Chapter 4 End Problems
Problem 1
1 | u <- 80 |
Problem 2
1 | u <- 140 |
If females only have u.s=165 and we assume males u=140 then the average u.s = (165+140)/2 = 152.5
1 | u <- 140 |
Problem 3
1 | u <- 60 |
Problem 4
1 | u.s <- 35 |
Problem 5
1 | u <- 110 |
Problem 6
1 | u <- 100 |
Problem 7
$$\displaystyle\sigma^2_g + \sigma^2_e = 240$$
$$\displaystyle\sigma^2_e = 90$$ so
$$\displaystyle\sigma^2_g = 240 - 190 = 50$$
Broad sense heritability =
$$\displaystyle\frac{ \sigma^2_g }{ \sigma^2_g + \sigma^2_e } = \frac{50}{240} = 0.208$$
Problem 8
additive variance: $$\displaystyle \sigma^2_a$$ dominance variance: $$\displaystyle \sigma^2_d$$ interaction or epistatic variance: $$\displaystyle \sigma^2_i$$ total phenotypic variance of the whole population: $$\displaystyle \sigma^2_p$$ total genotypic variance: $$\displaystyle \sigma^2_g$$Broad sense heritability $$\displaystyle h^2= \frac{\sigma^2_g}{\sigma^2_p} = \frac{\sigma^2_a +\sigma^2_d +\sigma^2_i }{\sigma^2_p} = 0.7$$
Narrow sense heritability $$\displaystyle h^2= \frac{\sigma^2_a}{\sigma^2_p}$$
If $$\displaystyle \sigma^2_d +\sigma^2_i = 0$$ then Broad sense heritability and narrow sense heritability are the same and so the maximum narrow sense is 0.7. Heritability can be zero, so the range is 0 - 0.7.
Problem 9
Narrow sense heritability $$\displaystyle h^2= \frac{\sigma^2_a}{\sigma^2_p}$$
Rearrange: $$\displaystyle \sigma^2_a = h^2\sigma^2_p$$
Jones: 0.24 x 4= 0.96 = $$\displaystyle\sigma^2_a$$
Smith: 0.12 x 4 = 0.48 = $$\displaystyle\sigma^2_a$$
Problem 10
1 | x <- c(21, 15, 9) |
Problem 11
See Box E
$$\displaystyle \sigma^2_a=2pq[a+(q-p)d]^2$$
1 | a.A <- 0.6 |
$$\displaystyle h^2 = \frac{0.2472}{\sigma^2_p}$$
Problem 12
Problem 13
1 | p <- 0.3 |
Problem 14
d > a implies overdominance and an equilibrium at $$\displaystyle \sigma^2_a=0$$ which implies:
$$\displaystyle a + (q-p)d = 0$$
$$\displaystyle a + (1-p-p)d = 0$$
$$\displaystyle a + d - 2pd = 0$$
$$\displaystyle a + d = 2pd$$
$$\displaystyle p=\frac{a+d}{2d}=\frac{0.1+0.12}{2(0.12)}=0.91667$$
Problem 15
Genotype | Response | Proportion | Mean of $F_2$ | $\sigma^2_G$ |
---|---|---|---|---|
$AA$ | $\mu^*+a$ | 1/4 | $1/4(\mu^*+a)$ | $1/4(\mu^*+a-\mu^*)^2$ |
$AA^{‘}$ | $\mu^*+d$ | 1/s | $1/2(\mu^*)$ | $1/2(\mu^*-\mu^*)^2$ |
$A^{‘}A^{‘}$ | $\mu^*-a$ | 1/4 | $1/4(\mu^*-a)$ | $1/4(\mu^*-a-\mu^*)^2$ |
Totals: | $\mu^*$ | $1/2a^2$ |
Genetic variance in the $F_2$ for n loci is $\sigma^2_G=n\frac{a^2}{2}$
$$\sigma^2_{Total}=\sigma^2_g + \sigma^2_e$$
So for the F2 $\sigma^2_2=n\frac{a^2}{2} + \sigma^2$ or solve for $a^2$:
$$a^2=2\frac{(\sigma^2_2-\sigma^2)}{n}$$
$R=2na$ is $R^2=4n^2a^2$ or solve for $a^2$:
$$a^2=\frac{R^2}{4n^2}$$$$\frac{R^2}{4n^2}=2\frac{(\sigma^2_2-\sigma^2)}{n}$$
Solve for n: $n=\frac{R^2}{8(\sigma^2_2-\sigma^2)}$