibliography. For

example, Chapter 4 defines the term object responsibility. It

2

OFTWARE REVIEW

Tigre: an interface builder for
ObjectworksEmalltalk

reviewedby Cab O’Ryan
0

T
HE TIGRE FTKXILAMMINGENVIRONMENT is a graphical inter-

face-building kit (Tigre Interface Designer) bundled with a

persistent object storage mechanism (Tigris Database) that

runs on top of ParcPlace’s ObjectWorks \Smalltalk and, there-
fore, supports the “instant” portability of programs to a large

list of hardware platforms without any changes in code. The

purpose of this software system is to provide Objectworks\
Smalltalk developers with the capability to quickly create and

test the graphical user interface component of their Smalltalk

applications. The Tigris database is tightly integrated with

and inseparable from the interface designer since the interface

designer uses the database to store the screen descriptions.

The intended audience for this software product is devel-
opers who may or may not already be using ObjectWorks \

Smalltalk and are interested in speeding up their development

cycle by using a tool that allows them to quickly create their

interface screens visually. Developers, using the rich library of

icons and color patterns that are provided in the Tigre system,

also gain the advantage of being able to easily create screens

that are visually stunning. Developers who are not currently

using Objectworks \Smalltalk and have decided against it be-
cause of the lack of tools for visually building graphical inter-

faces should reconsider using ObjectWorks in conjunction

with the Tigre Programming Environment. This product also

allows novice Smalltalk programmers to create sophisticated

graphical user interfaces much more quickly than if they had
to learn all the ins and outs of the Smalkalk class library. Ti-

gre makes it easier to reuse the code of more advanced Small-
talk programmers who create the plug-and-play interface ele-

ments known as widgets.

An interesting aspect of the Tigre system is that all the

screens in the system used for the various utilities available

were built with the Tigre system itself, providing a level of
uniformity throughout the system. This means that any screen

in the Tigre system can be easily modified or extended by the

customer in the same way that the customer’s own screens can

be modified and extended.

The package comes with several utilities that help you or-

ganize and browse through your Tigre applications. There are

also several sample applications and a tutorial to help you get

up to speed in developing Smalltalk applications with Tigre,
.

TUTORIAL

The tutorial that comes with Tigre is an excellent example of

how easy it is to put together a simple and colorful gtaphical

interface. The tutorial, called Tidepool, is a browser for a

database of tidepool creatures. The database contains a full-

color picture as well as a textual description for each creature.

The tutorial takes you step by step through creating your own

tidepool application. The complete application only requires

about fifteen minutes to create, although this does not count

the time it took to put together the Tigris database of graphics

and text.

The process starts by creating and opening a new screen us-

ing the Program Editor by selecting commands found in pop-

up menus. When a new screen is created, you will usually cre-

ate a new Smalltalk class to go with it, a subclass of

ScreenAgent. An instance of ScreenAgent acts as the inter-

face model for the Tigre screen, and all commands that take

place in the Tigre screen are dispatched through the Screen-

Agent. The user is prompted for the name of the ScreenAgent

subclass, and then a blank window opens. By using a pop-up

menu ftom this blank window, you put the screen in edit

mode, clearly indicated by a change in the window label, Once

you are in edit mode, you can then add widgets to the screen.

The Tidepool screen shown in Figure 1 contains a total of

five widgets: an image, a selection list, two text widgets, and a

button. Each widget is created via a pop-up menu command

and then positioned by dragging and resizing with the mouse.

Widgets are chosen from a list of types that are currently in the
system. If a standard widget does not fit your needs, a Smalltalk

developer can create custom widgets (see the discussion on

custom widgets below). The widget attributes are then edited

by opening a dialog, again from a pop-up menu command. The

attributes include any text that is displayed, the font and style

it should be displayed in, the foreground and background col-

ors or patterns, the border style (embossed, raised, two-dimen-

sional, or none), and/or the icon that is dkplayed.

More important are the method selectors assigned to a wid-

get that determine exactly how that widget will interact with

a ScreenAgent. For example, a selection list requires one se-

lector that will be used to get the list of items to display and

another selector that will be used to inform the ScreenAgent
of a selection change caused by the user. It is up to the devel-

oper, then, to implement the Smalltalk methods that get in-

voked by these selectors. There are a handful of methods in-
THE SMALLTALKREPORT

Figure 1. Tldepool.

herited from ScreenAgent that can be used without writing

any additional Smalltalk code. For example, the method ac-

cept will close the window. Because the widgets interact with

the ScreenAgent through method selectors rather than de-

ferred evaluation code blocks, the widgeta are better able to be

reused later for other ScreenAgenfi that understand the same

selectozs

Very conveniently, there is a pop-up menu item in all Tigre

sereena that allows you to open a code browser on the

ScreenAgent for the window. This allows you to go back and

forth quickly between working graphically with the screen and

editing Smalltalk code, giving the developer a very tight devel-

opment cycle. There is also a pop-up menu command that

opena an inspeetor on the ScreenAgent or on any widget in

the screen, providing quick accw to debugging information.

