Chapter 5 End Problems
Problem 2
1 2 3 4 5 6 7 8
| condition <- letters[1:4] N <- c(50,100, 50, 100) Nm <- c(0.25, 0.5, 0.1, 0.2) m <- Nm/N
d <- data.frame(condition,N,m)
plot(d$N, d$m, pch=as.character(d$condition))
|
Shifting balance favors smaller N and smaller m so C is the favored condition.
Problem 6
Start by setting r = x/ny to get the break even n. Anything larger is needed for altruistic behaviour to be favored by kin selection.
0.25 = 0.4/0.2n or n=0.4/(0.2*0.25) = 8 or greater
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| area <- c("dark","dark","light","light") melanic <- c(T, F, T, F) p.eaten <- c(0.26, 0.74, 0.86, 0.14) p.survive <- 1-p.eaten
d <- data.frame(area, melanic, p.eaten, p.survive) d2 <- split(d, area)
lapply(d2, function(x){ x[x$melanic==TRUE,"p.survive"]/x[x$melanic==FALSE,"p.survive"] })
|
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| J.1 <- c(0.12, 0.8, 0.06, 0.02)
J.2 <- c(0.3,0.56, 0.1, 0.04)
J.11 <- sum(J.1^2) J.11
J.22 <- sum(J.2^2) J.22
J.12 <- sum(J.1*J.2) J.12
I <- J.12/sqrt(J.11*J.22) I
D <- -log(I) D
|
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| J.1 <- c(0.3, 0.5)
J.2 <- c(0.2, 0.3)
J.11 <- sum(J.1^2) J.11
J.22 <- sum(J.2^2) J.22
J.12 <- sum(J.1*J.2) J.12
I <- J.12/sqrt(J.11*J.22) I
D <- -log(I) D
|