Once the widgets are in place and their attributes set, it is
a simple matter of changing the screen into user mode

through another pop-up menu command to test the screen.

TIGRE LAUNCHER
The Tigre Launcher is a screen containing icons linked to the
smndard utilities that come with the package. There are also

icons linked to the sample applications provided and space to

add your own icons for other applications. Figure 2 shows the

Figure 2. llgre Leuncher.
VOL. 1, No. 2: OC’tUBER 1991
Tigre Launcher with some of the icons added that are in-

cluded with the system.

PROGRAM EDITOR
The ProgramEditor isa launcher and browserfor all the Tigre

screens that exist in the system, organized by application and

displayed in list format. The Program Editor is the tool used

for creating, opening, and editing Tigre screens.

PALETTE

The Tigre system comes with a sample puktte, shown in Figure

3, that has many sample widgets of various types. The stan-

dard widgets that come with Tigre include buttons, calendars

(for viewing and setting dates), checkboxes, group boxes,

lines, images, labels, pop-up lists, selection lists, switches, and

text. Widgets can be “cloned” from this palette and placed

into another screen. This supports easy reuse of widgets, and

the developer can easily create his or her own palettes of of-

ten-used widgets. When copying a widget from one screen to

another, the destination Screem4gent may or may not under-

stand the same method selectors that the original widget used.

If it does, then the clones can be used instantly without any

new code being written, If not, then the methods for the se-

lectors must be implemented in the destination ScreenAgent.

TIGRIS DATABASE

The Tigris database system is a persistent object storage sys-

tem for Objectworks \Smalltalk that is an enhancement of bi-

nary object streaming service (BOSS) technology provided by

ParcPlace in their Objectkit for Smalkalk. The difference be-

tween standard BOSS and TiNis is that Tigris stores the ob-

jects by keys, allowing objecw in a data file to be accessed like
a Smalltalk dictionary using messages such as ac, at:put, and

removeKey. This is much more convenient than a standard

BOSS file, which stores the objects linearly. Tigris also in-

cludes a simple file-locking system thar makes Tigris multiuser

compatible with the help of networking systems such as NFS

or AppleShare. The result is not a full-fledged object database

management system (ODBMS) since the Tigris multiuser sys-

Figure 3. Wgre widget palette.
21,

■ SOFIWARE REVIEW

22.
tern does not include the ability to send messages directly to

persistent objects stored on a server. The objects must first be

loaded into the Smalltalk system before a message can be sent

to them. Tigre does have plans to release a Tigris server in the

future.
A fundamental difference between the Tigre Programming

Environment and other interface designers is that Tigre is not

a code generator. The screens that Tigre creates are not trans-

lated into Smalltalk code that is later compiled and executed

to open the screens. Rather, the screen descriptions are stored

as binary objects in Tigris databases. This approach implies

that the screens do not have to be algorithmically generated

every time they are opened — they are simply loaded from the

database. The quantity of source code in the final application

is thereby drastically reduced, making the final application

simpler to maintain. This design is similar to the way tradi-

tional Macintosh applications are built. On the Macintosh,

the screen descriptions are stored in resources that are created

graphically with a resource editing tool, and the resource

manager is invoked to load the data at runtime. Tigre works

in a very similar way, with the Tigris database system playing

the role of the resource manager.

The Tigris database, however, has much more general use

than the Macintosh resource manager. Tigris allows the stor-
age of arbitrary objects keyed by strings. It also supports the

storage of data in frame format, with multiple levels of keys.

The first level is the primary key, one per frame. Each frame

can have multiple slots, each keyed by a unique string. Each

slot can be further keyed by multiple fucets. A facet is one of

potentially multiple values of a single slot. This framework al-

lows the Tigris database a great deal of flexibility. One use of

frames is to simulate a relational database, if desired.

Tigre also includes a frame browser and a fi-ame mover.

The Frame Browser allows the user to browse through the ob-

jects in Tigris databases. The Tigris Mover allows the user to

move objects from one Tigris database to another. This tool
can be used to share Tigre screens between applications and

developers.

TIGRE AND MVC
The Tigre ScreenAgent issimilarto a Smalltalkmodel in the
model-view-controller(MVC) paradigm, except that a

Screeflgent has direct access to the user interface. In a typi-

cal Smalltalk application, one or more pure (noninterface)

Smallralk models could be connected to a Tigre screen by us-

ing the ScreenAgent as an access path between the models
and the screen that interacfi with the user. The ScreenAgent

serves as a bottleneck for all message sending to and from a
Tigre screen. This helps in the maintenance and analysis of

the application code since there is only one place to look to

find the code that gets executed when users interact with a

screen.

The Tigre widgets, on the other hand, correspond to MVC

view-controller pairs. The widget encapsulates both a view
and a controller — the widget both displays itself to the user

and interacts with the user through an input device.

SOFTWARE REUSABILITY

Tigre makes simple interfaces extremely easy to generate

through the use and reuse of the standard widgets, which are

easily cloned and adapted for applications that differ widely.

Tigre also promotes reusability of new code that must written

by allowing new interface devices to be implemented as cus-

tom widgets that can be used in a plug-and-play fashion. This

will allow other users to easily take advantage of the effort of

others in the area of user interface development.

CUSTOM WIDGETS

Since any set of standard widgets will never be able to handle
all the needs for all projects, no interface designer would be

complete without support for allowing developers to create
their own custom widgets. The implementation of a Tigre wid-

get is based closely enough on Smalltalk’s MVC paradigm that

existing Smalkalk interface code can be used as a foundation

for a custom Tigre widget. Some additional code and modifica-

tions, however, will be required to fit the classes into the Tigre

fi-amework. An experienced Smalltalk programmer should

have no trouble creating custom widgets and, by doing so, will

make his or her interface elements much easier for others, per-

haps less experienced Smalltalk programmers, to reuse.

OTHER FEATURES

Tigre also suppotts rrmdaland chd.dscreens. A modal screen is
one that takes control until the user accepts or cancels the

screen. A child screen is one that is opened by the parent

screen. If the parent screen is closed while the child screen is

still open, then the child will be closed automatically.
Tigre also has support for a number of utility dialogs that

are quite useful, including a File Chooser, a File Saver, various

notifiers, a selector dialog, a prompter, and a confirmer. Some
of these dialogs already have similar implementations in the

standard Smalltalk system, but Tigre either extends their

functionality or makes them easier to use. The File Saver and

File Chooser, however, are not provided by Smalltalk and pro-

vide a user-friendly way of choosing and saving files in the un-

derlying file system. These dialogs were much needed and are

much appreciated.

SHORTCOMINGS

One disappointment in the Tigre system is thar the ability to
align widgets with one another on the screen is fairly cumber-

some. Tigre provides pop-up menu commands for aligning one

widget with another, matching two widget’s edges, heights,

and/or widths. There is no support for centering or aligning

the centers of two widgets, aligning several widgets at once, or

moving widgets in groups.

An issue addressed by other interface-building tools is how

the widgets are affected when the window that contains them
THE SMALLTALKREPORT

cminuedfrompage 19...

would have been natural for the authors to reference Designing

Object-Orien~d Softwarel by Wirfs-Brock and Wilketson at

this point to ease the reader into the realm of object-oriented

design methods. Many~f the problems with newcomers to

Smalkalk (and 00P in general) consist of where to obtain re-

liable technical information. The book exemplifies techniques

for good coding style issues in several places. Unfortunately,

these are located in various parts in the text, rather than being

consolidated for easy reference. The text also lacks a summary
section in the last chapter.

Despite some of the above shortcomings, I recommend the

book as an application sampler for novice SmalkalkfV 286
users who wish to become familiar with MPD. Since there

now exist several paradigms for application development
within various Smalltalk implementations, novice program-

mers should first understand one and then tackle the others.

Although MPD is not the most elegant of these paradigms, it

is the most mtural for programmers who are already familiar
VOL. 1, NO. 2: OCTOBER 1991
with the basics of Smalltal~ 286. In this regard, Practical

.%rudhlk can be used as the first step for leading new Small-
talk programmers into the realm of “real-world” application

development. +

REFERENCE

[1] Wirfs-Brock, B, and B. Wilkerson. DesigningObject-Oriented Soft-
ware, Prentice Hall, EnglewoodCliffs, N], 1990.

Dan Lesagehas beeninvolvedwithobjecta”ented programming since

1986 and Snudhalksince 19SS. Currently, k is the Project Manager,

Tumky Systemsat Object Technol.qg Intnnatiarsal in Otmwa,

Canada. His cument interestsinclude distributed computing, data cam-

municatiorss,and object-oriented analysi+lesign. He can be reockd at

Object TechnologyInternational, (61 3) 228-3535, or dan@oti.on.ca.
is resized. Curtently, Tigre widgets will always resize and posi-

tion themselves proportional to the amount the window is re-

sized. What is needed is the ability to specify whether the wid-

get should resize with the window, have a fixed size and

position, or some combination of the two. Tigre plans to in-

corporate more flexibility in this area in a future release.

Another potential problem for some developers is that not

all the source code is provided with the software ausomatically

— only most of it. There are five core classes in the system

that the source code is not provided for unless a special source

code license agreement is signed. The Tigre system can be

used with the standard widgets provided without the source

code license, but custom widgets cannot be created without it.

This is only a minor inconvenience if you are willing to sign

the extra license agreement.

PERFORMANCE
I have foundthe performanceof the Tigre systemto be quite
good, providedI give it enough memoryto work with. Eight

megabytes of RAM are recommended for the system. One

time I tried cunning a Smalltalk image with Tigre installed in

“only” a 6,000-K memory partition on a Macintosh, and the

system performed rather poorly. By increasing the partition

size to 6,500 K, however, the speed-up was dramatic and the

system performed reasonably well. One reason for the large

memory requirement is the large number of 8-bit deep color

images that are loaded into memory at one time.

RUNTIME LICENSE

A nmtime license for the Tigre system requires that the loca-

tion and size of widgets in a Tigre screen not be modifiable by

the end user. The cost of such a license is negotiable with Tigre.
CONCLUSION
In my opinion, the Tigre ProgrammingEnvironment is the
one thing that ObjectWorks\Smalltalkmost needed to com-
pete with other interface developmenttools that are now on

the market such as Smalltalk/V in conjunction with Acu-

men’s WindowBuilder/V, Apple’s MacApp with ViewEdit, or

Neuron Data’s Open Interface with OpenEdit. The capability

of visually creating a graphical interface was an obvious miss-

ing feature in Objectworks until now. ObjectWorks \Smalltalk

in conjunction with Tigre is easily the most interactive, rich-

est, and portable development environment currently avail-

able that I’ve encountered. +

PRODUCT INFORMATION

TIGRE~OG RAMMtNGENVIRONMENT

IIFrAILPRICE$2,900

SY.m_shtFIEQUIREMENTS:OBIECtWORXS\SMALLTALKRELSASE4.0,

ANY PLATPXMTHATOBJECIWORXSRUNSON, I.E, MACZNTOSH,

MS/WINDOWS, ANDUNIX wmttTHE X WINCOW SYsm

8 MB RAM

TIGREOa]scr SYsTl?hiS

3004 MISSIONST.

SANTACRUZ,CA 95060

(408) 427-4900

mGRE!SUPFORTf@UCWCJJCSC.EDU

Cahan O’Ryan is theauthorof Arbor’s twoObject Bridgeproducts.

He’s also apart-time gmduatestudent at the Universityof Michigan,
wherehe’s workingon projects involving GemSmne. Cahan is a senior

software engineerat Arbor IntelligentSystems, hsc. He can be reached

thereat 506 North State St., Ann Arbor, Ml 48104, (313) 996-

4238, or at oryan@eecs.umich.edu.
23.

7A
67.
Excerptsfrom industry publications
. . . We hope that in 2001, objects will be boring. In comparison,
radical ideaa of past decades — that system sotiare should be
written in higher-level languages or in languages with strong
type systems, and that computers can and should be seam-
Iessly natworked — are thoroughly accepted today. Whether
to implement them is almost never an issue now, even though
there is still plenty of discussion about how to implement them
well. In the =me vein, we expect that 10 years from now, the
object-oriented approach to so&are design and implemerrta-
tion will be an accepted, standard technique used in every lan-
guage, library, database system, and operating system and will
be taught in undergraduate computer science courses at every
un-krera-hy.This is an ‘ksue of moving the technology futther out
into the world, and no major new thinking will be needed to ac-
complish it. One significant technological advance will be that
we will free ourselves even further from equating objects with
the nouns in the problem domain. Some of the most remark-
able advances in the usability of computer systems have come
from recognizing that procaesea, as well as things, can and
should be d=cribed, modeled, and manipulated. Therefore,
we wil I see software objects being used to model time, places,
actions, and events. We believe that this will lead to usabili~
advances almost as dramatic as those resulting from the now-
established windowficon/mouse/pull-down interfaces that were
to a large extent inspired by the original Smalltalk work of the
1970s and 1980s.

SmallMc Yesterday, Today, and Tomorrow,
L Peter Deutsch and Adele Goldberg, BYTE, 8/91

. . . “Smalltalk Iek me concentrate on solving higher-level
problems; I don’t have to fight the language,” [Abdul Nabi of
Knowledge S@ems Corp.] says. “At the end of the day I’ve
made progress toward building the client’s application instead
of just tracking down pointer errors.” As a result, Nabi says,
he’s more productive than other consultants. “1 can charge two
to three timee what other consultants chaige . . . because on an
average day I’m five times more productive” . . .

. . . The availability of Smalltalk implementations on a variety
of platforms is a key benefti for clients, Nabi saya: “Cross-plat-
form development has become a big issue for our clients. They
give developers high-power workstations, but the applications
they write have to run on inexpensive PCS. Because Smalklk is
highly portable — much more portable than C — this arrange-
ment ia feasible.” More potiable that 0 Sure. Any nontrivial C
applications based on assumptions about the environment
where the code will run. Memory addresses, device naming
conventions, and other details vay from platform to platform.
At the very least, C applications must be recompiled when
ported from one platform to another. In Smalltalk, hardware
and operating-system dependencies are dealt with by the run-
time system. Platform dependencies are encapsulated, hidden
from programmers and applications. Programs run in a “virtual
Smalttalk machine,” and can therefore be ported from one op-
erating system to another without recompilation . . .

. . . There’s a downside, too: Customers can be so pleased
with working proto~s that they’re sometimes reluctant to
pay for further development “Software isn’t automati~lly
good just because it’s written in Smalltalk,” Nabi admits.
“Thrown-together prototypes often contain really terrible
code, tossed in for demonstration purposes. It’s important to
write the production version of the sotiare using stricter
rules”...

A Competitive Edge, J.D. Hildebrand, UNIX Review, 7/91

. . . Moat of the C developera we’ve talked to . . . admit they’re
looking at both C++ and Smalltalk, but are waiting for more
standardization of object classes. Some shops, because of ex-
isting code and skill sets, find it advantageous to use precom-
pilers for COBOL, Pascal, and Fortran . . .

Front-and Application Development Tools Come of Age,
Karen Wattarson, Data Based Advisor, 8/91

. . . Arguably, the first major 00P language was Smalltalk, in-
vented by Xerox at their Palo Alto Research Center (PARC) dur-
ing the development of the workstation Dynabook, technology
later drawn on by Steve Joba for the Lisa and Macintosh. Based
on the language Flex, it is similar in appearance to C and Pas-
cal, but was created fresh by PARC. In it, everything is an ob-
ject, unlike vitiually all other 00P languages . . .

Notes horn Swan Lake: Software That Usaa Object-Oriented
Programming, Jason Goertz, The HP Chronicle, 8/91

. . . A handful of companies are now selling object-oriented lan-
guage that include much of the technology pioneered by the
Smalltalk language originally developed at Xerox Corp.’s Palo
Alto Research Center. Updated or wriien specifically for Wn-
dows, these languages are considered by some as the forerun-
ners of tools to come for graphid user interface environment,
For now, most of these tools present developers with a rela-
tively steep learning curve, often requiring retraining and sev-
eral months’ work beforedevelopers can become productive . . .

Choosing the Rght lhhdows Tool,
Paul Pinella, Datamation, 0/1/91

. . . In many respects, Smalltelk is almost the opposite of C++: It
is a pure 00 environment. Even performing arithmetic is the
manipulation of objects . . . Smalklk in .kspurest form is a self-
conteined environment, where the environment .kself is con-
structed from objects that can be modified. In fact, Smalltalk b-
longs to a class of products known as 00PS (Object Oriented
Programming S@ems), along with othera such as Actor . . .

Mision critical View: Object Orientation,
Martin Butler and Robin’ Bloor, DBMS, 7/91

. . . The ligre Interface Designer is a valuable extension to
Smalltalk in and of .kself. When combined with the second com-
pnent, ~gris, the Tigre Programming Environment empowers
the developer with the capabilities to create multi-user object-
orierrted database applications. llgris implements a shared,

ditiuted, persistent object store . . . The llgre Interface De-
signer providea a convenient means of defining connections
between interface elements and ~gris persistent database ele-
ments. In brief, the ~gre Programming environment blows the
THE SMALLTU REPORT

$itit. w!$?#’ “’:$
~;:
~
~y ,$

announcing... ::,:

CodelMAGERTh
for VPM &Window:

The premier Smalitalk/V

application manager is now available
for Windows and Presentation Manager,

●

Ftle
●

●

1~

das ●

Put related classes and methods
into a single taak-oriented ob]ect
called an application.
Browee what the a plication sees

Jyet easily move c e between it
and the external environment.
Automatically document code via
modifiable, executable, templates.
Keep a hletory of previous versions;
restore them with a few keystrokes.

View class hierarchy as graph or list.

Print an application in a formatted
report, paginated and commented.
File code into applications and
mergeapplications together.

v
Ii@ions are unaffected by

c ange fog compreeslon.
and many other features I

D:

)K

:m
:to:
:10:

d

.& .hoStdIW &CedalMAGER me ree. mmiu of OlekaM k &h_iq Daio Cam.. .

CodelMAGER V286, VMac S129.95. VPM. VWlndows S229.95
Shlpplng & handling: O S13 mall,n S20 UPS per copy. 48 hr

order turnaround. Fax or phone for quickest handling.

w

m%

Srm aplpass

() ()
TELH%UNE

❑ Chq ❑W; ❑ AmEx ❑ Mastercard
Dlsketk ❑ 3 1/2 05 5/4 ~.

Explw Date: / /

SlxGraph Computln Ltd.
Formely ZUNIQ DAT Cor

~“!.2035 C6te de Liesse, suite 01
Monireal, Oue., Canada H4N 2M5
Tel: (51 4) 332-1331 Fax: (514) 956-103
doors off the Hypercard/Oracle combo for multiiuaer database
application development . . .

Object-Oriented Programming: 00 PSLA(ECOOP Reflections and
New Products, Jim 5elmons and Tm Lynn Bsb~ky,

MacTech Journal, Spring 1991

. . . The Look and Feel Kii, with ‘ks so called wirea, externalizea
language-level objects. By grabbing a component, you immedi-
ately see its graphical elemen&. You a Isa “see” its message ca-
pabilities — what are usually the conceptual, nongraphical as-
pects of an object In a programming world where code is
invoked through the passing of messages, the wires provide a
literal, visual representation of the 00P procedural model. By
drawing connections, you can create complex applications with
a minimum of coding . . . Atier the current Wmdowa release of
the Look and Feel I@, Dig.kelk plane to ahip an 0S/2 veraion in
October or November. This powerful, interesting development
tool should add momentum to the 00P movement And it may
win some converts to the Smalltelk cause.

00P Made Vmrek Digitek’s Look end Feel Kit,
Ellen Unman, BYIE, B/W

,.. Both Wmdowa versions of Smalltalk maintain a text log of
changes to the Smalltelk “image” (i.e,, the Smalltilk gestalt of
any moment). You can view the SmelltalldV version of the lag
with the file utilities. VAth Objectworks/Smalltalk, you can view
the change log as an object with a hierarchy that has separate
instances for changes to classes, to methods, and to the sys-
tem. Both products provide a method for applying the changes
of one project to another, a necessary operation if the system is
to follow the object-~e of reusability. Both products also have
an excellent debugger, as well as tools for file management,
view management and text management As with all things,
their styles diffec ObjectWorks maintains “b own style, and Dig-
italk adopts the style of Windowa.

Smalltalk About Windows, Ben Smith, BYTE, W91

Servia Corp., devebper of the GemStone object database s@em,
has just announced object database access for Macintosh C applii
cations with support of Symantec Carp’s THINK C aafhvare devel-
opment environment. Serv.msays new and existing Mac cliit ap
placations written in Symantec’s THINK C can now access objects
stored in the GemStone object server. Think C is Syman tee’s C pro-
gramming language for the Mac, implemented with object@-
entad extens.mns. Gem Stone is a clientkwer object database
management system with interfaces to supprt Smalltelk, C and
C++ applications. Access to GemStone objects t%ciiitates the d-
velopment of more advanced apptKatiOfIS, rnckding mukimedii,
complex modeling, and arrays ...

Software Industry Report, 6117191

Sybese Inc. is moving on severel fronts to strengthen ib tachnobgy
base es the company continues a two-year metamorphosis horn
database vendor to broad-based tools and services prov.kr. The
company has been workng with a Imndan-besecf tmls vendor to
improve support for graphical environments tiara witlin Sybese’s
APT Workbench devebpment software, a key feature demanded
by the user communily. Also, Sybeae is Ioohng into supporting the
Smalltelk object-otinted fenguage es pert of a forth-coming repos-
itarybaaed development environment, code-named Comet The
moves, whKh follow the acquisition this spring of computer-aided
software engineering tools devebper Deft Inc., come as Sybeae is
preparing for an initial public offering to bagki es early es August
according to sources in the financial commun-ky .. .

Sybese Adds Datebase Tools, Joshua Greenbeum,
Computer Systems News, 6/1 7/91
25.

VOL. f, NO. 2: -BES 1991

Servio announces the first commercially available
Kanji object database

SeM-o Corporation has announced the shipment of a Kanji
object database management system (ODBMS). Servio’s

GemStone now supports manipulation of extended UNIX
code (EUC) standard Japanese character strings. Kanji sup-
port is immediately available in Japan and will be made
available worldwide this fall. Tha initial Kanji release sup-

ports the Japanese Industrial Standards (JIS) character sat,

using the EUC representation. GemStone’s Kanji capabili-

ties provide support for storage, retrieval, indexing, con-

catenation, and all other functions normally associated with
ASCII string manipulation. By supporting full indexing of

Kanji character strings, GemStone assures high perfor-

mance for applications handling complex multimedia data
including Kanji text, In addition to Kanji capabilities, 5aMo

will Japanize GemStone documentation, the daveloper in-

terface, and other product features.

For more information, contact Samio Corporation, 1420

Harbor Bay Pkwy, Alameda, CA 94501, (415) 748-6200, or

fax (41 5) 74B-6227.

Digitalk named member of the IBM International

Alliance for AD/Cycle

IBM announced that Digitalk, Inc., has become a member
of th6 IBM International Alliance for AD/Cycle. The move
underscored IBMs commitment to SmaIltalk/V with AD/Cy-
cle and is seen as providing key tools for delivering Com-
mon User Access (CUA ’91) compliant applications within
AD/Cycle. The Smalltalk/V products are used to comple-
ment host applications by producing System Application
Architecture (SAA) and CUA compliant graphical interfaces
for cooperative applications.

For more information, contact Digitalk, Inc., 9841 Airport

Blvd., Los Angeles, CA 9004S, (21 3) 645-1082, or fax (213)

645-1306.

Digitalk announces SmalltaIW PM release 1.3 and

the Database Interface for Smalltalk/V PM

Digitalk’s SmalltalkN PM release 1.3 fully supports the new
Common Uw Access architecture, known as CUA ’91,
which includes the new advanced controls IBM intends to
ship with 0S/2 2.0, The Database Interface provides simpli-
fied access to IBMs 0S/2 Extended Edition Database Man-
ager and the Microsoft SQL Server.m.

For more information, contact Digitalk, Inc., 9841 Airport
Blvd., Los Angeles, CA 90045, (213) 645-1082, or fax (213)
645-1306.

D[gitalk and IBM sign letter of intent to market
Smalltalk# products worldwide

IBM and Digitalk have worked closely togather to focus
Digitalk’s enhancement of SmalltalkN PM. Once the pro-
posed marketing agreement is signed, Digitalk products
will reach a broader audience of corporate developers who
need high-leverage tools to develop applications under
05/2 and Windows. Under the proposed agreement IBM

can market Smalltalk/V PM, SmalltalkN Wndows,

Smalltalk/V DOS, and Smalltalk/V 2B6.

For more information, contact Digitalk, Inc., 9841 Airport

Blvd., Los Angeles, CA 90045, (213) 645-1082, or fax (213)

645-1306

ParcPlace Systems’ Obje*orksVmalltalk will sup-
port Information Builders’ new Enterprise Data Ac-

cess/SQL product family

ParcPlace Systems announced that it will suIJport informa-
tion Builde~’ (IBI) Enterprise Data Access/S6L product fam-

ily. EDA/5QL provides direct access to information in corpo-

rate databases, including IBM’s DB2 and IMS, Sybasa,

Oracle, Informix, and IBI.

ParcPlace Systems intends to extend its suite of Objact-

worksWmalltalk Portable Objects (object-oriented class li-

braries) to provide a common interface for applications that

use IBI’s EDNSQL product. By using IBI’s EDA/SQL product

to support the common interface, Smalltalk developers will

gain easy access to numerous corporate databases from

within the %alltalk environment. In addition, ParcPlace is

working with its partners in the Smalltalk community to pro-
vide support for additional products and tools using this in-

terface.

ParcPlace also announced that they have signad a strategic

marketing partner agreement with IBI. ParcPlace will use

EDA/SQL as its primary database connectivity solution,

while IBI has agreed to support Objectworks\Smalltalk in its

‘marketing efforts.

For more information, contact ParcPlace Systems, 1550 Ply-

mouth St., Mountain View, CA 94043, (415) 691-6700, or

fax (41 5) 691-6715.

26.

TtiE SMAUTALK REFORT

@,@g

wNDowsANDos/2:
PRm EII)DELIVERY

NowmGo
In Windowsand 0S/2, you need prototypes.You haveto get a sense

for what an applicationis going to look like,and feellike,beforeyou can write
it. And you can’t affordto throw the prototypeawaywhen you’redone.

With !hallti PU don’t.
Start with the prototype.Them’sno developmentsystemyou can buy

that lets you get a working model workingfaster than Smalhalk/V
Then, incrementally,grow the prototypeinto a finishedapplica-

tion. ‘I& out new ideas.Get input from your users. Make more changes.
Be creative.

Srnalltalk/Vgivesyou the freedom to experiment without risk. It’s
made for trial. And error. You make changes, andtest them, one at a time.
safely. You get immediate feedbackwhenyou make a change. And you can’t
make changes that bmk the system. It’sthat safe.

And whenyou’redone, whether you’rewriting applicationsfor
Windowsor 0S/2, youll have a standaloneapplicationthat runs on both,
SmalltaJk/V code is portablebetweenthe Windows and the 0S/2 versions.
And the resultingapplicationcarries no runtime charges. All for just
$499.95. - --

Sotakea look at
SmaUtalk/V today.It’s time to make Smihaiklvthatpmtotypingtime productive.

Smalltalk/Visa regietaedtrademarkof Digitalk, Inc. Other productnanm amtrademarksor registered
trademarksof their~ hol~.
Digitalk, Inc., 9S41 Airport Blvd., Los Angeles,CA 90045
(800) 922-S255; (213) 645-10S2; Fax (213) 645-1306

LOOK WHO’S TALKING

HEWLETT-PACKARD NCR
HP bas &vE@?d a netwarktrouble- NCR baranintegmtid tastprogmm dewlop-
sboohng tool calledtbe Network Advisor ment environment for d@lat analogand
The.Network Advtior offers a com@eben- mixed mode printed circuitboardtesting.
JiveJetof took includingan expertxy~tim,
~tattittis,andprotacol decodta to ~peed MIDLAND BANK
pmbhm tiohion. The NA UJerinterfhce.ir Miahdl%nk builta Wi%.dewedTwhniml
built on a windowingsyskm wbicb ahm TradingEnvbvnment for currzrq futures
muhiph applicaiiomto be e.wcutid amistock tm&rs u~in~Smalltilk V
Simuhwous[y

m mms

H %rlds leading,award-winning object-
orientedprcpmming system

■ Completeprototype-to-deliverysystem

■ zero-costrurltirne

■ Simplifiedapplicationdeliveryfor
mating standaloneexecutable(.EXE)
applications

❑ CodepormbilitybetweenSrnalltalkfV
Wind&vsandSmalltalk/VPM

■ Wrappersfor allWindowsand0S/2
controls

H SupportfornewCUA 71 controlsfor
0S/2, includingdragand@ booktab,
containe~valueset, sliderandmore

■ ‘IianspamntsupportforDynamicData
Exchange(DDE) andDynamicLink
Library(DLL)calls

■ Fullyintegratedprogrammingenviron-
ment, includinginteractivedebuggq
sourcecodebrowsers(allsourcecode
included),world’smost extensiveWin-
dowsand0S/2 classlibrarks,tutorial
(printedandon disk),extensivesamples

H Extensivedevelopersupport,including
technicalSUppOlt, W3hl@, t2h3CtKllliC

developerforums,freeuser newsletter

■ Broadbm of third-partysupport,
in&ding add-onSrna.lltalk/Vproducts,
consultingSelvices,books,usergroups

This SrnalItalk/VWindowsapplication
capturedthe PC W+k Shmtout award-and
it was completedin 6 hours.

Smalltallc/VPM applications- USA to

developstate-of-the-artCUA-mmplimt
appliamions—and they’repm-tabletn
Smalltalk/VWIndOws

1980 Smalltalk Leaves The Lab. We were there.

1984 First Commercial Version Of Smalltalk. We were there.
I 985 First Industrial Quality Smalltalk Training Course. We were there.
1987 First Fully Integrated Color Smalltalk System. We were there.
1988 Responsibility-Driven Design Approach Developed. We were there.
1991 Smalltalk Mainstreamed in Fortune 100 Applications. WE ARE THERE.

Smalltalk Technology Adoption Services
Technology Fit Assessment
Expert Technical Consulting

Object-Oriented System Design/Review
Proof-of-Concept Prototypes

Custom Engineering Services & Support

Smalltalk Training & Team Building
Smalltalk Programming Classes:

ObjectWorks Smalltalk Release 4
Smalltalk V/Windows V/PM V/Mac

Building Applications Using Smalltalk

Object-Oriented Design Classes:
Designing Object-Oriented Software: An Introduction
Designing Object-Oriented Systems Using Smalltalk

Mentoring:
Project-focused team and individual learning experiences.

Smalltalk Development Tools
Application Organizer PlusTM Code Modularity& Version Management Tools

See our new Multi-User/Shared Repository Team Tools At00PSIA91 !

Smalltalk! Nobody Does It Better.

Instantiations, Inc.
1.800.888.6892

	By Article Title
	A Matter of Style
	Exception handling in Smalltalk
	Giving application windows dialog box funtionality in Smalltalk/V PM
	How should teams organize their applications?
	Pratical Smalltalk
	Tigre: an interface builder for Objectworks\Smalltalk

	By Author Name
	Ewing, Juanita
	Gartner, Boris
	Hendley, Greg
	Klimas, Ed
	Lesage, Dan
	O'Ryan, Cohan
	Skublics, Suzanne
	Smith, Eric

	By Topic
	Book Review
	Getting Real
	GUIs
	Software Review

